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Abstract: Using the panel data of 30 provinces in China from 1997 to 2015, this paper studies the
impacts of urbanization on carbon emission. We use the entropy weight method to measure the
weight of the indicator to evaluate four-dimensional urbanizations, including population, economic,
consumption and living urbanization. In addition, we investigated the spatial correlation of carbon
emissions, taking the spatial differences into consideration. The spatial Durbin model is finally
selected to analyze the impacts of urbanizations on carbon emission. The conclusions are: Firstly,
from the results of the panel data model, the four dimensions of urbanization all play a significant
role in promoting carbon emissions in the whole regions. However, in eastern China, central China
and western China, four dimensions of urbanization have different impacts on carbon emissions.
Secondly, from Moran’s I of carbon emissions from 1997 to 2015 in China, we conclude that carbon
emissions in China present a significant spatial aggregation. Thirdly, from the results of spatial
econometrics model, population urbanization only promotes local carbon emissions. Economic
urbanization and consumption urbanization promote local carbon emissions and reduce carbon
emissions in its neighboring provinces. Living urbanization promotes both local carbon emissions
and its neighboring provinces’ carbon emissions. This paper proposes some recommendations
for the carbon emission decreasing during urbanization. First, establishment and improvement
of coordination mechanisms and information sharing mechanisms across regions should also be
considered. Second, control population growth reasonably and optimize population structure in
order to achieve an orderly flow and rational distribution of the population. Third, the assessment
mechanism of the local government should include not only economic indicators but also other
indicators.

Keywords: carbon emissions; population urbanization; economic urbanization; consumption urban-
ization; living urbanization; spatial Durbin model

1. Introduction

Urbanization is the inevitable result of the development of industrialization to a certain
stage. Since its reform and opening up, China’s urban construction has been increasingly
improved and urban agglomerations exist in many regions of China. The area of urban
built-up areas in China has gradually expanded. Infrastructure systems such as housing
conditions, urban transportation, water supply, heat and power, greening, environmental
sanitation, and telecommunications have been continuously improved. In recent years,
China’s urbanization process has been obvious. The role of population mobility has been
strengthened, but the problems associated with urbanization have become more and more
prominent [1,2]. Many regions in China have an incomplete understanding of urbanization,
which focus on urban construction and ignore regional coordination [3]. Some regions
focus on scale expansion while neglecting effective resource protection [4]. The impact
of urbanization on environmental pollution is different in countries and regions with
different levels of development [5]. There is a serious “polarization” trend in China’s
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urbanization. The population and space of some cities have expanded rapidly. The number
and proportion of large cities have been increasing, while the number and proportion of
small and medium-sized cities are decreasing.

All countries are paying attention to the coordinated development of economy and
ecological environment [6]. However, urban environmental pollution has become increas-
ingly prominent [7,8]. Although the government’s investment in urban infrastructure has
increased year by year [9,10], urban infrastructure cannot match resources and environ-
ment. China’s urbanization is accompanied by high carbon emissions. China is facing
enormous pressure of carbon emissions reduction in the process of urbanization. In 2015,
Chinese government committed that China’s carbon emissions per unit of GDP in 2030
will decline by 60% to 65% compared with those of 2005 [11]. It is very important to solve
the problems of carbon emissions and urbanization in China. The Chinese government
should fully understand the impact of urbanization on carbon emissions and implement
the corresponding policies according to different situations.

The exploration of the effects of urbanization on carbon emissions from different
perspective has appealed to scholars across the world. Many studies do research from pop-
ulation urbanization [12–16]. Some scholars studied the impact of urbanization on carbon
emissions from multi-dimensional urbanization [17–21]. However, most scholars’ studies
have not considered the spatial dependence between carbon emissions and urbanization. If
spatial dependencies are ignored, the regression results may be biased. Secondly, China
has experienced a rapid urbanization process. Affected by the differences in economic
and social development, each region in China is in a different stage of urbanization. It is
very important to study the impact of multi-dimensional urbanization on carbon emis-
sions considering spatial dependence between carbon emissions and urbanization. Our
research aims to formulate effective low-carbon strategies in China from the perspective of
urbanization.

In order to better analyze the impact of urbanization on carbon emissions in China, this
paper measures urbanization from four dimensions, including population urbanization,
economic urbanization, consumption urbanization and living urbanization. In addition,
this paper uses both the panel data model and the spatial econometric model to study
the impacts of four-dimensional urbanizations on carbon emissions from 1997 to 2015
in China. We aim to find whether different dimensional urbanizations have different
impacts on carbon emissions in China and different regions of China using the panel
data model. In addition, we tend to study whether carbon emissions in China present
a significant spatial aggregation. By using spatial econometrics model, we aim to find
the direct, indirect, and total effects of four-dimensional urbanizations on local carbon
emissions and its neighboring provinces’ carbon emissions. Finally, we provide effective
policy suggestions for reducing carbon emissions in China.

Our contributions in this paper are as follows. Firstly, previous studies are mostly
based on one dimension of urbanization, without taking multi-dimensional urbanization
into account. To study the influence of urbanization on carbon emissions comprehensively,
this paper measures urbanization from four dimensions. Secondly, we utilize entropy
weight method to measure the weight of indicators to evaluate four-dimension urbaniza-
tions. Thirdly, we take spatial dependence into consideration and adopt spatial econometric
models to study the impact of multi-dimensional urbanization on carbon emissions.

The paper is designed as below. Section 2 is the literature review. Section 3 details
the methodology and data source. Section 4 describes the findings of the empirical model.
Section 5 gives conclusions and suggestions.
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2. Literature Review
2.1. Urbanization Indicators
2.1.1. One-Dimensional Urbanization Indicator

Urbanization contains rich connotations. Population urbanization represents the
process of populations in rural areas moving to urban areas. From the perspective of
economics, economic urbanization represents a change in economic structure. Living
urbanization represents the improvement of urban infrastructure.

At present, there are many studies on population urbanization [12–16], because pop-
ulation urbanization is easy to obtain and calculate. Some studies not only adopted the
proportion of urban population as an indicator of population urbanization, but also took
the structure of urbanization into account [22].

2.1.2. Multi-Dimensional Urbanization Indicator

Using a single indicator to measure urbanization does not fully consider various
aspects of urbanization. Therefore, some scholars used comprehensive indicators to mea-
sure urbanization, which take population, economic structure, lifestyle, and land usage
into account. Urbanization was a complex system that integrated population, land, and
economy [17,18]. Some scholars constructed multi-dimensional urbanization using four
indicators, including Zipf’s coefficient, spatial Hirschman–Herfindahl index, urban priority
index, and spatial Gini coefficient [19]. Some scholars constructed urbanization from the
perspective of population urbanization, economic urbanization, consumption urbanization,
and living urbanization [23].

2.2. Urbanization’s Impacts on Carbon Emissions
2.2.1. Population Urbanization’s Impacts on Carbon Emissions

Some researchers conclude that population urbanization increases carbon emissions [24,25].
However, some researchers have reached the opposite consequence [26]. They conclude that
in the process of urbanization, energy expenditure and carbon emissions were alleviated
because of the optimized allocation of resources. The evolution of population urbanization
in China reduces carbon emissions by increasing energy efficiency [27].

