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Cancer is one of the main causes of disease-related deaths in the world. Although cancer
treatment strategies have been improved in recent years, the survival time of cancer
patients is still far from satisfied. Cancer immunotherapy, such as Oncolytic virotherapy,
Immune checkpoints inhibition, Chimeric antigen receptor T (CAR-T) cell therapy,
Chimeric antigen receptor natural killer (CAR-NK) cell therapy and macrophages
genomic modification, has emerged as an effective therapeutic strategy for different
kinds of cancer. However, many patients do not respond to the cancer immunotherapy
which warrants further investigation to optimize this strategy. The clustered regularly
interspaced short palindromic repeats and CRISPR-associated protein 9 (CRISPR/Cas9),
as a versatile genome engineering tool, has become popular in the biology research field
and it was also applied to optimize tumor immunotherapy. Moreover, CRISPR-based
high-throughput screening can be used in the study of immunomodulatory drug
resistance mechanism. In this review, we summarized the development as well as the
application of CRISPR/Cas9 technology in the cancer immunotherapy and discussed the
potential problems that may be caused by this combination.

Keywords: cancer, CRISPR/Cas9, immunotherapy, oncolytic viruses, immune checkpoints inhibition,
CAR-T therapy
INTRODUCTION

Given that the incidence of cancer is gradually increasing even with the improved prognosis
techniques (1), methods for cancer therapy are widely investigated and the chemotherapy,
radiotherapy and surgery are commonly used to prolong survival time of cancer patients. However,
the side effects and toxicity of different treatments frequently emerged and subsequently reduced
patients’ life quality and even led to death (2). In recent years, immunotherapy has provided novel
direction for cancer therapy (3). Oncolytic virus therapy, chimeric antigen receptor T therapy,
immune checkpoints blockade and genetically engineered macrophages have provided multi-mode
methods to target and destroy cancer cells. However, there are still some associated problems in tumor
immunotherapy which limited its wide application. Somatic mutations may cause resistance to tumor
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immunotherapy and reduce the efficiency of immunotherapy (4).
Although oncolytic virus therapy has been proved to be effective in
cancer treatment (5–7), the main methods of adenovirus genome
engineering are time-consuming, multi-step and inefficient.
Immune checkpoint blockade therapy has raised attention with
the development of immunology. CAR-T cell therapy has shown
clinical effect in multiple types of tumors, especially hematological
tumors (8). However, it is difficult to obtain enough qualified T
cells from cancer patients and to transfer T cells from healthy
donors to patients without causing problems. Therefore,
developing a strategy to produce universal or off-the-shelf CAR-
T cells has raised attention of researchers. The endogenous ab T-
cell receptor (TCR) and the human leukocyte antigen (HLA)
molecules on allogeneic T cells are responsible for safety problems
of allogeneic CAR-T cell transfer.

Clustered regularly interspaced short palindromic repeats
(CRISPR)-associated 9 system, as a versatile genome
engineering tool, has become popular in the researches of
biology and genetic therapy because of its ability to edit
genomes of various organisms efficiently (9–11). The
important step of CRISPR/Cas9 is that the single guide RNA
(sgRNA) directs the DNA endonuclease Cas9 to specific DNA
sequences to create double-strand DNA breaks site-specifically
(12). The first step is the recognition of the protospacer adjacent
motif (PAM) by Cas9. Then the combination of sgRNA and the
PAM site attracts Cas9 to generate a target-specific double-
strand break (DSB), which rapidly stimulates one of the two
DNA repair pathways: homology-directed repair (HDR), or non-
homologous end-joining (NHEJ). The NHEJ repair leads to the
direct ligation of the cleaved strands producing insertions–
deletions (InDels), which is commonly used for gene
disruption. The HDR follows a directional correction strategy
in which an exogenous repair template with the desired
nucleotide sequence mediates the process. Compared with
previous genomic editing techniques including zinc-finger
nucleases (ZFNs) and transcription activator-like effector
nucleases (TALENs), the CRISPR/Cas9 technology is simpler,
preciser and more operational (13). CRISPR/Cas9 system is
considered as a promising candidate for optimizing cancer
immunotherapy since it has powerful gene editing efficiency.
High throughput screening based on CRISPR can be used to
identify novel drug targets, biomarkers and drug resistance
related genes in cancer immunotherapy (14). CRISPR
technology may provide a more convenient method to
engineer the adenovirus genome. Using CRISPR/Cas9
technology to knock out immune checkpoints such as
programmed death-1 (PD-1), programmed cell death ligand 1
(PD-L1) and cytotoxic T-lymphocyte antigen 4 (CTLA-4) may
provide a new direction for cancer immunotherapy (15).
CRISPR/Cas9 technology also can be used to enhance anti-
tumor effect of CAR-T cells by optimizing the manufacture of
CAR-T cells and produce allogeneic CAR-T cells without graft-
versus-host disease (GVHD) by disrupting T-cell receptor (TCR)
beta chain and beta-2-microglobulin (B2M, an essential subunit
of the HLA-I) (16, 17). Furthermore, CRISPR/Cas9 could
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improve the phagocytosis of macrophages to tumor cells by
knocking out signal regulatory protein-a (SIRP-a) (18). In this
review, we will discuss the application of CRISPR technology in
cancer immunotherapy (Supplemental Table 1).
THE DEVELOPMENT OF CANCER
IMMUNOTHERAPY

