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ABSTRACT

Motivation: Finding genes that are preferentially expressed in a
particular tissue or condition is a problem that cannot be solved
by standard statistical testing procedures. A relatively unknown
procedure that can be used is the intersection–union test (IUT).
However, two disadvantages of the IUT are that it is conservative
and it conveys only the information of the least differing target
tissue–other tissue pair.
Results: We propose a Bayesian procedure that quantifies how
much evidence there is in the overall expression profile for selective
over-expression. In a small simulation study, it is shown that the
proposed method outperforms the IUT when it comes to finding
selectively expressed genes. An application to publicly available data
consisting of 22 tissues shows that the Bayesian method indeed
selects genes with functions that reflect the specific tissue functions.
The proposed method can also be used to find genes that are
underexpressed in a particular tissue.
Availability: Both MATLAB and R code that implement the IUT and
the Bayesian procedure in an efficient way, can be downloaded at
http://ppw.kuleuven.be/okp/software/BayesianIUT/.
Contact: katrijn.vandeun@psy.kuleuven.be

1 INTRODUCTION
Gene expression is often profiled for several tissues to get insights
into gene function and regulation (Dezso et al., 2008; Liu et al.,
2008; Su et al., 2004). In this respect, finding genes that are
selectively expressed in a particular tissue is of importance to unravel
the biological processes taking place in the particular tissue and to
identify candidate biomarkers (Klee, 2008; Liang et al., 2006; Su
et al., 2004). It is important to make a distinction between three
types of tissue-selectivity [see Klee (2008) for a review]: (i) the
gene is only expressed in a particular tissue; usually this type of
expression is called ‘tissue-specific’ (Skrabanek and Campagne,
2001); (ii) the gene is expressed at approximately the same level
in all tissues except one [called categorical tissue specificity by
Schug et al. (2005)]; or (iii) the gene is over- or underexpressed
in a particular tissue compared with all the other tissues (Kadota
et al., 2003, 2006). The latter broadest type of preferential expression
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in a particular tissue is often called tissue-selective (Greller and
Tobin, 1999; Liang et al., 2006). Note that tissue-specific as
defined by Skrabanek and Campagne (2001) is a special case of
categorical tissue specificity and that categorical tissue specificity
is a special case of tissue-selectivity. In accordance with these
different definitions of tissue-selectivity, different methods to find
genes with the particular expression profile have been proposed.
The remainder of the article focuses on the broadest class of tissue-
selectivity, namely relative over- or underexpression in a particular
tissue compared with all the other tissues. All methods are explained
and illustrated for selective over-expression, but the generalization
to selective underexpression is straightforward.

To find tissue-selective genes, we found two approaches in the
literature that rely on a firm statistical framework, hereby reducing
arbitrary choices to a minimum. A first approach is unsupervised and
relies on outlier detection to scan expression profiles for outlying
values (Kadota et al., 2003, 2006). The resulting tissue-selective
profiles can be selectively expressed in more than one tissue and
can be both up- or downregulated in these tissues. A drawback of
the method is that it cannot account for biological and technical
variation because either all replicate values are included in the
analysis (with the likely outcome that only some replicate values
will be detected as outlying), or a single representative measure
(e.g. average over the replicates) has to be used in the analysis.
The second approach is supervised and constructed for the case
of replicate arrays for each tissue (Liang et al., 2006). It relies on
hypothesis testing procedures to test whether a gene is selectively
overexpressed in a particular tissue. t-tests are used to measure how
significant the difference in expression of each of the target tissue–
other tissue pairs is and a gene is declared tissue-selective when
each of the differences is significant. The problem of multiple testing
is accounted for by using the Tukey–Kramer multiple comparison
procedure. Although the obtained tissue-selective genes are claimed
to have higher expression in the target tissue than in each of the other
tissues, the statistical procedure used is tailored to find those genes
that are significantly higher expressed in the target compared with
at least one of the other tissues. To understand why this is the case,
observe that Tukey–Kramer and other common multiple comparison
procedures like Bonferroni and Dunnett (Dunnett, 1955) control the
chance of wrongfully rejecting the null hypothesis of no significantly
different target–other tissue pair against the alternative of at least
one significantly different pair. What is needed, is a test that controls
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the chance of wrongfully rejecting the null hypothesis against the
alternative of all significantly different target–other tissue pairs.

