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Association between socio-environmental
factors, coverage by family health teams,
and rainfall in the spatial distribution of
Zika virus infection in the city of Rio de
Janeiro, Brazil, in 2015 and 2016
Carlos Eduardo Raymundo1,2* and Roberto de Andrade Medronho1,3

Abstract

Background: Zika virus (ZIKV) infection caused outbreak in Brazil, in 2015 and 2016. Disorganized urban growth,
facilitates the concentration of numerous susceptible and infected individuals. It is useful to understand the
mechanisms that can favor the increase in ZIKV incidence, such as areas with wide socioeconomic and
environmental diversity. Therefore, the study analyzed the spatial distribution of ZIKV in the city of Rio de Janeiro,
Brazil, in 2015 and 2016, and associations between the incidence per 1000 inhabitants and socio-environmental
factors.

Methods: The census tracts were used as the analytical units reported ZIKV cases among the city’s inhabitants.
Local Empirical Bayesian method was used to control the incidence rates’ instability effect. The spatial
autocorrelation was verified with Moran’s Index and local indicators of spatial association (LISA). Spearman
correlation matrix was used to indicate possible collinearity. The Ordinary Least Squares (OLS), Spatial Lag Model
(SAR), and Spatial Error Model (CAR) were used to analyze the relationship between ZIKV and socio-environmental
factors.

Results: The SAR model exhibited the best parameters: R2 = 0.44, Log-likelihood = − 7482, Akaike Information
Criterion (AIC) = 14,980. In this model, mean income between 1 and 2 minimum wages was possible risk factors for
Zika occurrence in the localities. Household conditions related to adequate water supply and the existence of
public sewage disposal were associated with lower ZIKV cumulative incidence, suggesting possible protective
factors against the occurrence of ZIKV in the localities. The presence of the Family Health Strategy in the census
tracts was positively associated with the ZIKV cumulative incidence. However, the results show that mean income
less than 1 minimum wage were negatively associated with higher ZIKV cumulative incidence.
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Conclusion: The results demonstrate the importance of socio-environmental variables in the dynamics of ZIKV
transmission and the relevance for the development of control strategies.
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Background
Zika virus (ZIKV) infection caused a major outbreak in
the Americas, especially Brazil, in 2015 and 2016. In Oc-
tober 2015, Brazil reported to the World Health
Organization an unusual increase in cases of microceph-
aly [1]. Evidence mounted for the association between
ZIKV and microcephaly leading the WHO declared
ZIKV a “Public Health Emergency of International Con-
cern” in February 2016 [2–5].
However, in November 2016, the WHO declared that

the ZIKV epidemic is no longer a “Public Health Emer-
gency of International Concern”. The Brazilian govern-
ment also closed down the ZIKV program as a “Public
Health Emergency of National Concern”. Data in Brazil
show that the number of probable cases decreased con-
siderably since the announcement by the Ministry of
Health: in 2016 there were 216,207 cases, dropping to
17,593 in 2017 and 2493 in 2018 [6–8]. In order to avoid
new outbreaks of the disease, it is thus necessary to
identify the risk factors for ZIKV. As with other arbo-
virus infections such as dengue (DENV) and chikun-
gunya (CHIKV), the highest incidence of ZIKV also
appears to affect areas with greater social inequality [9–
13].
Disorganized urban growth, facilitates the concentra-

tion of numerous susceptible and infected individuals in
the same geographic area [14, 15]. The localization and
control of less socioeconomically favored areas can thus
help identify possible mosquito breeding sites. Studies in
the USA and United Kingdom have also shown that con-
textual socioeconomic factors influence the occurrence
of infectious diseases [16]. Study about dengue virus, re-
alized between the years 2008 and 2018, identified that
areas of disorganized urban growth observed the highest
incidence of dengue [17]. Other study in the city of Rio
de Janeiro evaluated the incidence the dengue, zika and
chikungunya in the poor community area in the years
2015 and 2016. The results found high spatial variability
for three arboviruses [18].
Inter-annual variability in the climatic zones can influ-