2.2.2. Economic Urbanization’s Impacts on Carbon Emissions

Economic urbanization is defined as the transformation of the economic structure. Due
to limited resources, the environmental problems faced by cities in the low development
stage are often related to poverty, such as inadequate sanitation and a lack of water supply.
Urban wealth increases with the increase of manufacturing activities, which causes water
pollution, air pollution, and industrial pollution. These problems also decrease with
the continuous urban development, due to the enrichment of environmental laws and
regulations, technological development, and changes in economic structure. As society
gradually realizes the importance of environmental sustainability, the influence of economic
development on the environment is reduced by scientific innovation, urban agglomeration,
and industrial restructuring [28–30]. China’s economic rise has attached to huge shifts in
the industrial structure. Industrial structure has diverse influences on carbon emissions
at diverse stages [31]. Industrial structure plays a substantial role in promoting carbon
emissions [32,33].

2.2.3. Consumption Urbanization’s Influence on Carbon Emissions

Many scholars also study the influence of consumption urbanization on carbon emis-
sions. As wealth increases, there are more and more environmental issues related to
consumption. The lifestyles of rich cities are more resource-intensive than those of poor
cities. With the augmentation of urban wealth, residents’ requirement for urban infrastruc-
ture, transportation conditions, and resources also increase. Therefore, the environmental
issues related to consumption have become more prominent. The influence of urbanization
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on carbon emissions is positive for all families, but it is most apparent for middle-income
families [34–36]. Income has impacts on carbon emissions in OECD countries [37].

Consumer’s consumption, including private cars, housing, etc., leads to 45% to 55%
of total energy consumption [38]. Some researchers analyzed the influence of changes in
the resident consumer’s behavior on carbon emissions using Korean data from 1985 to
1995. They found direct residential energy consumption and the demand for high-carbon
consumer goods increased greenhouse gas emissions [39]. The influence of economic
development, expenditure structure, urban–rural structure, and other factors on carbon
emissions of urban areas is larger than that of rural areas [40]. Engel’s coefficient, private
car ownership, and the number of internet users all have impacts on carbon emissions [41].

2.2.4. Living Urbanization’s Impacts on Carbon Emissions

Living urbanization includes the change in land utilization patterns and the change in
urban spatial patterns. In general, the increase in urban density enables urban infrastructure
to fully realize economies of scale and reduce energy consumption [42]. For example,
the aggregation of public facilities increases the economies of scale of these facilities.
In addition, a compact urban space also reduces residents’ travel distance and reduces
energy consumption. However, excessive urban density increases urban environmental
pollution. For example, excessive urban density causes traffic congestion and releases
more carbon dioxide. The compact cities needed adequate infrastructure; otherwise, urban
environmental problems tended to be worse [43].

Some researchers also analyzed the relationship between CO2 emissions and land
utilization. The compact urban space reduced CO2 emissions [44]. Urban compactness was
positively related with urban carbon dioxide economic efficiency [45]. Living urbanization
has an apparent inhibitory influence on carbon emissions [46].

3. Methodology and Data Source
3.1. Panel Data Model

The panel model which studies the impacts of four-dimensional urbanizations on
carbon emissions is defined as follows:

ln CEi,t = c + β1 ln PURBi,t + β2 ln EURBi,t + β3 ln CURBi,t + β4lnLURBi,t + εi,t (1)

where CE is carbon emissions; PURB, EURB, CURB, and LURB are population urbanization,
economic urbanization, consumption urbanization, and living urbanization, respectively,
which are calculated using the method in Section 3.3.2; β1, β2, β3, and β4 are coefficients;
the index i represents the province and t represents time; and εi,t represents the error term.

3.2. Spatial Econometrics Model
3.2.1. Spatial Correlation

It is important to test the spatial correlation before establishing a spatial econometric
model. There are numerous methods to test and measure spatial correlation, in which
Moran’s I index is the most common method [47,48]. If Moran’s I index is not significantly
zero, there is spatial correlation between variables. Moran’s I is an indicator whose value is
normalized to [−1,1] after variance normalization. Moran’s I > 0 indicates a positive spatial
correlation. Moran’s I < 0 indicates a negative spatial correlation. Moran’s I can be used
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to find out whether there exist spatial agglomerations of the variables. Moran’s I index is
measured as below:

Moran′s I = (
n
∑

i=1

n
∑

j=1
Wij
(
Yi −Y

)(
Yj −Y

)
)/(S2

n
∑

i=1

n
∑

j=1
Wij)

S2 = 1
n

n
∑

i=1

(
Yi −Y

)2

Y =
n
∑

i=1
Yi

Wij =

{
1, i 6= j
0, i = j

(2)

where Yi and Yj are carbon emissions in regions i and j; Wij is the spatial weight matrix;
and n is the total number of study units.

3.2.2. Spatial Lag Model, Spatial Error Model, and Spatial Durbin Model

Furthermore, this paper analyzes the impact of multinational urbanizations on carbon
emissions through the spatial econometrics model. Spatial econometric models have three
forms, including the spatial lag model, the spatial error model, and the spatial Durbin
model [49]. In Section 3.2.2, we introduce each spatial econometric model separately.

The spatial lag model (SLM) in this paper is defined as:

lnCEi,t = c + ρ
N

∑
j=1

Wi,jlnCEj,t + β1lnPURBi,t + β2lnEURBi,t + β3lnCURBi,t + β4lnLURBi,t + εi,t (3)

where lnCEi,t and lnCEj,t denote carbon emissions of region i and region j at time t; ρ is the
spatial correlation between lnCEi,t and lnCEj,t; Wij is the spatial weight matrix; lnPURBi,t,
lnEURBi,t, lnCURBi,t, and lnLURBi,t are independent variables of region i at time t; c is
the constant term; and β1, β2, β3, and β4 are coefficients to be confirmed.

The spatial error model (SEM) in this paper is formulated as:

lnCEi,t = c + β1lnPURBi,t + β2lnEURBi,t + β3lnCURBi,t + β4lnLURBi,t + µi,t

µi,t = γ
N
∑

j=1
Wi,jµi,t + εi,t

(4)

where lnCEi,t, lnPURBi,t, lnEURBi,t, lnCURBi,t, lnLURBi,t c, β1, β2, β3, and β4 are defined
as in Formula (3); µi,t denotes spatial error auto-correlation; γ is the spatial auto-correlation
index.

The selection processes of SLM and SEM are as follows: (1) We conduct the Lagrange
Multiplier lag test (LM-lag test) and Lagrange Multiplier error test (LM-error test). (2) If
neither the null hypothesis of the LM-lag test or the LM-error test is rejected, we select
the ordinary least square (OLS) regression model. (3) If only the null hypothesis of the
LM-lag test is rejected, we select SLM. If only the null hypothesis of the LM-error test is
rejected, we select SEM. (4) If both the null hypothesis of the LM-lag test and the LM-error
test are rejected, we conduct a robust LM-lag test and robust LM-error test. If only the null
hypothesis of the robust LM-lag test is rejected, we select SLM. If only the null hypothesis
of the robust LM-error test is rejected, we select SEM. The selection process of the SLM and
SEM is shown in Figure 1.
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Figure 1. The selection of the SLM and SEM.

