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Abstract

Motivation: Phage–host associations play important roles in microbial communities. But in natural communities, as
opposed to culture-based lab studies where phages are discovered and characterized metagenomically, their hosts
are generally not known. Several programs have been developed for predicting which phage infects which host
based on various sequence similarity measures or machine learning approaches. These are often based on whole
viral and host genomes, but in metagenomics-based studies, we rarely have whole genomes but rather must rely on
contigs that are sometimes as short as hundreds of bp long. Therefore, we need programs that predict hosts of
phage contigs on the basis of these short contigs. Although most existing programs can be applied to metagenomic
datasets for these predictions, their accuracies are generally low. Here, we develop ContigNet, a convolutional neur-
al network-based model capable of predicting phage–host matches based on relatively short contigs, and compare
it to previously published VirHostMatcher (VHM) and WIsH.

Results: On the validation set, ContigNet achieves 72–85% area under the receiver operating characteristic
curve (AUROC) scores, compared to the maximum of 68% by VHM or WIsH for contigs of lengths between 200
bps to 50 kbps. We also apply the model to the Metagenomic Gut Virus (MGV) catalogue, a dataset containing
a wide range of draft genomes from metagenomic samples and achieve 60–70% AUROC scores compared to
that of VHM and WIsH of 52%. Surprisingly, ContigNet can also be used to predict plasmid-host contig associa-
tions with high accuracy, indicating a similar genetic exchange between mobile genetic elements and their
hosts.

Availability and implementation: The source code of ContigNet and related datasets can be downloaded from
https://github.com/tianqitang1/ContigNet.

Contact: fsun@usc.edu

1 Introduction

Mobile genetic elements (MGEs) are abundant in natural environ-
ments. They move around in the biosphere and transfer from one
host to another to replicate. Among various classes of MGEs, viruses
that infect bacteria referred as bacteriophages or phages in short
have played essential rules in natural environments. The vital activ-
ities and replication of phages require the infection of phages to their
hosts. Therefore, it is important to understand the association rela-
tionship between phages and their hosts. Several computational
methods have been developed to assign viruses to their putative
hosts (Ahlgren et al., 2017; Amgarten et al., 2020; Coutinho et al.,
2021; Galiez et al., 2017; Lu et al., 2021; Pons et al., 2021; Shang
and Sun, 2021; Tan et al., 2022; Wang et al., 2020), most of which
assign phages to their hosts of known bacterial genomes or at certain

taxonomic levels (Amgarten et al., 2020; Coutinho et al., 2021;
Pons et al., 2021; Shang and Sun, 2021; Tan et al., 2022; Wang
et al., 2020) except VirHostMatcher (VHM) (Ahlgren et al., 2017)
and WIsH (Galiez et al., 2017).

On the other hand, genomes of novel uncultured microbes are
usually incomplete due to limitations of shot-gun sequencing.
Contigs of novel genomes recovered from metagenomes, and novel
genomic islands of known microbes, are absent or incomplete in cur-
rent reference databases, preventing host predictions using
alignment-based methods. Similarly, most viral genomes recovered
from viromes are fragmented, making the whole viral genome-based
host prediction impractical.

The most widely used methods for phage–host association pre-
diction are based on oligonucleotide frequency, alignment-based
scores, matching of CRISPR spacers or Markov models. For
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example, VirHostMatcher (Ahlgren et al., 2017) uses the dissimilar-
ity between oligonucleotide frequencies of the phage and bacterial
sequences to predict their associations. The authors investigated the
prediction accuracy based on Euclidean distance, Manhattan dis-
tance, and d�2 dissimilarity (Reinert et al., 2009; Song et al., 2013;
Wan et al., 2010) and showed that d�2 yielded the highest prediction
accuracy (Ahlgren et al., 2017). WIsH (Galiez et al., 2017) is an-
other tool that trained a Markov model for each candidate bacterial
genome and calculated the likelihood of a phage sequence under the
trained Markov model. This method was also reported to have bet-
ter performance than d�2 when fragments were used in the prediction
(Galiez et al., 2017). VirHostMatcher-Net (Wang et al., 2020) uses
logistic regression to take advantage of multiple dissimilarity
measures, including the aforementioned d�2 and WIsH scores,
alignment-based scores, CRISPR spacer matching and virus similar-
ity to predict phage–host associations. RaFAH (Coutinho et al.,
2021) is another recently developed method for phage–host associ-
ation prediction by constructing hidden Markov models (HMMs)
according to the protein clusters identified from the pVOG
(Grazziotin et al., 2017) database and a random forests model was
used to predict phage–host associations.