ence the increase in the mosquito population and thus
the growth in arbovirus cases. Historically, South Amer-
ica and West Central Africa were projected with the
greatest increases in inter-annual variability [19]. In
2015, South America experienced the “El Niño”
phenomenon, with periods of heavy rainfall. Studies in-
dicate a possible association between “El Niño” and the
Zika epidemic’s spatial spread [20–23]. The El Niño also

associated with case occurrence and distribution for
dengue and chikungunya [22, 24–27].
Since Zika is an asymptomatic disease in some cases,

infected individuals do not always seek healthcare ser-
vices. In addition inadequate knowledge on Zika [28],
poor attitude towards Zika [29] and low awareness about
Zika testing [30] among frontline healthcare workers
also could contribute to underreported case of Zika. A
study in French Polynesia, Martinique, and Guadalupe
suggests that underreporting of cases can range from 3
to 50% [31]. However, locations in Brazil covered by the
“Family Health Strategy” (FHS) may favor measures to
fight and control the mosquito vector, besides an in-
crease in active search for ZIKV cases. Healthcare
workers under the FHS are trained to implement health
education activities such as urban cleaning and basic
sanitation [32, 33]. This comprehensive approach to
health can thus favor greater adherence to health ser-
vices, especially in more vulnerable populations [34].
The characterization of risk areas could contribute to

decision-making during new outbreaks of ZIKV. In this
scenario, statistical techniques for spatial analysis in
health have been used to help determine environmental
factors and epidemiological patterns [35].
It is thus useful to understand the mechanisms of

health inequality that can favor the increase in ZIKV in-
cidence, especially in areas with wide socioeconomic and
environmental diversity. The city of Rio de Janeiro was
selected for this purpose because of its large population,
heavy socioeconomic imbalance in all areas of the city,
and the presence of environmental protection areas such
as forests, parks, and coastline. In addition, the state of
Rio de Janeiro had the country’s third highest ZIKV inci-
dence according to data from the Epidemiological Bul-
letin on Monitoring of Microcephaly Cases in Brazil in
2016 [36].
The study aimed to analyze the spatial distribution of

ZIKV in the city of Rio de Janeiro in 2015 and 2016 and
identify factors associated with the occurrence of ZIKV.

Methods
Study site
This is study conducted at the level of the census block
in the city of Rio de Janeiro, located in the Southeast re-
gion of Brazil at latitude 22°44′45.59“S to 23°04’58.34”S
and longitude 43°05′48.89“W to 43°47’43.79”W. The city
has a population density of 5599.93 inhabitants/km2 and
an exclusively urban population estimated at 6,718,903
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inhabitants in the year 2019 [37]. The city is divided into
160 neighborhoods, 34 AR, 5 major PA. The city has 10,
504 census tracts, with major socioeconomic differences
distributed across all the regions. Approximately 22%
live in substandard clusters or favelas [38]. Figure 1
shows the geographic location of the city of Rio de
Janeiro and subdivision in five major Planning Areas and
34 Administrative Regions.

Availability of data and materials
The analytical units in this study were the census tracts,
based on data from the latest Population Census by the
Brazilian Institute of Geography and Statistics (IBGE) in
2010. Secondary data were collected from three informa-
tion sources for 2015 and 2016: (i) new cases daily of
ZIKV residing in the city of Rio de Janeiro, reported to
the Information System on Diseases of Notification
(SINAN); (ii) sociodemographic data from the census
tracts collected by IBGE [38]; and (iii) data on addresses,
rainfall, and FHS coverage for the years 2015 and 2016
from Pereira Passos Institute of the Rio de Janeiro Muni-
cipal Government [39].
The data from IBGE and Rio de Janeiro Municipal