A test that would have the desired alternative hypothesis of
significantly higher expression in the target tissue compared with
each of the other tissues, was proposed by Berger (1982) and is
known as the intersection–union test (IUT; Berger and Hsu, 1996).
However, the IUT test has two disadvantages. First, it is conservative
implying that many tissue-selective genes would be missed; and
second, the obtained results are not very informative as the test
only indicates whether a gene is tissue-selective or not without
any distinction in the degree of tissue selectivity (see also Allison
et al., 2006). As an alternative, we would like to propose a Bayesian
procedure.

In this article, we first briefly describe the IUT and we introduce
a Bayesian alternative. Subsequently, both procedures are compared
in a simulation study and the Bayesian procedure is used to find the
tissue-selective genes for a panel of 22 tissues.

2 METHODS

2.1 Intersection–union test
Assume some specific gene and a specific target tissue t. Let us further denote
by H0j the partial null hypothesis that the gene under study is expressed
equally or higher in tissue j than in the target tissue. Furthermore, we denote
by H1j the partial alternative that that the gene is expressed higher in the
tissue target t. Then the gene is selectively upregulated in target tissue t, if
the compound null hypothesis that H0j holds for at least one tissue (j �= t),
is rejected against the compound alternative hypothesis that for all tissues
(j �= t) H1j holds. Using formal notation, the set of compound hypotheses
is composed by H0 =⋃

H0j and H1 =⋂
H1j . Note that this is different

from common multiple comparison procedures where the underlying set of
compound hypotheses is that all partial null hypotheses hold (i.e. H0 =⋂

H0j)
against the alternative that at least one partial null hypothesis can be rejected
(i.e. H1 =⋃

H1j). Berger (1982) introduced a procedure to test the composite
null hypothesis H0 =⋂

H0j against the composite alternative H1 =⋃
H1j (see

also Berger and Hsu, 1996). A result is declared significant by this test at
level α, if it holds that each partial null hypothesis H0j can be rejected
at level α. As proven by Berger, the significance level of his test is less
than or equal to the significance level used for each of its implied partial
tests.

The IUT can be applied to the problem of finding tissue-selective
upregulated genes as follows. For a particular gene, test each target tissue–
other tissue pair at the desired significance level (e.g. 0.05) using a suitable
test-statistic like the t-test. Only when all pairs yield a significant result,
the gene is declared selectively overexpressed. Note that to account for
the problem of testing multiple genes, the significance level used can be
adapted using Bonferonni’s or Sidak’s correction. An adaptation to finding
underexpressed genes is straightforward by testing the partial null hypothesis
that the gene under study is expressed equally or lower in tissue j than in the
target tissue against the partial alternative that the gene is expressed lower in
the target tissue. An efficient implementation of this approach in MATLAB or
R can be found online (http://ppw.kuleuven.be/okp/software/BayesianIUT/).

Often the significance level of the IUT is (much) less than α such that
the procedure is conservative (a gene will not be easily declared to be
selectively upregulated in the tissue). This yields a very low false discovery
rate, however, at the cost of many false negatives. Deng et al. (2008) proposed
an adjusted IUT for the special case of two independent tests that is less
conservative. Note, however, that it is not suitable to find tissue-selective
genes (the common target makes that the tests are dependent and usually
interest is in comparing the target with more than two other tissues). Another
disadvantage of the IUT is that it indicates whether a gene is selectively
overexpressed or not, but not to which degree. No distinction is made,

for example, at the 0.05 level of significance between a tissue-selective
upregulated gene that has P-value of 0.03 for each of the target–other tissue
pairs and a gene that has P-value of 0.0001. The IUT can be made somewhat
more informative by reporting the largest P-value of the partial tests (Tuke
et al., 2009), thus focusing only on the least differing target tissue–other
tissue pair.