The spatial Durbin model (SDM) (Formula (5)) extends the SLM with spatially lagged
independent variables [50]. The selection processes of SLM, SEM, and SDM are as follows:
(1) We conduct the Wald-spatial-lag test (or LR-spatial-lag test) and Wald-spatial-error test
(or LR-spatial-error test). (2) If both the null hypothesis of the Wald-spatial-lag test and the
Wald-spatial-error test are rejected, we select SDM. (3) If only the null hypothesis of the
Wald-spatial-lag test (or LR-spatial-lag test) is rejected, we select SLM (if we select SLM in
Figure 1) or SDM (if we do not select SLM in Figure 1). (4) If only the Wald-spatial-error
test (or LR-spatial-error test) is rejected, we select SEM (if we select SEM in Figure 1) or
SDM (if we do not select SEM in Figure 1). The selection process of the SLM, SEM, and
SDM is shown below (Figure 2).

lnCEi,t = c + ρ
N
∑

j=1
Wi,jlnCEj,t + β1lnPURBi,t + β2lnEURBi,t + β3lnCURBi,t + β4lnLURBi,t

+θ1
N
∑

j=1
Wi,jβ1lnPURBi,j,t + θ2

N
∑

j=1
Wi,jβ2lnEURBi,j,t + θ3

N
∑

j=1
Wi,jβ3lnSURBi,j,t

+θ4
N
∑

j=1
Wi,jβ4lnLURBi,j,t + εi,t

(5)

where lnCEi,t, lnPURBi,t, lnEURBi,t, lnCURBi,t, lnLURBi,t, c, ρ, β1, β2, β3, and β4 are
regulated the same as in Formulas (3) and (4). θ is a vector of coefficients to be confirmed.
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3.3. Variable Definitions
3.3.1. Calculation of Carbon Emissions

We calculate carbon emission according to the 2006 IPCC report. The formula is as
below:

CE = ∑n
j=1 Energyj × Coe f f icientj (6)

where j denotes the type of energy, Energyj shows the expenditure of the jth energy,
Coe f f icientj shows the Carbon emissions coefficient of the jth energy, and the data are
obtained from the IPCC. Taking the eight major fossil fuels, including coal, coke, gasoline,
kerosene, diesel, fuel oil, liquefied petroleum gas, and natural gas, into consideration, this
paper calculates the carbon emissions of 30 provinces in China (except for Hong Kong,
Macau, Taiwan, and Tibet due to the availability of the data) from 1997 to 2015.

3.3.2. Four-Dimensional Urbanizations

Urbanization includes not only population transfer, but also various aspects such as
economic structure, resident lifestyle, and urban land development. This paper builds an
urbanization evaluation system from four dimensions [23,51], (Table 1).

Table 1. Urbanization Variables.

Dimensions Symbol Variable Unit

Population urbanization PURB
The proportion of urban population (X1) %

Urban population size (X2) 10 thousand
The proportion of aging population (X3) %
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Table 1. Cont.

Dimensions Symbol Variable Unit

Economic urbanization EURB
Percentage of secondary industry in GDP (X4) %

Real estate investment completed (X5) 108 RMB
energy efficiency (X6) 104 Yuan/103 kgTce

Consumption urbanization CURB
Urban residents’ disposable income (X7) Yuan
public transport vehicles owned by per

10,000 people (X8)
Private cars owned by per 10,000 people (X9)

Living urbanization LURB
Urban population density (X10) Urban population per km2

Road area per capita (X11) m2

Urban built-up area (X12) km2

We use the entropy weight method [52] to calculate the weight of variables, which is
an objective weighting method.

Firstly, the standardized value of the indicator xj is calculated as follow:

Yij = Xij/
m

∑
i=1

Xij (i = 1, 2, . . . , m; j = 1, 2, . . . , 12) (7)

where Xij is the value of indicator j in year i; m is the number of years.
Secondly, the entropy value of the indicator xjis calculated as follow:

Ej = −
1

lnm

m

∑
i=1

Yij × lnYij (8)

Thirdly, the weight of the indicator xj is calculated as follows:

wj =
(
1− Ej

)
/ ∑3

j=1
(
1− Ej

)
for j = 1, 2, 3

wj =
(
1− Ej

)
/ ∑6

j=4
(
1− Ej

)
for j = 4, 5, 6

wj =
(
1− Ej

)
/ ∑9

j=7
(
1− Ej

)
for j = 7, 8, 9

wj =
(
1− Ej

)
/ ∑12

j=10
(
1− Ej

)
for j = 10, 11, 12

(9)

Finally, the value of population urbanization, economic urbanization, consumption
urbanization, and living urbanization in year i is calculated as Formula (10) to (13), respec-
tively.

PURBi = ∑3
j=1 wj × Xij (10)

EURBi = ∑6
j=4 wj × Xij (11)

CURBi = ∑9
j=7 wj × Xij (12)

LURBi = ∑12
j=10 wj × Xij (13)

3.4. Data Source

This paper utilizes panel data of 30 provinces in China (excluding Hong Kong, Macau,
Taiwan, and Tibet due to the availability of the data) from 1997 to 2015 for empirical analysis.
The original data for calculating carbon emissions chooses from the China Energy Statistics
Yearbook. The original data for calculating four-dimensional urbanizations comes from
the China Statistical Yearbook and the statistical database of China’s economic and social
development.
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4. Empirical Results and Discussions
4.1. Descriptive Statistics

The descriptive statistics for the main variables are shown in Table 2. It shows that
carbon emissions in China have a standard deviation of 0.8212, with a minimum value of
6.1774, a maximum value of 10.8188. It indicates that regional differences in carbon emission
cannot be ignored. Compared to population, economic, and living urbanization, consumption
urbanization has a large variation, with a standard deviation of 0.7657, and a mean value of
1.3636. This may be due to the following: (1) Different regions of China are at diverse phases
of economy growth. So, there are great differences in residents’ disposable income in China.
(2) People’s living habits and consumption preferences are quite different. In addition, we see
that the statistics of the variables of different regions differ greatly. There are great regional
differences of carbon emissions and four-dimensional urbanizations in China.

Table 2. Statistics description of carbon emission and four-dimension urbanizations.

Variables Mean Std. Dev Min Max Observations

Whole
regions

lnCE 9.1004 0.8212 6.1774 10.8188 570
lnPURB 1.5394 0.5159 −0.5872 2.3952 570
lnEURB 1.4196 0.6422 −0.0699 3.2442 570
lnCURB 1.3636 0.7657 −0.1773 3.4168 570
lnLURB 1.4569 0.5661 −0.2957 2.7308 570

Eastern
China

lnCE 9.1843 0.9246 6.2482 10.8188 228
lnPURB 1.6840 0.4638 0.0316 2.3952 228
lnEURB 1.3504 0.6312 −0.0699 2.9903 228
lnCURB 1.5918 0.8298 −0.1773 3.4168 228
lnLURB 1.6031 0.3748 0.4523 2.7308 228

Central
China

lnCE 9.3663 0.5333 8.1291 10.3056 171
lnPURB 1.6772 0.3057 0.9752 2.2744 171
lnEURB 1.6328 0.6709 0.6065 3.2038 171
lnCURB 1.3045 0.6926 0.2623 3.0034 171
lnLURB 1.4465 0.5869 0.1565 2.3069 171