The earliest use of immune system to treat cancer can be traced
back to 1893 when William Coley used living bacteria as an
immune stimulant. However, the clinical efficacy was limited
because tumor cells have the ability to avoid being recognized
and eliminated by immune system (19). Recently, with the in-
depth understanding of anti-tumor immunity, tumor immune
escape mechanism and new targets of immunotherapy, tumor
immunotherapy has gradually become important for cancer
treatment. The immunocheckpoint inhibitors targeting cytotoxic
T-lymphocyte antigen 4 and programmed death-1 (20, 21), and
CAR-T cell therapy have achieved clinical success (22). CTLA-4
was originally discovered in 1987 by Pierre Goldstein (23). PD-1
was first cloned in 1992 by Tasuku Honjo, while PD-L1, which is
the ligand for PD-1, was discovered independently by two research
groups led by Lieping Chen in 1999 and Gordon Freeman in 2000
(24, 25). In 1993, Zelig Eshhar first reported CAR technology (26).
In this research, Zelig Eshhar et al. constructed chimeric genes
containing a single-chain Fv domain (scFv) of an antibody, which
could be expressed as functional surface receptors and provide T
cells and other effector lymphocytes with antibody-type
recognition directly coupled to cellular activation. The
development of cancer immunotherapy, especially immune
checkpoint inhibition and CAR-T cell therapy, marks the
beginning of a new era of cancer therapy. However,
immunotherapy is only effective for a subset of cancers and a
fraction of patients (27). The underlying mechanisms of CRISPR
technology in tumor immunotherapy warrant further in-deep
investigation. In general, the application of CRISPR technology
in tumor immunotherapy may improve the effect of therapy and
expand the application scope of tumor immunotherapy. The
development of cancer immunotherapy was shown in Figure 1.

THE DEVELOPMENT OF CRISPR/CAS9
TECHNOLOGY

In 1987, Yoshizumi Ishino reported a set of interspaced short
repetitive sequences downstream of the Escherichia coli iap gene,
which is the first report of CRISPR (28). However, at that time,
the function of these sequences was not fully studied. During the
next 15 years, such repetitive sequences were also found in other
bacteria and archaea (29). Until the year of 2002, the term
CRISPR was first used to describe such sequences (30) and in
2005, Bolotin reported that CRISPR functions as the immune
machinery against foreign DNA invasion (31). Given that the
CRISPR-associated (Cas) genes always located near the CRISPR
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loci, there might be a potential functional relationship between
Cas genes and CRISPR loci (31). Interestingly, in 2007,
Barrangou reported a type II CRISPR-Cas system as an
adaptive defensive system against phage infection (32). In
2013, the CRISPR/Cas9 was firstly used to edit mammalian cell
genome, which is a great progress in application of CRISPR/Cas9
technology (33). The development of CRISPR/Cas9 system was
shown in Figure 1.