2.2 Bayesian evaluation of the constrained hypothesis
In this section, we describe a Bayesian alternative for the IUT to evaluate the
hypothesis of tissue-selective overexpression. Note that the procedure will
be explained for one gene. The data consist of i=1,...,N expression levels yi

for j=1,...,J tissues. The total sample size N =∑
j Nj with Nj denoting the

number of replications for tissue j which means that i is nested in j. So, for
example, for j=1, i=1,...,N1, for j=2, i=N1 +1,...,N1 +N2. The model
for the expression level is

yi =µ1d1i +···+µJ dJi +εi, (1)

where µj denotes the population mean of tissue j, dji is 1 if the expression
was obtained for tissue j and 0 otherwise and εi ∼N (0,σ2). The density of
the data for this ANOVA model is

f (y |d1,...,dJ ,µ1,...,µJ ,σ
2)=

∏

j

∏

i∈j

1√
2πσ2

exp− 1

2

(yi −µ1d1i −···−µJ dJi)2

σ2
, (2)

where y=[y1,...,yN ] and dj =[dj1,...,djN ].
The goal is to determine the support in the data for two hypotheses:

H1 :µ1 > {µ2,...,µJ }, (3)

which states that µ1 is larger than each of the means in the set {µ2,...,µJ }
(the gene is tissue-selective), and

H2 :not H1. (4)

Note that H2 corresponds to H0 of the IUT. Support in the data will be
quantified using the Bayes factor (Kass and Raftery, 1995). Using Chib’s
approach (Chib, 1995) the Bayes factor of H1 versus H2 can be written as:

BF12 = f (y |θ ,σ2)h(θ ,σ2 |H1)/g(θ ,σ2 |y,H1)

f (y |θ ,σ2)h(θ ,σ2 |H2)/g(θ ,σ2 |y,H2)
(5)

where θ =[µ1,...,µJ ], h(·) denotes the prior distribution of the parameters
for the hypothesis indicated and g(·) the posterior distribution. The
dependence of f (·) and g(·) on d1,...,dJ is left implicit. Note that BF12 =6
implies that the support in the data for H1 is six times as large as the support
in the data for H2.

It is convenient to write

BF12 = BF1u

BF2u
, (6)

where u refers to Hu :µ1,...,µJ , that is, an unconstrained model. Once a
prior distribution has been specified for Hu the prior distribution of Hm for
m=1,2 is obtained via

h(θ ,σ2 |Hm)= h(θ ,σ2 |Hu)Iθ∈m∫
θ ,σ2 h(θ ,σ2 |Hu)Iθ∈mdθdσ2

= 1

cmh(θ ,σ2 |Hu)Iθ∈m

, (7)

where Iθ∈m = 1 if θ is in agreement with the constraints of model m and 0
otherwise, and cm is the proportion of Hu in agreement with Hm.

The prior distribution of Hu is

h(θ ,σ2 |Hu)=
∏

j

N (µj |µ0,τ0)Inv-χ2(σ2 |ν,σ2
0 ), (8)

that is, the prior distribution of each µj is the same. With this specification,
and independent of the choice of µ0,τ0,ν0 and σ2

0 , c1 =1/J and
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c2 = (J −1)/J , which makes sense because there are J equivalent models
in which one of the means is larger than the other means. Using (7) and (8),
BF1u can, for any value of θ in agreement with H1, be written as:

BF1u = f (y |θ ,σ2)h(θ ,σ2 |H1)/g(θ ,σ2 |y,H1)

f (y |θ ,σ2)h(θ ,σ2 |Hu)/g(θ ,σ2 |y,Hu)

= Jh(θ ,σ2 |Hu)/((1/f1)g(θ ,σ2 |y,Hu))

h(θ ,σ2 |Hu)/g(θ ,σ2 |y,Hu)

=Jf1, (9)

where f1 is the proportion of the unconstrained posterior distribution in
agreement with the constraints of H1 because:

g(θ ,σ2 |y,Hm)= g(θ ,σ2 |y,Hu)Iθ∈m∫
θ g(θ ,σ2 |y,Hu)Iθ∈mdθ

= 1

fmg(θ ,σ2 |y,Hu)Iθ∈m

. (10)

Using a similar derivation for BF2u, it is obtained that

BF12 = BF1u

BF2u
= Jf1

J/(J −1)f2
. (11)