Western
China

lnCE 8.7226 0.7790 6.1774 10.1505 171
lnPURB 1.2088 0.5941 −0.5872 2.2514 171
lnEURB 1.2986 0.5759 −0.5872 2.2514 171
lnCURB 1.1184 0.6555 0.1136 2.8401 171
lnLURB 1.2724 0.6911 −0.2957 2.3467 171

There is obvious regional diversity of carbon emissions in China. Eastern China has
the largest carbon emissions, followed by central China and western China (Figure 3).
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Four dimensional urbanizations of eastern, central, and western China from 1997 to
2015 are shown below (Figure 4). Population urbanization had significant regional differ-
ences in three regions of China. Eastern China has the largest population urbanization,
followed by central China and western China. From 1997 to 2015, population urbanization
increased steadily by about 20% in all regions. From 1997 to 2001, economic urbanization
in all regions was roughly the same, with slow growth. From 2001 to 2011, the growth rate
of economic urbanization in the western China slowed down and was less than economic
urbanization in the central China and eastern China. Since 2011, economic urbanization in
central China has developed rapidly. Eastern China has the largest consumption urbaniza-
tion, followed by central China and western China. Over time, regional differences have
widened. Consumption urbanization in eastern China is almost four times that of the west-
ern region. In terms of living urbanization, it shows an upward trend in all three regions.
Eastern China has the largest living urbanization, followed by central China and western
China from 1997 to 2015. In eastern China, durable consumer goods are basically popular.
High-tech industry and the tertiary industry are developing rapidly in eastern China. In
western China, the reform and opening up has gradually deepened and expanded. The
industrial structure in the western China is updating, but there is still a large gap compared
with eastern China. Insufficient funds and backward technology are the main bottlenecks
which restrict the industrial structure updating of western China.
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4.2. The Results of Panel Data Model

Before we do the regression of panel data model, we perform multiple tests to make
our results more robust. Firstly, in order to evaluate whether the variables are stationary,
we perform panel unit root test. Secondly, it is necessary to make sure whether there is a
long-term relationship between variables. Therefore, we do the panel integration test to
make sure that there is a long-term cointegration relationship between four-dimensional
urbanizations and carbon emissions. Cointegration analysis is a prerequisite for estimating
long-term regression coefficients. Multicollinearity means that the independent variables
in the model are correlated [53]. Thirdly, we use the method of the variance inflation factor
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(VIF) to examine whether there exists multicollinearity between the independent variables.
Fourthly, we use the Modified Wald test, Sargan–Hansen test, and correlation test to test
for heteroskedasticity of the variables. Finally, we use a panel data model for regression.
We estimate panel data models at the national and regional levels to analyze the impact of
four-dimensional urbanizations on carbon emissions.

4.2.1. Panel Unit Root Test

This paper chooses the Phillips and Perron test (PP test) and Levin–Lin–Chu test (LLC
test) to verify the stationarity of the variables [54,55]. The outcomes of whole panel data
and the three regions in China are presented below (Tables 3 and 4). The outcomes show
that carbon emission and four-dimensional urbanizations of all panel data are first-order
stationary.

Table 3. Unit root test results of whole panel data.

Unit Root Test Variables Fish-PP LLC

Level

lnCE 15.8061 −2.53078 ***
lnPURB 68.6858 −1.94476 **
lnEURB 3.93320 −1.98812 **
lnCURB 4.73390 2.56844
lnLURB 53.3643 −1.63801 *

1st difference

lnCE 241.043 *** −6.74072 ***
lnPURB 672.889 *** −13.4772 ***
lnEURB 117.939 *** −2.86401 ***
lnCURB 200.690 *** −5.86105 ***
lnLURB 1391.53 *** −8.59261 ***

Note: ***, **, and * denote statistical significance at 1%, 5%, and 10%, respectively.

Table 4. Unit root test results of panel data of eastern, central, and western China.

Eastern China Central China Western China

Variables Fish-PP LLC Fish-PP LLC Fish-PP LLC

Level

lnCE 7.847 −2.552 *** 3.312 −1.270 4.647 −0.192
lnPURB 29.949 −1.8384 ** 3.474 −0.044 35.263 *** −1.4140 *
lnEURB 2.142 −1.966 ** 0.371 −0.486 1.420 −0.961
lnCURB 4.725 −1.528 * 0.004 2.596 0.005 5.947
lnLURB 35.992 * 0.631 5.256 −1.033 12.1166 −2.319 **

1st

difference

lnCE 79.837 *** −5.033 *** 52.868 *** −3.774 *** 108.339 *** −5.147 ***
lnPURB 329.324 *** −6.414 *** 191.158 *** −6.567 *** 152.406 *** −7.364 ***
lnEURB 42.532 *** −3.578 *** 40.9471 *** −2.087 ** 43.404 *** −3.892 ***
lnCURB 101.308 *** −4.742 *** 28.2175 * −2.381 *** 71.165 *** −3.334 ***
lnLURB 909.478 *** −4.916 *** 357.151 *** −5.886 *** 124.902 *** −4.141 ***

Note: ***, **, and * denote statistical significance at 1%, 5%, and 10%, respectively.

4.2.2. Panel Cointegration Test

Kao test [56] results are shown below (Table 5). It means that there is a long-term
cointegration relationship between four-dimensional urbanizations and carbon emission.

Table 5. Kao test results of panel data.

ADF

Whole regions −5.805119 ***
Eastern China −3.785178 ***
Central China −5.341595 ***
Western China −5.341595 ***

Note: *** denotes statistical significance at 1%.
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4.2.3. Multicollinearity Test

Multicollinearity means that the independent variables in the model are correlated [53].
The OLS estimator is ineffective in the case of multicollinearity. We use the method of
variance inflation factor (VIF) to examine the presence of multicollinearity. When VIF >
10, there exists multicollinearity between independent variables [57,58]. If the VIF values
of four-dimensional urbanizations are less than 10, there is no multicollinearity of four-
dimensional urbanizations (Table 6).

Table 6. VIF values of independent variables of panel models.

Variables Whole Regions Eastern China Central China Western China

lnPURB 1.41 1.49 1.61 2.06
lnEURB 1.92 1.68 8.66 2.24
lnCURB 2.88 2.73 7.02 4.50
lnLURB 2.00 1.57 4.49 2.34

4.2.4. Modified Wald Test, Sargan–Hansen Test, and Correlation Test

The modified Wald test is used to test the heteroskedasticity [59]. According to the
results, there is heteroscedasticity in all four regions (Table 7).

Table 7. Heteroscedasticity tests’ results.

Whole Regions Eastern China Central China Western China

674.59 *** 151.74 *** 1558.47 *** 1558.47 ***
Note: *** denotes statistical significance at 1%.

Due to the heteroscedasticity, the Sargan–Hansen test [60] is utilized to identify
whether to select the fixed effect model or the random effect model. From Table 8, we see
that the fixed effect (FE) model is proper for the panel data of whole regions, eastern China,
and central China. The random effect (RE) model is proper for the panel data of western
China.

Table 8. Sargan–Hansen test results.

Whole Regions Eastern China Central China Western China

18.493 *** 39.342 *** 27.080 *** 4.258
Note: *** denotes statistical significance at 1%.