According to endonuclease characteristics, CRISPR/Cas
system has been divided into two main classes and six main
types. The class I system includes type I, III and IV, while the
class II system contains type II, V and VI (34). It is well known
that the Cas9 nuclease belongs to type II system and class 2 (35).
The Cas9 nuclease contains RuyC and HNH as two catalytic
active domains and functions as molecular scissors for the DNA
strands cutting (35). Compared with other gene editing tools,
such as transcription activator-like effector nucleases (TALENs)
and zinc-finger nucleases (ZFNs), instead of synthesizing a
cumbersome guiding protein, CRISPR only needs a sgRNA to
target a new DNA sequence, which makes gene editing easier
(35). Moreover, CRISPR/Cas system allows multiple sgRNAs to
edit several sites simultaneously which promotes the editing
efficiency (33).

Due to the advantages of simplicity and high success rate,
CRISPR technology was developed rapidly in the field of gene
editing and its application was expanded to functional genomics,
cancer researches and gene therapy researches (36).
THE APPLICATION OF CRISPR
TECHNOLOGY IN THE IDENTIFICATION
OF KEY GENES FOR CANCER
IMMUNOTHERAPY

In most cancers, gene aberrations are the products of neoplastic
evolution (37). Somatic mutations can contribute to the
production of neoantigens eliciting potent T cell responses in
current immunotherapies (4). However, somatic mutations
Frontiers in Oncology | www.frontiersin.org 3
includes mutations resistant to anti-tumour response in
immunotherapy. For example, it has been reported that
acquired resistance to PD-1 blockade therapy in patients was
related to the loss-of-function mutations of beta-2-microglobulin
(B2M), Janus kinases 1 (JAK1) and Janus kinase 2 (JAK2) (38).
Therefore, CRISPR-based high-throughput screening has been
used to identify novel drug targets, biomarkers and drug
resistance related genes (14).

The CRISPR/Cas9 screening has been applied to cancer
immunotherapy. To identify the essential genes in tumor cells
for the ‘effector function of T cells’ (EFT), researchers developed
a ‘two cell-type’ (2CT) CRISPR assay which consists human T
cells as effectors and melanoma cells as targets (39). Researchers
used a genome-scale CRISPR/Cas9 library containing around
123,000 single-guide RNAs to profile genes whose loss in tumour
cells damaged the effector function of CD8+ T cells and
contributed to the T-cell-based immunotherapy resistance (14).
Ultimately, they found several previously undescribed genes and
microRNAs which play a role in promoting T cell damage to
tumor (14). There is also one study using genome-wide CRISPR/
Cas9 screen to explore the mechanism underlying
immunomodulatory drugs (IMiDs) sensit ivity (40).
Furthermore, researchers used CRISPR screening to study the
mechanism of T-cell activation and figured out FAM49B as a
novel target of tumor immune drugs (41). Therefore, the
application of CRISPR/Cas9 screening in the study of
immunomodulatory drug resistance mechanism is of great
significance for improving drug sensitivity and overcoming
drug resistance.
THE APPLICATION OF CRISPR/CAS9 IN
ONCOLYTIC VIROTHERAPY

Oncolytic viruses (OVs) are tumor-killing viruses which can
selectively infect and kill cancer cells without damage to normal
tissues (42). They can produce and release new virus progeny in
the infected cancer cells, and induce anti-tumor immune
responses that specifically destroy uninfected cancer cells.
FIGURE 1 | The development of CRISPR/Cas9 system and cancer immunotherapy.
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Therefore, oncolytic virotherapy provides a multi-mode method
to target and kill cancer cells specifically and effectively (43).

Clinical and preclinical trials have shown thatOVs are effective in
the cancer treatment (5–7). In one phase II trial, direct intratumoral
injection of talimogene laherparepvec (T-VEC), a second-generation
oncolytic herpesvirus coding for granulocyte-macrophage colony-
stimulating factor (GM-CSF), to 50 patients with unresectable
metastatic melanoma achieved 26% response rate (5).

CRISPR/Cas9 technology can be used to better manipulate the
genome of viruses. The homologous recombination system based
on bacteria (44), the bacterial artificial chromosome (BAC) system
(45) and the hybrid yeast-bacteria cloning system (46) are the three
main methods to engineer adenovirus genome. However, these
methods are laborious, multi-step and inefficient. In recent years,
CRISPR technologyhas been successfully applied tomanipulate the
genome of various viruses, including vaccinia virus (VV), herpes
simplex virus (HSV) and adenoviral vector (ADV) (47–49). For
example, the CRISPR/Cas9 system can introduce dsRed gene into
ADV genome with efficiency of 2%-3% without off-target
mutations (47–49). CRISPR technology has also been successfully
used to generate mutations efficiently in the HSV-1 target region
(48). The combination of gRNA-guided Cas9 and a homologous
repair donor DNA has been used to construct the mutant HSV-1
expressing EGFP reporter gene. The efficiency of homologous
recombination is just 0.0000015% of the total plaques using the
control cells (not transfected with gRNA-guided Cas9), while the
efficiency of homologous recombination is improved to 8.41% of
total plaques using cells transfected with gRNA-guided Cas9 and a
repair donor DNA (50). Using CRISPR/Cas9 to engineer
adenovirus genome is more efficient than traditional methods.