See Klugkist and Hoijtink (2007) for a more elaborate discussion of the
derivation of the Bayes factor for inequality constrained hypotheses in the
context of ANOVA. As will be illustrated in Section 3.1, if the number of
means smaller than the target mean increases, the Bayes factor increases
in favor of the hypothesis of selective overexpression and if the number
of means larger than the target mean increases, the Bayes factor increases
in favor of the complement of the hypothesis of selective overexpression.
Furthermore, note the following property of the Bayes factor. Consider the
situation where all means have the same value. Then the expected value of
f1 =1/J and f2 = (J −1)/J , that is, BF12 =1. Stated otherwise, if all means
are equal the Bayes factor is neutral with respect to the hypothesis of interest
and its complement. According to the Bayes factor one or more means being
equal to the mean of the target tissue is neither evidence in favor nor against
the hypothesis of selective overexpression.

The only question remaining is the estimation of f1 because f2 =1−f1.
Using a very large (but finite) number for τ0, any number for µ0, ν=−2 and
σ2

0 =0, that is very uninformative priors, the following algorithm renders a
sample from the unconstrained posterior distribution of µ1,...,µJ ,σ

2 and
an estimate of f1:

• Step 1: assign initial values: µj =yj for j=1,...,J and σ2 =
1/N

∑
i(yi −y1d1i −···−yJ dJi)2), where yj denotes the sample average

for tissue j.

• Step 2: for j=1,...,J sample µj from g(µj |σ2,y) which is a normal
distribution with mean yj and variance σ2/Nj .

• Step 3: verify whether or not the current values of µ1,...,µJ are in
agreement with the constraints of H1.

• Step 4: sample σ2 from g(σ2 |µ1,...,µJ ,y) which is a scaled inverse
chi-square distribution with degrees of freedom N −2 and scale
parameter 1/(N −2)

∑
i(yi −µ1d1i −···−µJ dJi)2.

• Iterate Steps 2 through 4. The proportion of vectors µ1,...,µJ sampled
in Step 3 in agreement with the constraints of H1 is an estimate of f1.

Note that this algorithm has two favorable properties. First, our approach is
objective in the following sense: (i) due to the use of vague prior distributions,
the posterior is proportional to the likelihood, that is, f1 and f2 are completely
determined by the data, and (ii) since the prior is the same for each mean,
c1 and c2 do not depend on the prior. Second, no burn-in is needed because
convergence is almost instantaneously as we sample from an inverse normal
chi-square distribution and because we initialize the algorithm with the
sample average and sample variance. In applications, we used 5000 iterations
in the Gibbs sampler. Testing for selective underexpression can be done by
adapting the constraints in H1; on the algorithmic level this only influences
Step 3. An efficient implementation of this algorithm in MATLAB or R can
be found online (http://ppw.kuleuven.be/okp/software/BayesianIUT/).

3 RESULTS
We compared the performance of the IUT and Bayesian procedure
in finding tissue-selective overexpressed genes using simulated and
real data. Real data were obtained after robust multichip analysis
(RMA) preprocessing and a log2 transformation. Because the
simulation can be used as a reference for the empirical data, several
parameters in the simulation were chosen the same as for these data.
These are the number of tissues (22), the number of replications
per tissue (three to five), the total number of expression values for a
gene (70), the SD per tissue calculated over the replications (s=0.04,
corresponding to the median SD in the data) and the overall mean
expression level (µ=7.3).

3.1 Simulation
Here, we compare the performance of the two testing procedures in
a controlled setting using simulated data. Two influencing factors
are of interest, namely the amount of support in the data and the
degree to which the expression differs between the target and other
tissues (the so-called effect size; Cohen, 1969). First, for the amount
of support four levels will be considered: (i) complete support by
all 21 tissues to which the target is compared; (ii) one tissue that
is neutral, that is, has the same mean as the target tissue, and 20
supporting; (iii) one tissue not supporting and 20 supporting; and
(iv) none of the 21 tissues supporting. Second, the effect size δ is
manipulated at two levels: one with a considerable overlap of the
sampling distributions, δ=0.5s=0.02, and one with a small overlap
δ=2s=0.08. The data are generated from a normal distribution with
SD s=0.04 and mean equal to 7.3 for the target, to 7.3−δ for a tissue
supporting the hypothesis and to 7.3+δ for a tissue not supporting
the hypothesis. Note that the effect sizes used may seem too small for
what can be expected from expression data. However, using effect
sizes larger than approximately three leads to an almost complete
separation of the sampling distributions such that performance of
both the IUT and Bayesian approach would be almost perfect.