Deep learning-based methods were also developed in recent
years for predicting phage–host associations. vHULK (Amgarten
et al., 2020) applied deep neural networks to the phage–host predic-
tion problem using features extracted from phage sequences as in-
put. The latest proposed method HostG (Shang and Sun, 2021) used
a graph convolutional networks to take both phage–host and
phage–phage relationships into consideration, and the alignment
scores were used to aid the construction of the relationships.
However, these predefined features extracted from sequences alone
are not suitable to train complicated models to predict contig–contig
relationship.

In this article, we propose ContigNet, a convolutional neural
network (CNN)-based model that can predict the association status
between phage and bacterial contigs, the first method investigating
the relationship between two contigs. Our results showed that
ContigNet was able to significantly improve the phage–host contig
association prediction performance compared to currently available
methods. Based on the structure of ContigNet, we also tested it on a
totally different plasmid-host dataset, and the result revealed its cap-
ability as a promising approach for predicting general MGEs associ-
ated with their hosts.

2 Materials and methods

2.1 Dataset preparation
The first dataset, we used was retrieved from Virus-Host DB
(Mihara et al., 2016). Virus-Host DB gathered virus and host infor-
mation from multiple sources, including RefSeq, GenBank, UniProt,
ViralZone and manual curation. The association between virus and
host was represented as a pair of virus genome sequence and host
taxonomic ID in the database. The Virus-Host DB version used in
this article was released in March 2021, and this release contained
16 048 virus-host pairs with both prokaryotic and eukaryotic hosts.
We filtered out non-bacterial host entries from the database. The
hosts reported in the database varied in taxonomic ranks, and only
phage–host pairs with host taxonomy ID at species rank were used.
We then removed phage–host pairs with host taxonomy ID not pre-
sented in GenBank (Benson et al., 2012). Finally, we got a dataset
with 2589 phage–host pairs, including 2548 phages and 301 host
species. The species level composition of the hosts of the phages is
shown in Figure 1 that shows the top 10 most abundant species and
the others. From the pie chart, we can see the hosts of the phages are
not overly biased toward particular species.

The dataset was separated into training and validation sets. To
prevent extremely similar phage genomes appearing in both the
training and validation sets, we used CD-Hit v4.8.1 (Fu et al., 2012)
to cluster phage genomes, which required >95% sequence identity
and >50% alignment coverage for the shorter sequence. Finally, we
obtained 2325 phage clusters and in each cluster, we randomly

selected a phage chromosome to represent the sequence of other
phages in the same cluster. After redundant phage genomes were
removed, the dataset was randomly separated into 80% training set
and 20% validation set. Any phage–host pair in the training set with
the phage also appearing in the validation set was moved to the val-
idation set. A similar approach was also applied to hosts. Given a
particular taxonomy level, phage–host pairs with overlapping hosts
between the training and validation sets were moved to the valid-
ation set.

Virus-Host DB included genome sequences for all viruses in the
database, and their host genome sequences were retrieved from
GenBank according to their species taxonomy IDs. Some host spe-
cies, such as Escherichia coli, have over 20 000 assemblies in
GenBank, and it is not feasible to use all of them for training and
testing. Thus, for hosts with more than 10 assemblies, we randomly
downloaded 10 assemblies as representatives of that species. For
host species with fewer than 10 assemblies, we downloaded all
available assemblies. All collected genome sequences were used in
the subsequent training procedures.

To assess the generalization ability of our developed model, we
also included two different datasets as test sets in our study. The first
one is the Metagenomic Gut Virus (MGV) (Nayfach et al., 2021),
and the other is the PLSDB (Galata et al., 2019) database. Both
datasets were preprocessed so that they did not overlap with the
training set. The details of the datasets, steps of preprocessing and
rationale of choosing these two datasets as test sets will be discussed
in Section 3.6.

2.2 Feature representation
For a phage contig with length Lp, we used a one-hot matrix to rep-
resent the contig. Particularly, A, C, G and T were represented by
½1;0;0; 0�; ½0;1; 0; 0�; ½0; 0; 1;0� and ½0; 0;0; 1�, respectively. We used
½0;0;0; 0� to represent bases other than A, C, G or T that might ap-
pear in the sequence. The constructed matrix was denoted as Mpb,
with size Lp � 4, where the subscript p represents the phage and b
represents nucleotide base. Similarly, for the host, we constructed
the one-hot matrix Mhb with size Lh � 4, where Lh represents the
host contig length.