CRISPR/Cas9-mediated genome editing improved tumor
selectivity and enhance immune stimulation through
engineering oncolytic viruses. It has been reported that the E1B
gene encoding 55-kilodalton (kDa) protein binds to and
inactivates p53 (51). The mutant adenovirus which does not
express the 55-kilodalton E1B protein can replicate and lyse p53
deficient tumor cells but not cells with functional p53 (51). E1B
gene-attenuated adenovirus ONYX-015 has been reported to
cause tumor-specific cytolysis and antitumor efficacy (52).
Deletion of the thymidine kinase (TK) region in the virus
genome is one of the most common modifications to improve
tumor selectivity. In one study, the CRISPR/Cas9 system was
applied to replace the TK gene by the RFP gene effectively, and
subsequently enhanced the selectivity of oncolytic viruses to tumor
(49). Therefore, the CRISPR/Cas9 system may play an important
role in further development of oncolytic viruses, thus providing
opportunities for the progress of oncolytic virotherapy.
THE APPLICATION OF CRISPR/CAS9
IN IMMUNE CHECKPOINTS
BLOCKADE THERAPY

Although the immune system plays a significant role in cancer
control, cancer cells can still escape the host immune
surveillance. The acquisition of this immune tolerance is an
Frontiers in Oncology | www.frontiersin.org 4
important reason for the growth and development of cancer, and
may be also one of the reasons for the resistance to traditional
cancer immunotherapy. Therefore, attention has been paid to
develop therapies to overcome cancer immune resistance. In
recent years, immune checkpoints blockade therapy has made
great progress in the treatment of various cancers (53–55).
Especially, agents targeted immune checkpoints such as PD-1,
PD-L1 and CTLA-4 have achieved great clinical success in anti-
cancer practice (15).

CRISPR/Cas technology can be applied to knock out PD-1 or
CTLA-4 in cytotoxic T lymphocytes. Cytotoxic T lymphocytes
(CTLs) are the primary immune cells that are responsible for
killing cancer cells. The function of CTLs may be attenuated by
acquired immune resistance induced by the increased PD-1/
CTLA-4 signaling. The blockade of PD-1 or CTLA-4 pathway
could enhance the immune response of cancer patients (56). It
was reported that the CRISPR/Cas9 technology can be used to
effectively knock out PD-1 in CTLs, which could enhance the
cytotoxic effect of CTLs against tumor cells (57). Compared with
the control, the PD-1 knocked out (KO) CTLs secret more TNF-
a and IFN-g and the xenografted mice treated with PD-1 KO
CTLs have longer survival time (58). The CTLA-4 knocked out
(KO) CTLs displayed increased cytokine secretion and enhanced
anti-tumor activity in vivo (58). To sum up, using CRISPR/Cas
technology to knock out PD-1 or CTLA-4 in cytotoxic T
lymphocytes could enhance the cancer immune response.

Researchers have focused on the study on the application of
CRISPR/Cas9 technology on the PD-1 or PD-L1. Those mice
inoculated with the murine ovarian cancer cells depleted PD-L1
by CRASPR/Cas9 showed longer survival time than the mice
inoculated with control cells (59). Further study showed that the
destruction of PD-L1 on tumor cells could increase tumor
infiltrating lymphocytes (TILs) and regulate cytokine/
chemokine distribution in the tumor microenvironment
(TME), thus promoting anti-tumor immunity and inhibiting
the ovarian cancer progression (59). Furthermore, study showed
that the CTLs cells whose PD-1 was disrupted by CRISPR/Cas9
system have enhanced immune response to the EBV-LMP2A
antigen and superior cytotoxicity to the Epstein-Barr virus-
positive gastric cancer (60). The result from a human phase I
clinical trial revealed that deletion of the genes encoding
endogenous T cell receptor (TCR) chains, TCRa (TRAC),
TCRb (TRBC) and programmed cell death protein 1 (PD-1;
PDCD1) in T cells resulted in durable engraftment with minimal
immunogenicity (61). The CRISPR/Cas9 technology has been
established to engineer primary T cells to reduce PD-1
expression (62). It was reported that, in anaplastic lymphoma
kinase (ALK)-positive anaplastic large-cell lymphoma (ALK+
ALCL), the CRISPR/Cas9 library was used to identify molecular
effectors required for PD-L1 regulation which will provide
opportunities for the improvement of immunotherapeutic
intervention strategies (63). In conclusion, the application of
CRISPR/Cas9 on PD-1 or PD-L1 may provide a direction of
cancer immunotherapy.