Furthermore, we use the Wooldridge test [59] and Pearson test to test the autocor-
relation and cross-sectional correlation. The outcomes indicate that autocorrelation and
cross-sectional correlation exist in all the panel data (Table 9).

Table 9. Results of autocorrelation and cross-sectional correlation test.

Whole Regions Eastern China Central China Western China

Autocorrelation test F(1,29) = 72.477 *** F(1,11) = 111.804 *** F(1,8) = 292.464 *** F(1,8) = 16.764 ***
Cross-sectional
correlation test 14.720 *** 9.026 *** 3.279 *** 0.582

Note: *** denotes statistical significance at 1%.

4.2.5. Panel Regression Results

Because autocorrelation and cross-sectional correlation exist in all panel data, the
estimation outcomes of FE models are biased. We choose the regression with cluster
robustness standard errors (cluster), the feasible generalized least squares (FGLS), and the



Int. J. Environ. Res. Public Health 2022, 19, 5315 13 of 23

regression with Driscolle and Kraay standard errors (DK) to estimate the models [61]. The
outcomes are listed below (Tables 10–13).

Table 10. Estimation results of whole regions’ panel data.

Variables
(1) (2) (3) (4)

FE FE_Cluster FGLS DK_FE

cons 7.3314 ***
(0.0922)

7.3314 ***
(0.2114)

7.3961 ***
(0.0466)

7.3314 ***
(0.1048)

lnPURB 0.6357 ***
(0.0680)

0.6357 ***
(0.1551)

0.6919 ***
(0.0339)

0.6357 ***
(0.0959)

lnEURB 0.1633 ***
(0.0368)

0.1633 ***
(0.0797)

0.1219 ***
(0.0194)

0.1633 ***
(0.0526)

lnCURB 0.2558 ***
(0.0283)

0.2558 ***
(0.0659)

0.2497 ***
(0.0231)

0.2558 ***
(0.0300)

lnLURB 0.1441 ***
(0.0220)

0.1441 ***
(0.0528)

0.0419 ***
(0.0119)

0.1441 ***
(0.0336)

R-squared 0.8463 0.8463 NA 0.8463
observations 570 570 570 570

Note: *** denotes statistical significance at 1%.

Table 11. Estimation results of eastern China’s panel data.

Variables
(5) (6) (7) (8)

FE FE_Cluster FGLS DK_FE

cons 7.4067 ***
(0.1810)

7.4067 ***
(0.4967)

7.5863 ***
(0.1041)

7.4067 ***
(0.1638)

LnPURB 0.4401 ***
(0.1122)

0.4401 ***
(0.3441)

0.5087 ***
(0.0490)

0.4401 ***
(0.1033)

LnEURB 0.0801
(0.0608)

0.0801
(0.1197)

0.0647 **
(0.0295)

0.0801
(0.0876)

LnCURB 0.3125 ***
(0.0417)

0.3125 ***
(0.0956)

0.3244 ***
(0.0240)

0.3125 ***
(0.0463)

LnLURB 0.2688 ***
(0.0581)

0.2688 ***
(0.1329)

0.0795 ***
(0.0202)

0.2688 ***
(0.0666)

R-squared 0.8473 0.8473 NA 0.8473
observations 228 228 228 228

Note: *** and ** denote statistical significance at 1% and 5% respectively.

Table 12. Estimation results of central China’s panel data.

Variables
(9) (10) (11) (12)

FE FE_Cluster FGLS DK_FE

cons 8.0209 ***
(0.3882)

8.0209 ***
(0.9101)

8.3936 ***
(0.2202)

8.0209 ***
(0.2813)

LnPURB 0.2345
(0.2598)

0.2345
(0.5831)

0.1409
(0.1274)

0.2345
(0.2032)

LnEURB 0.3170 ***
(0.1099)

0.3170 **
(0.1063)

0.1260 **
(0.0547)

0.3170 ***
(0.1039)

LnCURB 0.0465
(0.0953)

0.0465
(0.1100)

0.2272 ***
(0.0534)

0.0465
(0.0855)

LnLURB 0.2585 ***
(0.0516)

0.2585 **
(0.1037)

0.1129 ***
(0.0267)

0.2585 ***
(0.0664)

R-squared 0.8466 0.8466 NA 0.8466
observations 171 171 171 171

Note: *** and ** denote statistical significance at 1% and 5% respectively.
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Table 13. Estimation results of western China’s panel data.

Variables
(13) (14) (15) (16)

RE RE_Cluster FGLS DK_RE

cons 7.1203 ***
(0.1369)

7.1203 ***
(0.2291)

7.1203 ***
(0.1369)

7.1203 ***
(0.1598)

LnPURB 0.8094 ***
(0.0906)

0.8094 ***
(0.1269)

0.8094 ***
(0.0906)

0.8094 ***
(0.1118)

LnEURB 0.1343 **
(0.0668)

0.1343
(0.1322)

0.1343 **
(0.0668)

0.1343 *
(0.0730)

LnCURB 0.3456 ***
(0.0550)

0.3456 ***
(0.1033)

0.3456 ***
(0.0550)

0.3456 ***
(0.0623)

LnLURB 0.0495
(0.0344)

0.0495
(0.0634)

0.0495
(0.0344)

0.0495
(0.0417)

R-squared 0.8701 0.8701 NA 0.8701
observations 171 171 171 171

Note: ***, **, and * denote statistical significance at 1%, 5%, and 10%, respectively.

Because there exists autocorrelation, heteroskedasticity, and cross-sectional correlation
of whole regions, eastern and central China, FGLS and DK are reliable. DK is more reliable
than FGLS for panel data of whole regions, if the number of years is less than that of
cross-sections (Table 10, column 4). FGLS is the most reliable estimation method, if the
number of cross-sections is less than that of years. The results of the FGLS model are the
most reliable for panel data of eastern and central China (Table 11, column 7 and Table 12,
column 11). When there exist heteroskedasticity and autocorrelation, the ordinary least
square regression model with cluster robustness standard errors is applied more often [59].
As a result, the estimation results of the RE_cluster model is the most reliable for panel data
of western China (Table 13, column 14).

From the results, we see that population urbanization has a positive effect on carbon
emissions of the whole regions, eastern China, and western China. An increase of 1% in
population urbanization leads to an increase of 0.6357%, 0.5087%, and 0.8094% in carbon
emissions of the whole regions, eastern China, and western China, respectively. The
elasticity of population urbanization in central China is not statistically significant. As
China’s urbanization progresses, more and more people come to urban areas. The increase
in population leads to more congested traffic, severe housing problems, and more energy
consumption. Talents bring technological advantages to cities, but the proportion of talents
in China is relatively low at present. The benefits brought by talents in urban areas are far
less than the negative effects of large numbers of people entering cities. As a result, the
environment bears more pressure and carbon emissions increase.