We also encoded the contigs based on codons using a 64 dimen-
sional one-hot matrix, given that there are 64 possible codons, and a
vector with all components being 0 was used in case the number of
remaining nucleotides were not enough to form a codon or a non-
regular character occurs in the sequence. Contigs were translated
into peptides using 3-frame encoding, using the forward strand.
Considering a fragment ATGCGTCAT, the possible reading frames
can be ATG/CGT/CAT, TGC/GTC/AT-, or GCG/TCA/T-. We first
constructed a one-hot matrix for each reading frame and got three
individual matrices. The three matrices were concatenated together
and used as the input of ContigNet. We used Mpc and Mhc to denote

Fig. 1. Pie chart showing the number of phages having association with a host spe-

cies in Virus-Host DB. Top 10 species are shown in the pie chart and the remaining

species are combined as ‘Others’
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the resulting matrices for phage and host, respectively, where the
subscript c indicates codon information for the phage or the host.

2.3 Deep learning model structure and training
The ContigNet is a four-path CNN for the phage–host prediction
task. The overview of the model is depicted in Figure 2. It takes
matrices Mpb and Mhb as input and outputs a single numeric value
indicating the probability if the query phage and host are associated
with each other. Each of the two input matrices is branched into
two paths, a base-path to encode base information and a codon-
path to encode the codon information contained in the contig. In the
codon-path, the codon one-hot matrices Mpc and Mhc can be con-
verted from base matrices with a series of convolutional operations,
which is named as codon transformer in the figure.

The codon transformer first constructs a filter F with size
64� 3� 4, i.e. the filter consists of 64 kernels, where each kernel is
a 3�4 matrix. Here we set each kernel to be a base one-hot matrix
of a possible codon. Consider a base one-hot matrix M with size
3�4, representing a 3-mer. The following function

f ðMÞ ¼ ReLUðF �M� 2� 1Þ

where the output of � is defined as ½
P

i

P
j F0;i;j �

Mi;j; . . . ;
P

i

P
j F64;i;j �Mi;j�; 1 denotes the vector with all dimen-

sions as 1 and the ReLU denotes the Rectified Linear Unit. The
output of f is a one-hot vector, where the dimension corresponding
to the codon is 1 and all other dimensions are 0. By applying the
convolutional filter to the base one-hot matrix, we can obtain the
corresponding codon one-hot matrix.

The structure of the base and codon channels consists of convo-
lutional and max pooling layers with ReLU activation function.
Usually, CNNs require a fixed size input. However, in metagenom-
ics studies, the contig length can range from only a few hundred bps
to over thousands of bps. To solve the incompatibility between vari-
able contig length and fixed CNN input size, in ContigNet, we took
advantage of the characteristic of the pooling layer to enable its abil-
ity to accept a theoretically unlimited length of contigs. The last
layer of each convolution channel in ContigNet is a global pooling
layer, which produces a fixed length output that can be fed into the
downstream fully connected layers, regardless of the length of input.
We forced the base paths and codon paths between the phage and
host to have the same weight, the rationale will be discussed in
Section 3.1.

The outputs of four separated paths are collected, concatenated,
and fed into the fully connected layer with sigmoid function as the
final output of the model, which has a range of (0, 1), indicating the
probability of the two input contigs of being associated with each
other.

The model was optimized by minimizing the binary cross-en-
tropy loss between the output and the target. The hyper-parameters
for the model training were chosen from grid search using ten-fold
cross-validation on the training set. The learning rate was chosen

from 0.01, 0.001, 0.0001 and 0.00001, and the batch size was
chosen from 16, 32, 64 and 128. Eventually, the model was trained
for 5000 epochs with early stopping criteria 0.00001 for 50 epochs.
The learning rate was finally set to 0.001 and the batch size was set
to 32.

At each epoch, for a positive phage–host pair, we need to con-
struct a negative phage–host pair. In this study, we randomly
selected the host that was not reported interacting with the phage in
Virus-Host DB to construct the negative phage–host pairs. This way
of selecting the negative pairs can possibly include some phage–host
pairs that have associations but not reported by previous studies.
However, such potential positive phage–host pairs not reported in
the database are expected to be extremely rare given that the num-
ber of truly associated phage–host pairs is much smaller than that of
negatively associated pairs. Thus, we expect that such incorrectly
chosen pairs will have minimal impacts on our model. For each posi-
tive phage–host pair, we constructed one negative phage–host pair
resulting in the positive/negative ratio of 1:1.