Using CRISPR/Cas9 system to knock out immune checkpoints
including PD-1, PD-L1 and CTLA-4 benefits immune checkpoints
January 2022 | Volume 11 | Article 704999
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blockade therapy which may provide a potential strategy to target
immune checkpoints. Therefore, the application of CRISPR/Cas9 in
immunotherapy will promote the further development of effective
immunotherapy in the future (Figure 2).
THE APPLICATION OF CRISPR/CAS9 IN
CAR-T CELL THERAPY

CAR-T cell therapy has shown anti-tumor effect in multiple types of
tumors, especially hematological tumors (8). The chimeric antigen
receptor (CAR) is a modular fusion protein which consists of a
transmembrane domain, a spacer domain, an intracellular signaling
domain and a single-chain variable fragment (scFv) specific to an
antigen on cancer cells (64). CAR-modified T cells can specifically
recognize the tumor-associated antigens (TAA) through the scFv
domain, resulting in T cell activation independent of major
histocompatibility complex (MHC) restriction (65). Clinical trials
have shown that CAR-T cell therapy has promising effect in treating
B-cell malignancies, especially in treating acute lymphoblastic
leukemia (ALL). For example, the complete remission rate of
CD19-specific CAR-T cell therapy in the treatment of ALL is as
high as 90% (22).

However, in order to get enough qualified T cells from cancer
patients, researchers pay more attention to produce universal or
off-the-shelf CAR-T cells from healthy donors. Graft-versus-host
disease (GVHD) and biological safety to obtain more powerful
disease-targeted activity are two main obstacles in producing
universal CAR-T cells (66). The endogenous ab T-cell receptor
(TCR) on allogeneic CAR-T cells may recognize recipient
alloantigens and cause GVHD. The human leukocyte antigen
(HLA) molecules on allogeneic T cells are recognized as foreign
HLA molecules and lead to immunologic rejection in recipients.

The CRISPR/Cas9 technology has been used to produce CAR-
T cells with disrupted TCR beta chain and beta-2-microglobulin
(B2M), an essential subunit of the HLA-I (16, 17). These modified
CAR-T cells can retain the desired antitumor function without
causing GVHD (16, 17). Therefore, CRISPR/Cas9 technology
Frontiers in Oncology | www.frontiersin.org 5
provides a direction to produce universal or off-the-shelf CAR-T
cells, which is of great importance to generate more and cheaper
CAR-T cells.