Government are available in electronic databases. How-
ever, data recorded in the Information System on Dis-
eases of Notification (SINAN) are available from [State
Health Department of Rio de Janeiro]. The authors make
the data available upon request and permission of [State
Health Department of Rio de Janeiro].
The temporal aggregation of new ZIKV cases was

based on the SINAN database in the years 2015 and
2016. Cases were geocoded by residential address on the
notifications, using API (Application Programming
Interface) from Google Maps [40]. Geocoded ZIKV cases
were then aggregated by census tracts, allowing the con-
struction of crude ZIKV cumulative incidence per 1000
inhabitants. To control the incidence rates’ instability ef-
fect we used local empirical Bayesian smoothing, weight-
ing the incidence rates of neighboring tracts [41]. We
then applied the rates’ logarithmic transformation with
Bayesian smoothing to approach them to a normal dis-
tribution, thereby establishing the study’s outcome, here-
inafter the “ZIKV cumulative incidence”.
Rainfall data were collected from 33 precipitation sta-

tions in the city of Rio de Janeiro from November 2015
to February 2016. These data were used to build the
variable mean rainfall by census tract via spatial
interpolation. Since this information was not measured
in all the census tracts, but in 33 precipitation stations
in the city of Rio de Janeiro, geostatistical techniques
were used to estimate rainfall in areas without precipita-
tion stations. This was used to create a continuous map
with the estimated rainfall values for entire city of Rio
de Janeiro through simple kriging. This method was

chosen since it was expected that the mean monthly
rainfall in millimeters from November 2015 to February
2016 would be constant across the surface. Next, the
census tract map was superimposed on this map, which
allowed calculating the mean rainfall for each tract in
the selected period. To perform the spatial interpolation,
a 5,000,000 × 5,000,000 grid was defined, since some
areas were very small. After spatial rainfall analysis, the
model with the best fit was spherical anisotropy effect
[42]. The variogram indicated that rainfall distributed
differently in all directions. Thus, in the kriging analysis,
the anisotropic model was considered. The Figure S2
show 33 precipitation stations in the city of Rio de
Janeiro.
Data on coverage by the Family Health Strategy (FHS)

defined whether or not the census tract was covered by
the FHS.
These databases were then merged, using the census

tract number as the identifier field. This allowed a final
database with ZIKV cumulative incidence per census
tract as the dependent variable (outcome) and sociode-
mographic data, mean rainfall, and FHS coverage in each
census tract as the independent variables.

Data analysis
We assessed the presence of spatial autocorrelation in
the ZIKV cumulative incidence per census tract, using
global Moran’s index. The Local Indicator of Spatial As-
sociation (LISA) was used to investigate spatial associ-
ation patterns at the local level, disaggregating the global
Moran’s index. LISA classifies the tracts based on the
neighborhood matrix, in four groups: high/high, low/
low, high/low, low/high. The first two groups corres-
pond to positive associations between a census tract’s in-
cidence rate and the respective neighbors’ rates, while
the other two groups represent negative associations
[43].
The theoretical model to represent the relations be-