The elasticity of economic urbanization is 0.1633, 0.126, 0.0647 for the whole regions,
central China, and eastern China, respectively. The elasticity of economic urbanization
in western China is not statistically significant. Economic urbanization promotes carbon
emissions of the whole regions, central China, and eastern China. Since joining the WTO
in 2001, China’s industrial structure has been continuously optimized. China’s industrial
restructuring is to develop advanced manufacturing, increase the proportion and level of
the service industry, strengthen infrastructure construction, and optimize the industrial
structure of urban and rural areas. However, there are still many problems in China’s
economic development. Economic development and carbon emissions have not yet been
decoupled [60]. Economic urbanization is accompanied by more carbon emissions in most
areas. China’s current industrial technology is relatively low. The industry concentration
is not high, so the effective concentration of capital and brands cannot be achieved in the
market competition. The industrial structure of eastern China, central China, and western
China is similar. To optimize the industrial structure and accelerate the realization of
the goal of industrial upgrading, China needs to solve various problems existing in the
industrial structure.
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The elasticity of consumption urbanization is 0.2558, 0.3244, 0.2272, 0.3456 for the
whole regions, eastern China, central China, and western China, respectively. Consumption
urbanization promotes carbon emissions of the whole regions, eastern China, central China,
and western China. Carbon emissions caused by household consumption includes not only
the carbon emissions generated by the direct consumption of energy such as daily cooking,
heating, and travel, but also the indirect carbon emissions generated by the production
and transportation of personal consumer products and services. At present, people’s
concept of low-carbon consumption is not mature. With the improvement of people’s
living standards, most of the consumer goods and services purchased are environmentally
unfriendly products; especially, the number of private cars in cities is increasing. Energy
consumption for living and transportation continues to increase. The development of
consumption urbanization promotes carbon emissions.

The elasticity of living urbanization is 0.1441, 0.0795, 0.1129 for the whole regions,
eastern China, and central China, respectively. Living urbanization has a positive impact
on carbon emissions for the whole regions, eastern China, and central China. With the
development of urbanization, resources are more intensive, urban infrastructure is continu-
ously improved, and public transportation is more developed. The agglomeration of urban
public facilities achieves economic scale. The compact of urban space also reduces the travel
distance of residents and reduces energy consumption. However, excessive urban density
causes traffic congestion and releases more carbon dioxide. The proportion of private cars
in cities is too high, and people’s habit of taking public transportation is still developing.
At the current stage in China, living urbanization has a greater negative effect on carbon
emission reduction.

As a large country with a vast territory, China cannot be synchronized in the devel-
opment of various regions. The differences in the empirical results indicate that economic
development, living habits, and social features in different regions of China are different.

4.3. The Results of Spatial Econometrics Model
4.3.1. Moran’s I of Carbon Emissions

We use Formula (2) to calculate the Moran’s I of carbon emissions from 1997 to 2015 in
China. From Table 14, we see that all the Moran’s I of carbon emissions from 1997 to 2015
in China are larger than 0. Most of them are significant at the 5% level, while the Moran’s
I in 2003, 2012, and 2015 are significant at the 10% level. The results indicate that carbon
emissions in China present a significant spatial aggregation. It is important to use spatial
econometrics model to study the impacts of four-dimensional urbanizations on carbon
emissions.

Table 14. Moran’s I of Carbon Emission from 1997 to 2015 in China.

Year Moran’s I p-Value

1997 0.1738 ** 0.0440
1998 0.1873 ** 0.0410
1999 0.2037 ** 0.0320
2000 0.2138 ** 0.0280
2001 0.2392 ** 0.0200
2002 0.2189 ** 0.0200
2003 0.1609 * 0.0700
2004 0.2094 ** 0.0380
2005 0.2441 ** 0.0180
2006 0.2547 ** 0.0130
2007 0.2619 *** 0.0070
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Table 14. Cont.

Year Moran’s I p-Value

2008 0.2309 ** 0.0230
2009 0.2100 ** 0.0180
2010 0.2113 ** 0.0230
2011 0.2175 ** 0.0200
2012 0.1815 * 0.0520
2013 0.1815 ** 0.0350
2014 0.1941 ** 0.0310
2015 0.1657 * 0.0600

Note: ***, **, and * denote statistical significance at 1%, 5%, and 10%, respectively.

Then, we use the software GeoDa to visualize and analyze the Moran’s I of carbon
emissions from 1997 to 2015. GeoDa is a software program that allows users to visualize
and analyze Moran’s I [61]. There are four types of spatial agglomerations that are widely
used [62]: (1) H-H agglomeration: High carbon emissions regions are adjacent to other
high carbon emissions regions; (2) L-L agglomeration: Low carbon emissions regions
are adjacent to other low carbon emissions regions; (3) L-H agglomeration: Low carbon
emissions areas are adjacent to high carbon emissions regions; (4) H-L agglomeration: High
carbon emissions areas are adjacent to low carbon emissions regions. Table 15 shows the
spatial agglomerations of China’s 30 provinces in 1997, 2000, 2005, 2010, and 2015.

By analyzing all provinces of China in these five years, we draw the following findings:
(1) There are six provinces always in H-H agglomeration in these five years, including
Shandong, Henan, Shanxi, Liaoning, Jiangsu, and Hebei. (2) There are seven provinces
always in L-H agglomeration in these five years, including Beijing, Tianjin, Jilin, Chongqing,
Shaanxi, Jiangxi, Guangxi. (3) There are four provinces always in L-L agglomeration in
these five years, including Xinjiang, Gansu, Ningxia, Qinghai. (4) There are two provinces
always in H-L agglomeration in these five years, including Guangdong and Sichuan.
(5) Inner Mongolia was in H-H agglomeration in 2005, 2010, and 2015, and was in L-H
agglomeration in 1997 and 2000. Shanghai was in L-H agglomeration in 1997, 2005, 2010,
2015, and was in H-H agglomeration only in 2000. Hunan was in H-L agglomeration in
1997, 2005, 2010, and 2015, and was L-H agglomeration only in 2000.

Table 15. The spatial agglomerations of China’s 30 provinces in 1997, 2000, 2005, 2010, and 2015.

Year H-H
Agglomeration L-H Agglomeration L-L

Agglomeration
H-L

Agglomeration Others

1997

Shandong, Henan,
Anhui, Shanxi,

Liaoning, Jiangsu,
Hebei, Hubei

Beijing, Tianjin, Jilin,
Shanghai, Chongqing,

Guangxi, Jiangxi,
Shaanxi, Inner Mongolia,

Yunnan

Xinjiang, Gansu,
Ningxia, Qinghai,
Fujian, Zhejiang

Guangdong,
Sichuan, Hunan,

Heilongjiang
Hainan, Guizhou,

2000

Shandong, Henan,
Anhui, Shanxi,

Liaoning, Jiangsu,
Hebei, Shanghai

Beijing, Tianjin, Jilin,
Chongqing, Shaanxi,

Jiangxi, Guangxi, Fujian,
Hunan, Inner Mongolia

Xinjiang, Gansu,
Ningxia, Qinghai,

Yunnan,
Heilongjiang

Guangdong,
Sichuan, Hubei,

Guizhou
Hainan, Zhejiang

2005

Shandong, Henan,
Shanxi, Liaoning,

Jiangsu, Hebei,
Inner Mongolia

Beijing, Tianjin, Jilin,
Chongqing, Shaanxi,

Anhui, Shanghai,
Jiangxi, Guangxi, Fujian

Xinjiang, Gansu,
Ningxia, Qinghai,

Yunnan,
Heilongjiang,

Guizhou

Guangdong,
Sichuan, Hunan,

Zhejiang
Hainan, Hubei
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Table 15. Cont.