Moreover, CRISPR/Cas9 technology can also be used to
enhance the anti-tumor effect of CAR-T cells. Double-knockout
(TRAC and B2M) and triple-knockout (TRAC, B2M and PD-1)
CAR-T cells via CRISPR/Cas9 technology showed superior anti-
tumor activity (67). Moreover, CRISPR/Cas9 technology has also
been reported to improve the anti-tumor effect and clinical
outcome of CAR-T cells by disrupting T cell inhibitory
receptors, such as PD-1 (68) and Lymphocyte activation gene-3
(LAG3) (69). It was also reported that the PD-1 depleted CAR-T
cells by CRISPR/Cas9 system displayed enhanced anti-tumor
efficacy against hepatocellular carcinoma (HCC) (70). In
addition, using CRISPR/Cas9 to knock out diacylglycerol kinase
(DGK) in CAR-T cells can also potentiate the effector functions of
CAR-T cells in vitro (71). Universal CAR-T cells resistant to PD-1
inhibition have been created by disrupting endogenous T-cell
receptor (TRAC), beta-2-microglobulin (B2M) and PD-1 via
CRISPR/Cas9 gene-editing system, and these triple gene-edited
CAR-T cells showed enhanced antitumor activity in mice bearing
intracranial tumors (72). The TGF-b receptor II (TGFBR2)
depleted CAR-T cells by CRISPR/cas9 promoted tumor
elimination efficacy of CAR-T cells both in vivo and in vitro,
which provides a novel method to improve CAR-T cells’ function
in the TGF-b-rich tumor environment and promote CAR-T cells’
efficacy in solid tumors (73). Compared to wild type CAR-T cells,
the granulocyte macrophage colony-stimulating factor (GM-CSF)
depleted CAR-T cells by CRISPR/Cas9 produced less GM-CSF
and resulted in better anti-tumor activity in vivo (74).
Eyquem et al. reported that directing a CD19-specific CAR into
the T-cell receptor a constant (TRAC) locus by electroporation of
Cas9 mRNA and sgRNA not only results in uniform CAR
expression, but also enhances T-cell potency in an acute
lymphoblastic leukaemia (ALL) mouse model (75). Fas receptor
which is involved in T cell response is a member of TNF family
(76). The Fas receptor and its ligand (FasL) participate in T cell
apoptosis and attenuate CAR-T cell activity (77). It has been
FIGURE 2 | Knockout of PD-1/PD-L1 or CTLA-4 via CRISPR/Cas9 enhanced the anti-tumor immune response. The increased level of PD-1 in T cells, PD-L1 in
tumor cells and CTLA-4 in APC cells may cause acquired immune resistance and attenuates the function of CTLs. The depletion of PD-1, PD-L1 or CTLA-4 via
CRISPR/Cas9 technology could overcome the cancer immune resistance and enhance cancer immunotherapy effect. Blue represents the progress of
immunotherapy, while pink represents the progress of CRISPR/Cas9 technology. The mixed color represents the key studies of the combined two technologies.
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reported that CAR-T cell activity is attenuated by Fas-FasL
dependent activation induced cell death (AICD) (78). The CAR-
T cells depleted of Fas receptor by CRISPR/Cas9 showed
resistance to apoptosis and enhanced anti-tumor efficiency (79).
In a recent study, Cbl-b has been identified as a potential target to
overcome CAR-T cell exhaustion based on RNA-sequencing data
from CD8+ tumor infiltrating lymphocytes (TILs) (80). The
deletion of Cbl-b in CAR T cells makes them resistant to
exhaustion (80). Recently, Olli Dufva et al. used more than 500
small-molecule drugs and CRISPR/Cas9 screening to identify key
pathways of CAR-T cell toxicity, paving the way for avoiding CAR
T cell cytotoxicity (81). DongruiWang et al. identified the essential
factors influencing CAR-mediated glioblastoma killing based on
CRISPR screens in CAR T cells and patient-derived GBM stem
cells (82). Therefore, CRISPR/Cas9 could help to optimize the
manufacture of CAR-T cells by silencing or disrupting desired
genomic loci and improve therapeutic effect of CAR-T cell
therapy (Figure 3).
THE APPLICATION OF CRISPR/CAS9 IN
CAR-NK CELL THERAPY

Natural killer (NK) cells can kill cancer cells directly without
recognizing tumor-specific antigen (83). Compared to CAR-T cell
therapy, CAR-NK cell therapy has advantages on safety. Cytokine
release syndrome (CRS) is one of the most severe toxicities of
CAR-T cell therapy due to proinflammatory cytokines including
tumor necrosis factor a (TNFa), interleukin-1 (IL-1) and
interleukin-6 (IL-6) produced by the activation and proliferation
of CAR-T cells (84). The CAR-NK cell therapy reduced possibility
of CRS as the cytokines produced by NK cells are mainly
composed of Interferon-g (IFN-g) and granulocyte-macrophage
colony-stimulating factor (GM-CSF). CAR-NK cells transferred
Frontiers in Oncology | www.frontiersin.org 6
into tumor patients will not expand within a few weeks. Studies
also showed that NK cells do not cause GVHD in the allogeneic
setting, providing opportunities to produce off-the-shelf cellular
therapy products (85).