tween the ZIKV cumulative incidence and possible asso-
ciated factors was built from a combination of two
conceptual models. “Model I” was proposed by Diderich-
sen, Augusto, and Perez [44]. The authors summarized a
diagram containing possible mechanisms of social in-
equality in relation to ZIKV infection. These mecha-
nisms were: income, household conditions, vector
density, vulnerability, susceptibility, social context, and
health policies. “Model II” related the occurrence of nat-
ural disasters (earthquakes, floods) to the increase in the
mosquito population and consequently to the rise in
ZIKV incidence [45]. According to the available data,
this study proposed a new model including socioeco-
nomic dimensions, household conditions, and health
policies (model I) and rainfall (model II).
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Fig. 1 Geographic location and planning areas of the city of Rio de Janeiro. Map created in R software version 3.4.3 by authors. Source - Brazilian
Institute of Geography and Statistics, and Pereira Passos Institute of the Rio de Janeiro Municipal Government [38, 39]
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Figure 2 presents this study’s proposed model as a
causal diagram [46] associated with the Structural Equa-
tion Model (SEM) [47]. In this diagram, the ellipses cor-
respond to the construct with two latent variables, i.e.,
which were not measured (socioeconomic status and
household condition). The first latent construct has five
indicators represented by the observed variables: IN-
COME< 1MW (proportion of households with income
less than 1 minimum wage); INCOME1to2MW (propor-
tion of households with income from 1 to 2 minimum
wages); BROWN_BLACK as the proportion of house-
holds with individuals self-identified as brown or black;
LIVE_ALONE (proportion of households with persons
living alone); NO_SCHOOL (proportion of illiterates).
The latent variable “household conditions” is repre-
sented by 3 indicators: WATER_SYST (proportion of
households with running water supply); SEWAGE_SYST
(proportion of households connected to the public sew-
age disposal system); GARB_COLLECT (proportion of
households with public garbage collection). The variable
RAINFALL represents the mean monthly rainfall in mil-
limeters from November 2015 to February 2016;
TEAM_FHS shows whether the census tract was cov-
ered by Family Health Strategy teams.
One can thus hypothesize that census tracts with heavy

social inequality (low income, no schooling, and no family
support) can present worse living conditions, also impact-
ing household conditions. Meanwhile, heavier rainfall in a
given region an also affect the household, for example,
with accumulation of water in mosquito breeding sites.
These combined causes may have contributed to the in-
crease in ZIKV cases. In addition, the effect of health pol-
icies such as the Family Health Strategy can promote
educational activities in the fight against Aedes aegypti,
which would tend to reduce the number of cases, while
also offering greater access to health services, allowing a
reduction in underreporting of ZIKV cases.

The analysis excluded 332 census tracts that repre-
sented areas with lagoons, forests, green areas, and indi-
viduals in institutionalized sites or without population
information from the IBGE.
After confirmation of spatial autocorrelation, we

assessed the relationship between the outcome (ZIKV
cumulative incidence) and the independent variables
through Spearman correlation analysis (ρ). Variables
with ρ > 0.3 were tested in the model with interaction.
The ρ > 0.3 suggests moderate or high correlation [48] .
The Spearman correlation matrix showed a statistically
significant correlation with the study variables. However,
there was strong correlation (indicating possible collin-
earity) between INCOME< 1MW and BROWN_
BLACK; INCOME< 1MW and NO_SCHOOL; and
BROWN_BLACK and NO_SCHOOL.
The model’s fit was assessed with Ordinary Least

Squares (OLS), Spatial Lag Model (SAR), and Spatial
Error Model (CAR). The first method includes the trad-
itional linear regression approach, the second incorpo-
rates spatial dependence into the dependent variable,
and the third method includes the spatial effect jointly
in the model’s random component (error) [49]. To
choose the model with the best fit, we opted to compare
the models according to the highest log-likelihood value
and the lowest Akaike information criterion (AIC) value.
The spatial dependence term estimates the magnitude of
autocorrelation, quantifies the similarly sites in the re-
sidual errors [50]. The diagram in Figure S1 shows the
path flows for regression analysis. The spatial parameter
(ρ) in the CAR model is called “λ”.
Diagnosis of collinearity was performed with the Vari-

ance Inflation Factor (VIF) with tolerance values less
than 10 [51]. Besides that, spatial stratified heterogeneity
(SSH) was evaluated in the study to avoid the possible
confounding. The q statistic was used to measure the
correlation between ZIKV cumulative incidence and

Fig. 2 Proposed theoretical model to represent relations between ZIKV incidence and possible associated factors. Source - Owner
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each independent variable. Values of q close to 1 may
indicate confounding [52]. Geodetector was utilized for
the SSH analysis [53].
All the models’ residuals were assessed with the

Moran index to quantify the degree of spatial
dependence.
The analyses and map production were performed in

the R statistical package, version 3.4.3 [54] and in GeoDa
[55].