The results for the simulation are summarized in Table 1
that reports the proportion of genes for which the data support
that they are selectively overexpressed in the target tissue. The
panels correspond to different decision rules for tissue-selective
overexpression: in the first panel, this is a significant result for the
IUT; in the second panel, this is a Bayes factor larger than one
(more support for H1 than for H2); and in the third panel this is
for a Bayes factor larger than 32 (support for H1 is 32 times larger
than the support for H2). The rows correspond to the four different
amounts of support, while the two columns of each panel correspond
to the two levels of effect size. Histograms of the log transformed
Bayes factor1 are shown in Figure 1. These were used to determine
the cutoff of 32 (corresponding to a log2 value equal to 5).

Clearly, the IUT is conservative. Even in the most favorable case
(complete support, large effect size), only 26% of the genes are
declared to be tissue-selective,2 corresponding to a false negative
rate of 74%. Compare this with the corresponding results for the
Bayesian procedure (middle panel of Table 1): the majority of the
Bayes factors indicate that H1 is supported, even when the effect size

1Bayes factors below 0.0001 were set equal to 0.0001, while Bayes factors
over 10 000 were set equal to 10 000.
2This number drops to 0 when accounting for the multiple testing associated
to the testing of 5000 genes (results not shown).
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Table 1. Proportion of tissue-selective overexpressed genes

IUT BF>1 BF>32

δ=0.5s δ=2s δ=0.5s δ=2s δ=0.5s δ=2s

Complete support of H1 0.002 0.257 0.588 0.996 0.024 0.689
One tissue neutral w.r.t. H1 0.002 0.043 0.568 0.941 0.020 0.301
One tissue not supporting H1 0 0 0.5 0.238 0.014 0.002
No support at all of H1 0 0 0.09 0 0 0

Different panels correspond to different decision rules: a gene is declared tissue-selectively over-expressed (hypothesis H1) in the first
panel, if the IUT rejects H0 against H1; in the second panel, if the Bayes factor >1; and in the third panel, if the Bayes factor >32.
The different rows correspond to different amounts of support of H1, while the different columns of each panel correspond to different
effect sizes.

is small. As can be seen in the third row of Table 1, this more liberal
character of the Bayesian approach leads to many false positive
results, but can be solved by requiring that the Bayes factor should
be >32. In this case, as shown in the right panel of Table 1, the
false positive rate is close to zero yet the false negative rate is much
smaller than for the IUT. The second row of Table 1 presents the
situation where one tissue has the same expression level as the target,
and the other expression levels are smaller than the expression level
of the target tissue. As elaborated in the previous section for the
Bayesian approach, expression levels equal to the expression level
of the target tissue are neither evidence in favor nor against the
hypothesis of interest. This is reflected by an increased rate of genes
detected as selectively overexpressed for both the IUT and Bayes
factor. Taking 32 as a demarcation value for the Bayes factor yields
30% of the genes detected as selectively overexpressed. In case that
the pair of tissues cannot be considered as a functionally equivalent
group, these are false positives and avoiding them can be solved by
taking a much higher Bayes factor (e.g. log2 =10, see Fig. 1B) as
a demarcation value. Then, also the Bayesian procedure becomes
conservative. Note that adding more tissues with an expression
level equal to the target tissue, will quickly reduce the proportion
supported to almost zero (e.g. with two tissues having the same
expression as the target, the 0.30 drops to 0.16). As illustrated in
Table 1, this holds also for a lower effect size (δ=0.5s) for the
tissues that support the hypothesis H1. The fourth row shows that
the performance of both the IUT and the Bayes factor is rather good
if there is no support at all for the hypothesis of interest.