CRISPR/Cas9 has been applied in CAR-NK cell therapy to
enhance the anti-tumor activity of NK cells. May Daher et al.
used CRISPR/Cas9 technology to delete CISH in CAR-NK cells
and the modified CAR-NK cells have better metabolic fitness and
antitumor activity (86). Mark Gurney et al. used CRISPR/Cas9
technology to disrupt the CD38 gene during expansion with a
mean knockdown efficiency of 84% to achieve an affinity
optimized CD38 CAR (87). The CD38 knockout NK cells
expressing an affinity optimized CD38 CAR showed reduced
NK cell fratricide and enhanced ability to target acute myeloid
leukemia (AML) (87).
THE APPLICATION OF CRISPR/CAS9 IN
MACROPHAGE-BASED THERAPY

Immune escape plays an important role in tumor growth and
development. One of the mechanisms of immune escape is the
“don’t eat me” signals generated from tumor cells to prevent
macrophage mediated phagocytosis (88). CD47, a cell surface
protein which is overexpressed on most cancer cells, is an
important “don’t eat me” signal (89). Even at the present of
phagocytic signal, the interaction between CD47 and
macrophage signal regulatory protein-a (SIRP-a) could bypass
phagocytosis (90). The underlying mechanism of CD47:SIRP-a
binding mediated phagocytosis inhibition is that their binding
leads to activation of SIRP-a by phosphorylation of its receptor
(91). Subsequently, the phosphorylation results in the binding
and activation of homologous phosphatase-1 (SHP-1) and SHP-
2 (92), thus inhibiting the phagocytosis by preventing the
FIGURE 3 | The treatment process for combination of CRISPR/Cas9 technology and chimeric antigen receptor T cell therapy. CRISPR/Cas9 system can be used to
genentate universal CAR-T cells and enhance CAR-T cell efficacy. The treatment progress is as follows: T cells are collected from peripheral blood of patients and
further activated and expanded. Then the chimeric antigen receptor genes were inserted into T cells to generate chimeric antigen receptor modified T cells. The
chimeric antigen receptor T cells are engineered by CRISPR/Cas9 system to generate universal chimeric antigen receptor T cells or enhanced chimeric antigen
receptor T cells. Then these engineered chimeric antigen receptor T cells are expanded in vitro and later transferred back to patients.
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accumulation of myosin-IIA at phagocytic synapse. Therefore,
strategies should be developed to avoid the immune escape.

The CRISPR/Cas9 technology can be used to avoid the “don’t
eat me” signals and enhance the function of macrophages. Before
the application of CRISPR/Cas9 technology on macrophages,
strategies to block the binding of CD47 and SIRP-a to turn off
the “don’t eat me” signals have been developed, such as application
of anti-CD47 monoclonal antibody (93) and the engineered SIRP-
a variant adjuvant consensus variant 1 (CV1) (94). Although these
strategies have shown high efficacy, the antigen sink caused by
overexpressed CD47 on cancer cells reduces bioavailability and
increases potential toxicity to normal cells (95). Interestingly, in
one study, CRISPR/Cas9 system has been applied to knock out
SIRP-a in macrophages and subsequently enhanced the ability of
macrophages to phagocytose cancer cells which providing a new
immunotherapeutic method for cancer therapy (18). Altogether,
using CRISPR/Cas9 system to knock out specific genes in
macrophages can minimize the impact of suppressive tumor
microenvironment and improve antitumor immune response,
which may be of great significance for the development of
tumor therapy in the future.
SAFETY PROBLEMS

Although CRISPR/Cas9 technology has provided a convenient
and efficient strategy to help to optimize tumor immunotherapy,
there are still some potential safety risks. One of the serious
problems of CRISPR/Cas9 technology is the off-target, because
unexpected off-target mutagenesis may cause the ablation of
tumor-suppressor genes or the activation of oncogenes (96).
Recent studies have reported the off-target effects of CRISPR/
Cas9 technology in editing T cells (97). Furthermore, studies also
indicated that CRISPR/Cas9 technology may inadvertently cause
cancer (96). It has been found that Cas9 RNP delivery induces
p53-mediated DNA damage response in human retinal pigment
epithelial cells (97). The activation of p53 may cause
chromosome rearrangement and other oncogenic mutations.
Moreover, studies have shown that CRISPR RNAs may
trigger innate immune responses in cells, leading to
cytotoxicity (98).