Results
Socioenvironmental factors associated with Zika
incidence
A total of 39,331 ZIKV cases were reported in the city of
Rio de Janeiro, of which 6536 (16.6%) in 2015 and 32,
795 (83.4%) in 2016. The proportion of non- geocoded
cases was only 3.4% of the total. The Santa Cruz and
Rocinha neighborhoods had the highest proportions of
missing data, respectively 10 and 5%. A total of 10,172
census tracts were analyzed, showing high spatial auto-
correlation assessed by the Moran index (0.56) and with
statistical significance (p-value = 0.001).
Figure 3 shows the distribution of ZIKV cumulative in-

cidence by census tract after Bayesian smoothing. In this
figure, the highest incidences are concentrated in the far
western area of the city, or PA 5; in the some localities
in PA 4; and in localities in PA 3 and PA 1. The gray
areas represent the census tracts without population

data, the blue areas are lagoons, and the green areas are
forests.
Figure 4 shows the LISA scatter map. The areas with

census tracts with high incidence and surrounded by
tracts with high rates were concentrated in PA 5, PA 4,
localities in PA 2, localities in PA 3, and practically all of
PA 1. Meanwhile, areas with census tracts with low
ZIKV cumulative incidence and surrounded by tracts
that also have low rates are located in the southern por-
tion of PA, localities in the southern portion of PA 4,
and localities in PA 5.
Figure 5 shows the areas with statistically significant

local Moran indices. Localities classified as high-high
and as low-low both corresponded to areas with signifi-
cant local Moran indices.
As shown in Table 1, the Spearman correlation matrix

indicates that the correlation between the log of the
ZIKV cumulative incidence and other independent vari-
ables was low (less than 0.3). The highest absolute value
was for the variable INCOME1to2MW (ρ = 0.223), while
the lowest correlation was for TEAM_FHS (ρ = 0.052).
All the correlations were statistically significant. There
are three high correlations between the independent var-
iables in the matrix, namely INCOME< 1MW and
BROWN_BLACK (ρ = 0.881); INCOME< 1MW and
NO_SCHOOL (ρ = 0.808); BROWN_BLACK and NO_
SCHOOL (ρ = 0.756), possibly indicating collinearity.
Based on assessment of the regression models by par-

simony criteria, goodness-of-fit, and diagnosis of

Fig. 3 Zika quintile cumulative incidence map. Map created in R software version 3.4.3 by authors. Creative Commons by license IBGE, copyright
2020. Source - Brazilian Institute of Geography and Statistics [38]
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collinearity for the VIF, we present the results of the
final regression models for OLS, SAR, and CAR
(Table 2). The variables NO_SCHOOL and BROWN_
BLACK were removed from the model since they were

colinear with income and also showed inverse correl-
ation with the outcome (see Table 1). The variables
LIVE_ALONE and RAINFALL did not remain in the
final model, based on the statistical significance

Fig. 4 LISA scatter map of Zika cumulative incidence. Map created in R software version 3.4.3 by authors. Creative Commons by license IBGE,
copyright 2020. Source - Brazilian Institute of Geography and Statistics [38]