To illustrate that the Bayesian procedure is more informative than
reporting the largest P-value of the partial tests involved in the
IUT, we simulated data for which one tissue has the same mean as
the target tissue (7.3). The means of the remaining tissues steadily
varied from 7.3 to 7.3−3s=7.3−0.12 (corresponding to an effect
size that varies from 0 to 3), this is increasingly supporting the
hypothesis of selective overexpression in the target tissue. For each
effect size, 50 replicates (genes) were generated. A scatterplot for
the IUT is depicted in Figure 2A, where the largest P-value of the
partial tests is plotted against the effect size for the IUT; a scatterplot
for the Bayesian procedure is depicted in Figure 2B where the log
of the Bayes factor is plotted against this same effect size. Clearly,
the Bayesian procedure detects that the support of the 20 tissues
increases, while this information is not captured by the IUT.

Advantages of the IUT over the Bayesian approach are that it is
less computationally intensive and has a clear cutoff. First, running
the simulation discussed above on an Intel Core Duo took less
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Fig. 1. Histograms of the log2 transformed Bayes factors. (A) Complete
support of H1. (B) One tissue neutral with respect to H1. (C) One tissue
not supporting H1. (D) None of the tissues supporting H1. Panels at the left
are obtained with a considerable overlap of the sampling distributions, at the
right with a small overlap.

than a second for the IUT and less than 10 min for the Bayesian
approach (with 5000 iterations): this is for all eight conditions and
with 5000 replications per condition (in practice, this corresponds
to eight analyses of 5000 genes). Note that although the Bayesian
procedure is much slower, the time required for the analysis of a large
dataset using an ordinary desktop is still very reasonable. Second,
the conventional use of 0.01 or 0.05 as a cutoff for significance
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Fig. 2. Scatter plots for the largest P-value of the IUT (A) and of the log2
Bayes factors (B) in function of the effect size.

gives a clear rule. For the Bayes factor, there is not such a clear rule:
Choosing a cutoff that yields a good balance between the number of
true and false positives (this is not too conservative nor too liberal)
depends on the number of tissues, their number of replicates and their
effect sizes. Therefore, a simulation study should be performed prior
to the analysis of the intended data; as an aid for potential users, we
provided the script file of our simulation.

3.2 Tissue-selective genes
We used a publicly available microarray dataset (http://www.ncbi
.nlm.nih.gov/geo/, accession number GSE9954; see also Thorrez
et al., 2008) that we generated via Affymetrix mRNA expression
analysis using 430 2.0 arrays. This database consists of 22 different
murine tissues, with 3–5 replicates for each tissue. Note that in the
Bayesian procedure, the replications are supposed to follow a normal
distribution; therefore, we took the log2 of the RMA preprocessed
expression data.

For each tissue, the Bayesian procedure was used to find genes
preferentially expressed in a particular tissue. We decided that a
gene is tissue-selective upregulated when the Bayes factor was >32
on all probesets matching the gene. Genes that are tissue-selective
are expected to be associated with the cellular processes which are
the characteristic for the tissue. To assess whether this was the
case for the gene sets identified by the Bayesian procedure, we
tested functional overrepresentation of these genes using Ingenuity
Pathway Analysis 7.1. The five most significant functions and
diseases per tissue are listed in Table 2. It is apparent that most of
these clearly reflect tissue-specific functions. This indicates that the
underlying gene sets truly capture the tissue selectivity. For seminal
vesicle only two functions reached significance and for salivary
gland no significant function was found. Probably, this is due to the
fact that these two tissues are studied by few researchers, leading to
few publications on which Ingenuity Pathway Analysis can base its
results.

It is important to realize that the obtained results depend
strongly on the panel of tissues considered. Including more tissues
will lead to a smaller number of genes denoted to be tissue-
selective by the Bayesian procedure, but the biological specificity
for these genes will be higher. For example, the panel used here

contains three contractile tissues: gastrocnemius, diaphragm and
heart; especially gastrocnemius and diaphragm have rather similar
functions. Therefore, the number of tissue-selective genes is small
(e.g. for gastrocnemius only 132 genes were found; see Table 2) and
their functions are very specific (e.g. quantity of skeletal muscle
associated to gastrocnemius and rib formation to diaphragm; see
Table 2).