2.4 Investigation of the effects of contig lengths,

sequencing errors and chimeric contigs on the

performance of ContigNet
To investigate the effects of contig lengths on prediction accuracy,
for each input batch during training, validation, and testing, the
phage contig length Lp was selected from 200 bps, 500 bps, 1 kbps,
5 kbps, 10 kbps and 50 kbps, and the host contig length Lh was
selected randomly from 200 bps, 500 bps, 1 kbps, 5 kbps, 10 kbps,
50 kbps and 100 kbps. Contigs were then sampled from the corre-
sponding phage and host genomes. The contig lengths and contig
sequences were all re-sampled at the start of each training epoch to
increase the diversity of the training dataset. Firstly, we evaluated
the performance of the trained model on phage–host contig pairs
directly sampled as error-free substrings of phage and host genomes.
The related results were reported in Sections 3.2 and 3.3.

In metagenomic samples, however, it is possible that the contigs
have multiple sources of errors including sequencing and assembly
errors. Therefore, we also assessed the performance of ContigNet
with different types of errors. For sequencing, possible errors include
insertions, deletions and substitutions. The error profiles can vary
depending on sequencing (NGS) technologies, and most common
sequencing technologies have error rate <0.1% (Ma et al., 2019).
To simulate the general scenario, we set two parameters, l as substi-
tution rate and d as insertion/deletion rate. For each nucleotide,
given an error occurred, a substitution error occurred with probabil-
ity l

lþd and the nucleotide was changed to the other nucleotides with

equal probability 1
3. A deletion error occurred with probability d

2ðlþdÞ.

An insertion error occurred with probability d
2ðlþdÞ and one of A, C,

G or T was inserted with equal probability 1
4. We used this simple

model to show the impact of substitution and insertion/deletion
errors on the performance of ContigNet. Other sequencing error
mechanisms can easily be simulated. In this experiment, we first
trained ContigNet with error-free training set, and the trained model
was evaluated on the validation set with artificially simulated errors
with different combinations of d and l. The parameter d was chosen
from 0, 0.05 and 0.1, and l was chosen from 0 to 0.1 by step of
0.02. The parameters for the simulations could be over 100 times
larger than typical error rates, and therefore the results showed the
lower bound of the performance of ContigNet on real metagenomic
datasets. The contig lengths for both phage and host were fixed at 5
kbps, and the area under the receiver operating characteristic curve
(AUROC) of ContigNet on the test sets was reported as the average
of 10 repeated experiments.

There are potential assembly errors of the contigs in metage-
nomic studies. Reads from different genomes could be assembled
into the same contigs referred as chimeric contigs. We assessed the
effect of the presence of chimeric contigs in the test set on the per-
formance of error-free trained ContigNet. To simulate the occur-
rence of chimeric contigs, for each phage/host contig, we exchanged
0–20% of its sequence with a random contig in the validation set.Fig. 2. The overview of the deep learning model

Phage–bacterial contig association prediction with a convolutional neural network i47



We only swapped the subsequences between phages and between
hosts, because previous studies showed that it is very rare to mix
viral and host fragments in assembly (Magasin and Gerloff, 2015;
Pignatelli and Moya, 2011). The AUROC scores of ContigNet on
the validation set with sequencing errors and chimeric contigs were
reported in Section 3.5.

2.5 Performance evaluation
The performance of our deep learning method in the phage–host as-
sociation prediction was assessed using the AUROC score. The re-
ceiver operating characteristic (ROC) curve visualizes the predictive
performance of a binary classifier by plotting the true positive rate
against the false positive rate at various thresholds. The AUROC
can be used to quantify the performance of this binary classifier.

3 Results

3.1 Sharing weights among base and codon paths

improves model generalization
The convolutional part of ContigNet is essentially a feature extract-
or, where each path extracts 256 features from the base and codon
paths of the input sequence. Comparing with traditional alignment-
free-based methods, we can consider the output of the convolution
layer as the k-mer frequencies, and the fully-connected layers as the
distance measure. When we calculate k-mer frequencies, we treat
phage and host sequences the same and identical features are
extracted from them. Hence, it is also reasonable to let the convolu-
tional paths between both sequence types to have the same weights.

To legitimize the use of shared weights, we need to compare two
models, one having shared weight between phage and host paths
and the other having independent weights between phage and host
paths. For a fair comparison, for both models, we conducted a grid
search using 10-fold cross-validation on the training set, with the
learning rate chosen from 0.01, 0.001, 0.0001 and 0.00001, and the
batch size chosen from 16, 32, 64 and 128. The final selected hyper-
parameters were the same for both models, with the learning rate
being 0.0001 and batch size being 32.

The trained models were then tested on the validation set. The
AUROC scores of each model on contigs with different lengths,
ranging from 200 bps to 5 kbps, are shown in Figure 3. The figure
shows that ContigNet with shared weights for phages and hosts out-
performs the model with independent weights. The Wilcoxon
signed-rank test also supports this conclusion with p-value
1:33� 10�25. Therefore, in the rest of the article, we use the model
with shared weights between the phages and the hosts.