Year H-H
Agglomeration L-H Agglomeration L-L

Agglomeration
H-L

Agglomeration Others

2010

Shandong, Henan,
Shanxi, Liaoning,

Jiangsu, Hebei,
Inner Mongolia

Beijing, Tianjin, Jilin,
Chongqing, Shaanxi,

Anhui, Shanghai,
Jiangxi, Guangxi, Fujian,

Heilongjiang

Xinjiang, Gansu,
Ningxia, Qinghai,
Yunnan, Guizhou,

Zhejiang

Guangdong,
Sichuan, Hunan,

Hubei
Hainan

2015

Shandong, Henan,
Shanxi, Liaoning,

Jiangsu, Hebei,
Inner Mongolia,

Hubei

Beijing, Tianjin, Jilin,
Shanghai, Chongqing,

Guangxi, Fujian,
Shaanxi, Jiangxi

Xinjiang, Gansu,
Ningxia, Qinghai,
Yunan, Guizhou,

Zhejiang

Guangdong,
Sichuan, Hunan,

Hainan,
Heilongjiang,

Anhui

Generally, about 25% of the provinces were in H-H agglomeration in these five years.
About 33% of the provinces were in L-H agglomeration in these five years. About 22% of the
provinces were in L-L agglomeration in these five years. About 13% of the provinces were in
H-L agglomeration in these five years. The total number of provinces in H-H agglomeration
and L-L agglomeration was equal to that of H-L agglomeration and L-H agglomeration
in 1997, 2000, and 2005. The total number of provinces in H-H agglomeration and L-L
agglomeration was slightly larger than that of H-L agglomeration and L-H agglomeration
in 2010 and 2015.

4.3.2. Regression Results of Spatial Econometrics Model

Firstly, referring to the selection process shown in Figure 1, we conduct LM tests. The
LM test results of the model with spatial and time-period fixed effects support the SEM. In
addition, the LR test results (listed in the last two rows) indicate that the SEM with spatial
and time-period fixed effects is the most suitable model (Table 16).

Table 16. LM test results and LR test results.

Pooled OLS Spatial Fixed Effects Time-Period
Fixed Effects

Spatial and
Time-Period
Fixed Effects

Intercept 6.9369 ***
LnPURB 1.0480 *** 0.6357 *** 1.0516 *** 0.4277 ***
LnEURB 0.1126 *** 0.1633 *** 0.1123 *** 0.1526 ***
LnCURB 0.3337 *** 0.2558 *** 0.3438 *** 0.1340 **
LnLURB −0.0444 0.1441 *** −0.1039 ** 0.0443 *

LM-lag test 178.1159 *** 175.7228 *** 157.0918 *** 53.3272 ***
Robust LM-lag test 2.2518 10.8811 *** 1.6455 2.4368

LM-error test 304.0103 *** 167.5777 *** 272.8361 *** 58.9688 ***
Robust LM-error test 128.1461 *** 2.7360 * 117.3898 *** 8.0783 ***

R-squared 0.7648 0.8463 0.7095 0.0853
Adj R-squared 0.7631 0.8455 0.7079 0.0804

LR-test joint significance spatial fixed effects 1109.9212 ***, df = 30
LR-test joint significance time-period fixed effects 130.9329 ***, df = 19

Note: ***, **, and * denote statistical significance at 1%, 5%, and 10%, respectively.

Secondly, referring to the selection process shown in Figure 2, we conduct Wald and
LR tests. Table 16 gives the outcomes of the Wald and LR tests. The outcomes of the Wald
test and the LR tests indicate that the SDM is the most suitable model.

The Hausman’s specification test is utilized to examine the random effects model
against the fixed effects model [59]. The outcomes (130.4353, 9, df, p < 0.01) show that the
fixed effect model is acceptable (Table 16). According to the results of SDM with a fixed
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effect shown in column 2 in Table 17, the regression coefficients of population urbanization,
economic urbanization, and consumption urbanization are all significantly positive. It
means that population urbanization, economic urbanization, and consumption urbaniza-
tion promote carbon emissions. Chinese government should balance the development of
urbanization and the decrease of carbon emissions.

Table 17. SDM with fixed effect and random Effect.

SDM_FE SDM_RE

Variable Coefficient Coefficient

LnPURB 0.4101 ***
(4.1264)

0.489762 ***
(4.6193)

LnEURB 0.2270 ***
(6.3773)

0.215056 ***
(5.2371)

LnCURB 0.3756 ***
(5.5254)

0.443220 ***
(5.8353)

LnLURB 0.0038
(0.1505)

0.009954
(0.3361)

W × lnPURB −0.0836
(−0.4718)

0.302175
(1.6176)

W × lnEURB −0.2815 ***
(−3.2823)

−0.176597 *
(−1.7838)

W × lnCURB −0.3425 ***
(−2.9246)

−0.377317 ***
(−2.9382)

W × lnLURB 0.1134 **
(2.1029)

0.156938 ***
(2.5811)

W × dep.var. 0.4060 ***
(8.3842)

−0.236068 ***
(−2.8781)

teta NA 0.069263 ***
(5.488873)

R-squared 0.9740 0.9541
corr-squared 0.1451 0.6634

Wald-spatial-lag test 35.6650 *** 35.8974 ***
LR-spatial-lag test 33.7434 *** NA

Wald-spatial-error test 25.1706 *** 33.2562 ***
LR-spatial-error test 23.5593 *** NA

Hausman test
Statistics df

130.4353 *** 9
Note: ***, **, and * denote statistical significance at 1%, 5%, and 10%, respectively. The parameters in parentheses
are the t statistics, NA means no relevant data, and the intercept terms of all models are not shown in the table.

The SDM model is insufficient to explain the marginal effects of the independent
variable on the dependent variable [49]. Consequently, the direct, indirect, and total effects
are further estimated into the modeling process (Table 18). Using Stata to estimate the SDM
model, it gives the result of direct, indirect, and total effects directly.

Table 18. Direct Effects, Indirect Effects and Total Effects.

Direct Effects Indirect Effects Total Effects

LnPURB 0.4223 *** 0.1274 0.5497 **
LnEURB 0.2017 *** −0.2973 ** −0.0956
LnCURB 0.3526 *** −0.2970 * 0.0556
LnLURB 0.0178 0.1785 ** 0.1964 **

Note: ***, **, and * denote statistical significance at 1%, 5%, and 10%, respectively.

In the direct effects, an increase of 1% in PURB, EURB, and CURB lead to 0.4223%,
0.2017%, and 0.3526% growth of CO2 emissions inside a same province, respectively
(column 2, Table 18). The direct effect of the LURB is positive but not significant, proving
that living urbanization has no significant influence on carbon emissions inside a same
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province. The indirect effects of EURB and CURB are significantly negative. The indirect
effects of LURB are significantly positive. Specifically, an increase of 1% in EURB and CURB
cause a 0.2973% and 0.2970% decrease of CO2 emissions in the neighboring provinces,
respectively. An increase of 1% in LURB in the region causes a 0.1785% increase of CO2
emissions in the neighboring provinces. The indirect effect of PURB is insignificant.

By decomposing the impact of urbanization on carbon emissions into direct effects
and indirect effects, we analyze the effects of multi-dimensional urbanizations on carbon
emissions comprehensively. Population urbanization has a positive effect on local carbon
emissions and no significant effect on its neighboring provinces’ carbon emissions.