4 DISCUSSION
Finding tissue-selective genes is a recurring biological theme. As
shown, the use of procedures that correct for multiple testing
associated to the comparison of all target tissue–other tissue pairs
is erroneous. A correct statistical procedure is the IUT. However,
it is conservative and limited in information. As an alternative, we
proposed a Bayesian procedure. In a simulation study, it was shown
that this procedure is in most situations less conservative, while
still keeping the number of false positives acceptable. Also, it is
more informative than the IUT because it expresses how strongly
the complete expression profile supports the hypothesis of tissue
selectivity. Note that although we discussed the case of selective
overexpression, both methods can also be used to find selective
underexpressed genes.

The results of both the IUT and Bayesian procedure are highly
dependent on the panel of tissues considered. These methods denote
a gene as preferentially expressed in a particular tissue when
expression in the tissue is higher than in each of the other tissues
considered in the panel. Small panels can be expected to lead to
large lists of tissue-selective genes containing many genes that are
even more selectively overexpressed in a tissue not included in
the panel. In an application of the Bayesian procedure to a panel
of 22 tissues, we illustrated this by including two tissues with
rather similar functionality, namely gastrocnemius and diaphragm.
To avoid biologically flawed results, the proposed Bayesian method
as well as the IUT should be applied with careful consideration of
the tissues to include in the panel.

The use of the Bayesian procedure and the IUT is not limited
to finding tissue-selective genes in normal tissues. Any problem
involving the comparison of a reference group to each of the other
groups (more than two) can be envisaged. Interesting applications
are the comparison of normal tissue (persons) to several types of
diseased tissue (persons). For example, Nishimura et al. (2007)
aimed at genes susceptible of autism by comparing normal persons
to each of two groups of autistic persons.

An advantage of the Bayesian approach is that it is flexible in
the kind of hypotheses that can be tested with it. Not only can it
be easily adapted to test the hypothesis H1 of selective expression
in a few (and not a single) tissue against the complement H2 : not
H1, but also against more specific alternative hypotheses H2. For
example, it may be of interest to know whether the data support that
a particular gene is upregulated in a very specific tissue belonging
to a group of related tissues (e.g. three neuronal tissues) rather than
that it is upregulated overall in this group of related tissues . The
procedure that was proposed here is general and can thus be easily
adapted to test such hypotheses. On the other hand, the IUT always
tests against H2 : not H1. A more challenging adaptation of the
Bayesian procedure would be the possibility to include equalities in
the hypothesis (e.g. to find categorical tissue-specific genes) in a way
that the procedure is efficient enough to deal with thousands of genes
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Table 2. For each tissue, the genes identified by the Bayesian procedure to be tissue-selective were analyzed for functional overrepresentation

Tissue Nr BF Nr IPA Top-5 functions enriched in gene set Significance Tissue Nr BF Nr IPA Top-5 functions enriched in gene set Significance

Gastrocnemius 132 77 Contraction of muscle 1.86E-04 Thymus 401 272 Developmental process of blood cells 2.05E-24
Quantity of skeletal muscle 5.03E-03 Proliferation of lymphocytes 2.05E-24
Disease of muscle 7.56E-03 Developmental process of leukocytes 1.19E-22
Assembly of thin filaments 9.99E-03 Proliferation of T lymphocytes 7.89E-22
Slow-channel congenital myasthenic syndrome 9.99E-03 Quantity of leukocytes 1.12E-19

Spleen 356 216 Immune response 2.28E-36 Small intestine 643 436 Cell death of colorectal cancer cell lines 1.34E-03
Proliferation of lymphocytes 3.16E-30 Metabolism of nucleic acid component or derivative 1.34E-03
Proliferation of leukocytes 3.16E-30 Cleavage of protein 1.34E-03
Activation of leukocytes 3.60E-27 Transport of lipid 1.34E-03
Activation of lymphocytes 3.71E-25 Infection of mammalia 1.51E-03

Liver 513 386 Metabolism of amino acids 7.21E-22 Eye 422 263 Vision of organism 8.93E-57
Metabolic disorder 7.15E-18 Opthalmic disorder 1.94E-39
Cholestasis 3.30E-15 Retinal degeneration 2.63E-33
Metabolism of lipid 2.41E-14 Spinocerebellar ataxia, type 7 2.63E-33
Hepatic system disorder 2.41E-14 Retinitis pigmentosa 2.43E-17