Fig. 5 Statistical significance of the local Moran indices of the Zika cumulative incidence. Map created in R software version 3.4.3 by authors.
Creative Commons by license IBGE, copyright 2020. Source - Brazilian Institute of Geography and Statistics [38]
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criterion. Meanwhile, the variable GARB_COLLECT was
removed because it showed correlation with the other
two variables related to household conditions (WATER_
SYST and SEWAGE_SYST), besides displaying asym-
metric distribution (Figure S3). The interaction terms
evaluated were INCOME< 1MW versus BROWN_
BLACK; INCOME< 1MW versus NO_SCHOOL;
INCOME1to2MW versus BROWN_BLACK; INCO-
ME1to2MW versus NO_SCHOOL. The criterion of bio-
logical significance used for these interactions was that
poorer people who have less education tend to have a
higher risk of infection for ZIKV and other arboviruses.
In addition, the interaction terms were not statistically

significant in the model.
The variables that remained in the model were those re-

lated to income (INCOME< 1MW and INCOME1to2M)

running water and sewage disposal coverage (WATER_
SYST and SEWAGE_SYST), and coverage by the Family
Health Strategy (TEAM_FHS). The model with the best
fit was the SAR model, with a log-likelihood of − 7482.16
and AIC of 14,980.31. In this model, the INCOME< 1
MW variable were negatively associated with higher ZIKV
incidence rates. The INCOME1to2M variable was possible
risk factors for Zika occurrence in the localities. Variables
related to adequate water supply and the existence of pub-
lic sewage disposal were associated with lower ZIKV inci-
dence rates. The presence of the Family Health Strategy in
the census tracts was positively associated with the ZIKV
incidence rate.
In the diagnosis of collinearity via VIF, all the values

were below 10, indicating absence of collinearity
(Table 3).

Table 1 Spearman correlation for Zika virus incidence and variables related to socioeconomic status, household conditions, and
rainfall

– INCOME < 1
MW

INCOME1to2MW BROWN_
BLACK

NO_
SCHOOL

WATER_
SYST

SEWAGE_
SYST

GARB_
COLLECT

LIVE_
ALONE

RAINFA
LL

TEAM_
FHS

LOG_TXZIKV 0.122a 0.223a 0.099a 0.096a −0.148a − 0.192a 0.055a − 0.084a −
0.174a

0.052a

INCOME < 1 MW 0.076a 0.881a 0.808a −0.221a −0.337a − 0.212a −0.205a −
0.320a

0.245a

INCOME1to2MW 0.218a 0.061a −0.001 −0.072a 0.094a −0.146a −
0.269a

−0.059a

BROWN_BLACK 0.756a −0.199a −0.322a − 0.198a −0.188a −
0.309a

0.215a

NO_SCHOOL −0.253a −0.369a − 0.270a −0.233a −
0.268a

0.183a

WATER_SYST 0.447a 0.211a 0.066a 0.043a −0.003

SEWAGE_SYST 0.198a 0.139a 0.126a 0.028a

GARB_COLLECT 0.037a −0.033a −0.051a

LIVE_ALONE 0.225a 0.018

RAINFALL −0.011
a level of significance: 0.05

Table 2 Results of regression model, fit indices, and residuals for the Zika cumulative incidence

Variables OLS SAR CAR

coefficient p-valor coefficient p-valor coefficient p-valor

INCOME< 1MW 0.06 0.010 −0.10 < 0.001 − 0.27 < 0.001

INCOME1to2MW 1.40 < 0.001 0.58 < 0.001 0.44 < 0.001

WATER_SYST −0.49 < 0.001 −0.19 < 0.001 − 0.27 < 0.001

SEWAGE_SYST −0.35 < 0.001 − 0.09 < 0.001 −0.09 < 0.001

TEAM_FHS 0.07 < 0.001 0.04 < 0.001 0.04 0.080

R2 0.078 0.440 0.438

Log-likelihood −10,020.37 −7482.16 − 7495.20

AIC 20,054.74 14,980.31 15,006.39

The spatial dependence term ρ = 0.718 λ = 0.740

Moran – residual 0.50 0.001 −0.04 0.999 −0.05 0.999
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The spatial stratified heterogeneity not found statisti-
cally significant association between Zika cumulative in-
cidence and independent variables (Table 4).
The Moran index of the residuals for the SAR model

was 0.04 (p = 0.999), indicating that spatial dependence
was controlled. The Moran index in the OLS model,
which does not take spatial dependence into account,
was high (0.50) and significant (p = 0.001). The Fig. 6
shows the Moran residuals map in the SAR model. Note
that the residuals were well distributed across all areas
of the city.