Another safety issue is that the multiple gene editing may
cause the translocations between double-strand break sites.
Translocation frequencies ranged from 10-4 to 2×10-2 have
been reported in T cells treated with CD52 and TRAC
TALENs (99). Although there was no proliferation advantage
detected in translocated T cells, thorough transformation
analysis is required to confirm the safety of multiple gene
edited therapy. Clinical safety of the application of CRISPR/
Cas9 technology in immunotherapy is also an important
concern. Genetically engineered viruses may cause unexpected
toxic reactions (100). The off-target issues of CRISPR/Cas9
technology may increase the clinical risks of therapy.
Therefore, it warrants further in-deep investigation on the
possible mechanisms that might influence the safety of the
combination of CRISPR/Cas9 technology and immunotherapy.
Frontiers in Oncology | www.frontiersin.org 7
DISCUSSION

The development of immunotherapy is of great significance in
the cancer treatment history. CRISPR/Cas9 technology may
further optimize immunotherapy, improve the anti-tumor
effect and expand the application scope of immunotherapy by
targeting special genes. However, there are many issues that
should be considered in the application of CRISPR/Cas9 system
in immunotherapy, such as off-target effect, editing efficiency and
clinical safety which provide challenges to researchers.

Researchers have explored many approaches to reduce the off-
target effects and improve the specificity of CRISPR/Cas9
technology. The most effective way to improve the specificity is to
select the appropriate target sequence. Studies indicated that the off-
targetmutagenesismediated byCRISPR/Cas9may be different due
to different sgRNA design and target sequences (101). The
development of predictive algorithms provides the strategy to
reduce the off-target effects by computationally searching target
sequences that bear the least similarities to other sequences. Studies
have shown the precise regulation of the number of Cas9 and
sgRNA also helps to improve specificity of CRISPR/Cas9
technology. The off-target effects can be reduced by reducing
CRISPR reagents in cells (102). Compared with plasmids and
viruses, editing with cas9 mRNA and protein can reduce the off-
target effects because of the rapid degradation of mRNA or RNPs
after cleavage on the target (98). The modification of sgRNA
sequence can also reduce the off-target effects. Studies showed
that sgRNA with truncated base-pairing sequences (17 nt instead
of 20 nt) can improve the targeting specificity, which may be
because truncated sgRNA reduced binding affinity to the target
DNA and thus improve the sensitivity to mismatches (102). Cas9
nickase,whichcontainsmutations in thenucleasedomainsHNHor
RuvC, is an alternative approach to improve the specificity in
editing (103). Fusing catalytically inactive Cas9 to FokI nuclease
can also enhance the CRISPR specificity and reduce the unwanted
mutagenesis, but the efficiency of gene editing may be reduced
(104). Meanwhile, some other CRISPR/Cas systems were also
developed to edit the genome with higher efficiency and target
specificity. Given that CRISPR/Cas9 is the firstly developed
genomic editing method, however, we mainly focus on CRISPR/
Cas9 system in this review.

The editing efficiency also affects the application of CRISPR/
Cas9 technology. Researchers improve the editing efficiencymainly
through the optimization of the internal sequence in CRISPR/Cas9
gene editing system, the improvement of gene editing delivery
system and the optimization of gene editing repair strategy (105).

Slaymaker et al. hypothesized the positively-charged residues are
related to the stability of the non-target DNA strand and produced
systematic single ormultiplemutations in these residues (106). Then
Cas9mutants which could improve the precision of genomic editing
without impairing on-target activity are identified in this study (106).
Kleinserver et al. developed an amino acid substituted SpCas9 with
exceptional precision using the similar approach (107). However,
high-fidelity Cas9 variants need further exploration to improve the
reliability of CRISPR/Cas9 system as a tool for cancer therapy.

Although novel strategies have been developed to improve the
specificity of CRISPR/Cas9 gene editing and reduce off-target
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frequency, the degree of accuracy of gene editing remains to be
determined in clinical practice. In addition, how the autoimmune
system will respond to genetically engineered cells is still not fully
studied. Excitingly, the encouraging results of universal CAR-T
therapy in research and clinical application indicated that CRISPR/
Cas9 technology showed a promising future in comprehensive tumor
treatment based on tumor immunotherapy (108). Therefore, although
there are some problems and challenges in the application of
combination of CRISPR/Cas9 and immunotherapy, the continuous
progress of CRISPR/Cas9 technology will contribute more to cancer
immunotherapy in the near future.
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