Brain 807 548 Neurological disorder 1.91E-25 ES cells 1212 862 Mitosis 1.79E-12
Neurotransmission 1.91E-25 Processing of rRNA 4.90E-10
Schizophrenia 3.17E-21 Modification of DNA 1.24E-09
Huntington’s disease 1.81E-17 Repair of DNA 8.13E-08
Cognition 5.57E-13 Splicing of RNA 8.16E-08

Lung 239 175 Migration of cells 2.50E-09 Placenta 798 508 Cell movement 1.01E-07
Development of blood vessel 4.34E-07 Development of blood vessel 1.57E-05
Development of lung 1.79E-05 Morphogenesis of cells 2.55E-05
Survival of rodents 3.99E-05 Growth of cells 6.09E-05
Respiratory disorder 7.87E-05 Adhesion of eukaryotic cells 8.31E-05

Kidney 343 220 Renal and urological disorder 2.07E-07 Ovary 530 218 Reproductive system disorder 5.42E-10
Bartter’s syndrome 9.97E-06 Quantity of ovarian follicle 1.02E-07
Transport of anion 2.53E-05 Ovulation 3.52E-06
Metabolism of acyl-coenzyme A 4.61E-05 Development of ovary 5.14E-06
Transport of phosphoric acid 1.23E-04 Ovarian failure 5.95E-06

Adrenal gland 160 112 Biosynthesis of steroid 7.38E-04 Fetus 383 252 Dupuytren contracture 3.45E-08
Congenital adrenal hyperplasia 3.08E-03 Burn 4.83E-08
Synthesis of hormone 3.57E-03 Development of connective tissue 1.75E-05
Mitochondrial DNA depletion syndrome 3.57E-03 Development of skeleton 3.54E-05
Blood pressure of organism 3.57E-03 Condensation of cartilage tissue 1.91E-04

Bone marrow 277 184 Immune response 1.08E-15 Testis 2398 969 Spermatogenesis 6.56E-27
Degranulation of eukaryotic cells 3.76E-14 Gametogenesis 5.00E-26
Arthritis 1.94E-13 Development of germ cells 1.18E-12
Severe acute respiratory syndrome 1.94E-13 Development of spermatids 1.23E-12
Inflammatory response 5.14E-12 Fertilization 2.00E-10

Adipose 273 202 Quantity of fatty acid 1.14E-11 Pituitary gland 352 195 Formation of cyclic AMP 2.91E-04
Quantity of lipid 1.52E-10 Development of pituitary gland 4.84E-04
Synthesis of triacylglycerol 1.88E-08 Processing of hormone 6.04E-04
Uptake of carbohydrate 1.80E-06 Cyclopia of mice 6.23E-04
Accumulation of triacylglycerol 2.54E-06 Release of cyclic AMP 7.69E-04

Diaphragm 248 166 Contraction of muscle 7.18E-12 Heart 844 344 Development of cardiac muscle 2.09E-07
Development of muscle 1.57E-04 Cardiac contractility of heart 5.54E-05
Myopathy 1.96E-03 Contraction of muscle 1.22E-04
Glycolysis 1.14E-02 Metabolism of ATP 1.28E-04
Formation of rib 1.36E-02 Cardiomyopathy 1.52E-04

Seminal vesicle 532 264 Glycosylation of amino acids 3.46E-02 Salivary gland 638 259 No significant associations
Development of baculum 3.46E-02

From left to right, the different columns contain the tissue label (Tissue); the number of genes found to be tissue-selective (Nr BF); the number mapped to the pathway (Nr IPA);
their five most significant functions and diseases (Top-5 functions enriched in gene set); and the significance of the functions and diseases obtained with the Benjamini–Hochberg
corrected Fisher’s exact test (Significance).

[see Klugkist and Hoijtink (2007) for a discussion of Bayes factors
for equality and inequality constrained hypotheses]. Inclusion of
such equality constraints for the IUT are discussed by Tuke et al.
(2009) (an equivalence testing approach is used).
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