Discussion
In relation to analysis of socioenvironmental factors as-
sociated with the ZIKV epidemic in the city of Rio de
Janeiro, lower income was associated with higher ZIKV
incidence. The study thus demonstrates that less favor-
able socioeconomic conditions related to income are dir-
ectly associated with higher ZIKV incidence rates. A
study in Salvador, Bahia, Brazil, in 2009 and 2010
showed higher risk of dengue, a disease transmitted by
the same mosquito vector, in households with income
less than or equal to one minimum wage [56]. In the city
of Rio de Janeiro, study suggest that social vulnerability
areas can be influencing occurrence of the dengue [57,
58].
The associations found in the current study are valid

at the census tracts level and should not be extrapolated
directly to the individual level, which would create a risk
of ecological bias [59].
The localities with higher coverage of running water

and public sewage disposal showed lower ZIKV inci-
dence rates. According to Campos et al. [60], areas more
favorable to larval development present worse infrastruc-
ture conditions. These two variables combined can indi-
cate lack of environmental sanitation, representing areas
with housing that lacks basic infrastructure conditions
[61].
Areas with coverage by the Family Health Strategy

presented higher ZIKV incidence, indicating that there
may be better access to health services and higher notifi-
cation of cases in these tracts. Kikuti et al. [56] found a
decrease in dengue risk in census tracts located farther
from health units. However, with the improvement of
control methods for the disease and health education

activities by healthcare workers, the tendency may be to
decrease the ZIKV incidence rates.
This census block study presented some limitations,

such as the fact that it did not include the Aedes aegypti
larval infestation index. Although this indicator was
available on the website of the Rio de Janeiro municipal
government, it was generalized to the entire study area.
In addition, it is not always possible to find a positive as-
sociation between the larval index and incidence of the
diseases, due to difficulties in adequate measurement of
the index involving various fieldwork problems, such as
closed households, difficulties in access due to public se-
curity problems, and even inadequate data collection by
health agents. A study in the city of Rio de Janeiro found
an inverse association between the Breteau index for Ae-
des aegypti and dengue incidence in 2006 [10]. Other
variables that did not enter the model are temperature
and relative humidity, which are important factors that
influence vector density. However, the range in these
variables was very small, so we opted not to include
them in the current study (Figures S4 and S5). Rainfall
varied more in the city, but it was not significant in the
final model. A possible explanation for this would be the
use of averages, which could mask the differences be-
tween the localities or the rainfall intensity, since more
intense rain tends to generate floods and thus drag vari-
ous breeding sites into the storm drain system. This
could also be due to the chosen time window. This study
used a 4-month period (November 2015 to February
2016) to estimate mean rainfall. This period was chosen
because it coincides with the months with the highest
mean rainfall in the city of Rio de Janeiro and the start
of the upward curve in reported ZIKV cases [11]. How-
ever, tests were performed with other time windows,
such as a 6-month period (September 2015 to February
2016), without finding a significant association with the
disease.
Another limitation of the study was not to analyze the

spatio-temporal dynamics. However, Freitas et al. [62]
realized a study with three arboviruses (dengue, chikun-
gunya, and Zika) in the city of Rio de Janeiro in 2015
and 2016. The results show that Zika clusters occurred
between November 2015 and May 2016. Furthermore,
clusters for all three simultaneous arboviruses included