Economic urbanization and consumption urbanization promote local carbon emissions
and reduce carbon emissions in its neighboring provinces. However, the total effects of
economic urbanization and consumption urbanization are not significant. The economic
development and the improvement of the consumption level of a certain region often
attract more people to work and live there. More people cause more daily consumption,
including housing and transportation. As a result, more people coming from other region
increase local carbon emissions and reduce the carbon emissions of neighboring regions.

Living urbanization has positive effects on local carbon emissions and its neighboring
provinces’ carbon emissions. The total effect of living urbanization on local carbon emis-
sions is also significantly positive. The increase of living urbanization results in more urban
built-up area and more road construction. However, China’s current land use patterns and
spatial pattern planning are not perfect. It is difficult to achieve economic scale. As a result,
living urbanization increases local carbon emissions and carbon emissions of neighboring
regions.

5. Policy Recommendations
5.1. Keep a Watchful Eye on the Carbon Emission Reduction Policies in the Neighboring Areas

Carbon emissions from an area will not only be impacted by the urbanization factors
in a particular area itself but will also be impacted by urbanization and carbon emissions in
its neighboring areas. When it comes to carbon emission decreasing policies, it is important
to keep a watchful eye on the carbon emission decreasing policies and urbanization factors
in the neighboring areas. To meet the target of carbon emission decreasing, regional
information sharing mechanisms can be established in various regions, or carbon trading
can be carried out.

5.2. Control Population Growth Reasonably and Promote a Rational Population Distribution

Controlling population growth reasonably is one of the necessary ways to decrease
carbon emissions in course of urbanization. Facing the current policy of opening the second
child, the relevant government departments should make efforts to control the population to
avoid negative effects on the ecology. For any economy, it is difficult to achieve equilibrium
in the period of rapid urbanization, and the same is true for China’s current urbanization.
Nowadays, China’s population is unevenly distributed. The population imbalance between
the east and the west is not conducive to the coordinated development between regions.
So, it is necessary to promote a more rational population distribution. To achieve the goal,
the population structure needs be optimized and the quality of the population should be
improved.

5.3. Speed Up Industrial Restructure and Develop Low-Carbon Industries

In the aspect of economic urbanization, it is important to speed up industrial restruc-
ture and actively guide the transformation of the national economy from a secondary
industry to the tertiary industry, and to moderately increase energy efficiency and reduce
carbon emissions.

Specifically, we can cultivate and develop distinctive urban industrial systems based on
urban environmental carrying capacity, factor endowments, and comparative advantages
first; second, transform and upgrade traditional industries, and expand emerging industries
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such as environmentally friendly industry, biology industry, new energy industry, and new
materials industry; third, adapt to the requirements of transformation and the upgrade of
manufacturing industries, promote the professionalization and marketization of productive
service industries, guide the gathering of the productive service industry in central cities
and densely-manufactured regions; and last, in order to adapt to the diversification of
consumer demand, it is meaningful to expand service provision and perfect service quality;
make efforts to promote the formation of a service economy-based industrial structure in
megacities and big cities.

5.4. Strengthen People’s Awareness of Environmental Protection

In the aspect of consumption urbanization, it is essential to strengthen the promotion
of low-carbon life and energy-saving reduction from the cooperated efforts from the gov-
ernment, society, and residents. Firstly, the government can encourage the development of
the low-carbon economy through system design and policies, such as increasing support
for public transportation and giving certain tax preferences to environmental protection
industries. Secondly, social media can raise people’s awareness of environmental protec-
tion through advertisements and lectures. For example, lectures on garbage classification
in the community can promote residents’ awareness of resource recycling. Thirdly, the
increase in per capita disposable income will increase consumer demand for transportation
and household appliances, and changes in consumption structure will increase energy
expenditure and carbon emissions. So, residents need to pay attention to environmentally
friendly factors when they consume, such as purchasing more energy-saving appliances.

5.5. Use Land Reasonably and Improve Inter-Regional Urban Development Mechanism

From the perspective of land use and urban planning, urban planning must follow
the concept of being green and low-carbon. It should be transformed from expansion-
ary planning into a plan that defines urban boundaries and optimizes spatial structure.
For example, for land use for different purposes, detailed land rate and greening rate
requirements should be planned scientifically to avoid overexpansion of land. Considering
that the living urbanization of China has an obvious spatial spillover effect on carbon
emissions, all the regions should use urban agglomerations as a platform to achieve the
goal of establishing and improving inter-regional urban development mechanisms. For
example, it is important to encourage low-carbon travel among residents and promote the
establishment and sharing of infrastructure and public service facilities.

6. Conclusions

Using the panel data of 30 provinces in China from 1997 to 2015, this paper studies
the impacts of urbanization on carbon emission. Regarding the impact of urbanization on
carbon emissions, we study from the four dimensions of urbanization, including population
urbanization, economic urbanization, consumption urbanization, and living urbanization.
Moreover, we use the entropy weight method to measure the weight of each indicator to
evaluate four-dimension urbanizations. In addition, we investigated the spatial correlation
of carbon emissions, taking the spatial differences into consideration. The spatial Durbin
model is finally selected to analyze the impacts of urbanizations on carbon emission. We
make conclusions as follows:

Firstly, from the results of the panel data model, four dimensions of urbanization all
play a significant role in promoting carbon emissions for the whole regions. Population
urbanization has the greatest impact, while living urbanization has the least impact. In
eastern China, four dimensions of urbanization all play a significant role in promoting
carbon emissions, which is consistent with the conclusion of the whole regions. Population
urbanization has the greatest impact, and economic urbanization has the least impact in
eastern China. In central China, the effect of population urbanization on carbon emissions
is not significant. The role of consumption urbanization is the largest, and the effects of
economic urbanization and living urbanization are almost the same. In western China,
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the effects of economic urbanization and living urbanization on carbon emissions are not
significant. The impact of population urbanization is greater than that of consumption
urbanization.

Secondly, the Moran’s I of China’s carbon emissions from 1997 to 2015 were all greater
than 0 significantly, which indicates that the spatial aggregation of carbon emissions of
30 provinces in China is significant. Spatial correlation should not be neglected when we
study the influence of urbanization on carbon emissions. The total number of provinces
in H-H agglomeration and L-L agglomeration was equal to that of H-L agglomeration
and L-H agglomeration in 1997, 2000, and 2005. The total number of provinces in H-H
agglomeration and L-L agglomeration was slightly larger than that of H-L agglomeration
and L-H agglomeration in 2010 and 2015.

Thirdly, from the results of the spatial econometrics model, population urbanization
has a positive effect on local carbon emissions and no significant effect on its neighboring
provinces’ carbon emissions. Economic urbanization and consumption urbanization pro-
mote local carbon emissions and reduce carbon emissions in its neighboring provinces.
Living urbanization has positive effects on local carbon emissions and its neighboring
provinces’ carbon emissions.

This paper proposes some recommendations for the carbon emission decreasing dur-
ing urbanization. First, establishment and improvement of coordination mechanisms and
information sharing mechanisms across regions should also be considered. Second, control
population growth reasonably and optimize population structure in order to achieve an or-
derly flow and rational distribution of the population. Third, the assessment mechanism of
the local government should include not only economic indicators but also other indicators.
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