Table 3 VIF values for OLS model

INCOME< 1MW 1.156

INCOME1to2MW 1.024

WATER_SYST 1.229

SEWAGE_SYST 1.300

TEAM_FHS 1.078

Table 4 SSH values for independent variable

Variables q-statistic p-value

INCOME< 1MW 0.287 < 0.001

INCOME1to2MW 0.227 < 0.001

WATER_SYST 0.008 0.853

SEWAGE_SYST 0.023 < 0.001

TEAM_FHS 0.002 < 0.001

Raymundo and Andrade Medronho BMC Public Health         (2021) 21:1199 Page 9 of 13



neighborhoods with high population density and low so-
cioeconomic status.
The use of census tracts favored the sociodemographic

characterization of these areas, thereby facilitating the
construction of indicators. In addition, a census tract
tends to display greater homogeneity in the resident
population’s characteristics in the tract and greater het-
erogeneity in relation to the other tracts. The main
problem with the use of the census tract is the small
population size, potentially generating great instability in
the ZIKV cumulative incidence. The choice of the local
Bayesian smoothing method aimed to correct possible
errors resulting from the fluctuation that these cumula-
tive incidence tend to present in small areas. The
method can also correct possible underreporting of the
disease, since the incidence in a small area tends to be
similar to that of its neighbors.
One possible limitation to the study is methodological.

The study’s results, such as the inclusion of interaction
terms, the possibility of effect modification by the
TEAM_FHS variable, and the socioeconomic vulnerabil-
ity gradient in the city of Rio de Janeiro may be ex-
plained better by other spatial regression models. Local
regression models assume that the spatial process is
non-stationary, i.e., the coefficients present spatial het-
erogeneity. Since the amount of observations (number of
area data) is large, the non-stationarity hypothesis tends
to be confirmed. The local spatial autocorrelation indica-
tors (Fig. 4) revealed different patterns of spatial

association in all the areas of the city of Rio de Janeiro
[43]. Geographically Weighted Regression (GWR) can
thus be used to measure this variability in each of the
city’s census tracts. The variables that were removed
from the final model by parsimony (BROWN_BLACK,
NO_SCHOOL, and GARB_COLLECT’) can thus be ex-
plored from the local point of view. Observing the com-
parison between two extreme groups: census tracts with
better socioeconomic status (SES) (low proportions of
households with income less than 1 minimum wage,
blacks/browns, and illiterates) and worse socioeconomic
status (high proportions of households with income less
than 1 minimum wage, blacks/browns, and illiterates).
The expected results should indicate that census tracts
with worse SES would have higher ZIKV rates, while
those with better SES would tend to have lower rates of
the disease. However, thes Figures S6 and S7 show the
existence of extremely poor areas with low ZIKV cumu-
lative incidence and low SES, respectively. Meanwhile,
areas with better SES, especially census tracts close to
low-income neighborhoods, had higher ZIKV cumulative
incidence. This scenario suggests that other determi-
nants not measured in this study may be associated with
ZIKV rates in the city of Rio de Janeiro.

Conclusions
The ZIKV cumulative incidence in the city of Rio de
Janeiro in the years 2015 and 2016 was positively associ-
ated with census tracts with mean income between 1

Fig. 6 Spatial distribution of residuals in the SAR model. Map created in R software version 3.4.3 by authors. Creative Commons by license IBGE,
copyright 2020. Source - Brazilian Institute of Geography and Statistics [38]
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and 2 minimum wages and the presence of family health
teams. Household conditions related to lower propor-
tions of running water and adequate public sewage dis-
posal also influenced the increase in cases of the disease.
However, the results also point to a population group
with mean income below 1 minimum wage with a nega-
tive impact on ZIKV cumulative incidence. One hypoth-
esis would suggest more underreporting of cases. Other
methodological approaches should be considered to in-
vestigate possible spatial heterogeneities.
ZIKV is a disease that can cause malformation of the

central nervous system, microcephaly among the con-
cepts of mothers who had the virus. For the city, our
contributions help to indicate which environmental fac-
tors were most associated with a higher risk of the inci-
dence of the disease and, consequently, the risk of
pregnant women becoming infected and having the risk
of developing fetuses with Congenital Zika syndrome.
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