3.2 Contignet increased the prediction performance

compared to existing methods
K-mer-based alignment-free sequence comparison methods have
been widely used for predicting phage–host associations. Among
various methods of the same class, the currently known best per-
forming alignment-free method is d�2 dissimilarity (Ahlgren et al.,
2017). WIsH (Galiez et al., 2017) is another popular method for the

association status prediction between sequences. It first trains an
HMM using reference sequences, then a score will be assigned to
each new sequence according to the trained HMM. Since the con-
struction of HMM is not dependent on contig lengths, we can use it
on any pair of contigs. So we first compared the performance differ-
ence among d�2, WIsH and ContigNet.

We used Afann (Tang et al., 2019) to calculate the d�2 dissimilar-
ity between phage and host pairs. The selection of negative phage–
host pairs was the same as the one we used to train our model. To
assess the performance of d�2 on contigs, we used 200 bps, 1 kbps, 5
kbps and 50 kbps as the contig lengths for both phage and host to
sample from genomes. For experiments with contigs, for a given
contig length l, we randomly sampled a contig from phage and host
genomes from the validation set, respectively, and the sampling was
repeated k¼10 times. With the sampled contig pairs, we then eval-
uated the performance of d�2 using AUROC. The same approach
was applied to WIsH and the AUROC score for each contig length
was recorded. Similarly, we evaluated the performance of our
trained model on contigs with different lengths using the same ap-
proach. To test our model, the contig pairs were sampled from the
phage–host pairs in the validation set. The ROC curves for the three
different methods with different contig lengths are shown in
Figure 4.

Fig. 3. ContigNet with shared weights outperforms ContigNet with distinct weights.

Boxplots comparing AUROC scores of ContigNet models with and without shared

weights between phage and host paths

Fig. 4. Performance comparison among d�2, WIsH and ContigNet. (a) The ROC

curves of d�2 method on the validation set with contigs of different lengths. (b) The

ROC curves of WIsH on the validation set with contigs of different lengths and (c)

the ROC curves of ContigNet on validation set with contigs with different lengths

i48 T.Tang et al.



Figure 4a shows that for d�2 the AUROC is markedly lower than
that of ContigNet for virus-host contig association predictions. The
AUROC score for d�2 is only 0.684 for contig pairs of 50 kbps and
further drops to 0.589 for contig pairs of 1 kbps. Figure 4b depicts
the performance of WIsH under different conditions, and we can see
similar characteristic of the change of performance, for shorter con-
tigs the performance drastically degraded. In comparison, as shown
in Figure 4c, ContigNet achieves a much higher AUROC of over
0.808 for contig pairs of length above 1 kbps. Even for contig pairs
of length 200 bps, the AUROC can be as high as 0.717.

There are several other tools for phage–host association predic-
tion; however, they are not suitable for the question described in this
study, as discussed in more detail in Section 4.

3.3 The performance of ContigNet increases with both

viral and host contig lengths
Figure 4 shows that the performance of ContigNet increases with
the contig length when the viral and host contigs are of the same
length. ContigNet can be applied to predict phage–host associations
even if the contigs are of different lengths and we next investigate
how the performance of ContigNet changes with the viral or host
contig lengths.

To assess the effect of different lengths of phage and host contigs
on the performance of our trained model, we extended the contig
length and evaluated the AUROC score of our model with contig
length selected from 200 bps, 500 bps, 1 kbps, 5 kbps, 10 kbps and
50 kbps for phages and 200 bps, 500 bps, 1 kbps, 5 kbps, 10 kbps,
50 kbps and 100 kbps for hosts. The results are presented in
Figure 5. The x-axis represents the host contig length, and y-axis
marks the phage contig length. Figure 5 shows an apparent increas-
ing trend of AUROC with respect to both phage and host contig
lengths. When the phage contig length is about 1 kbps, the AUROC
is stablized at around 0.82 when the host contig length is above 5
kbps. When the phage contig length is above 5 kbps, the AUROC is
stablized at around 0.83 when the host contig length is above
10 kbps.

This observation can be intuitively explained by the fact that lon-
ger contigs contain more information that can be extracted by our
network, resulting in a higher AUROC score.

3.4 Assessing the effects of different channels
For a DNA sequence, the information it contains can be classified
into two granularities, base level and codon level. To incorporate
these two granularities, a di-path model was utilized, i.e. two separ-
ate convolutional paths for each contig, one path for parsing base in-
formation and the other for codon information.

Here we explore if the di-path model can improve the prediction
results and the contributions of each path to the final result. To as-
sess the contributions, we retrained our model by keeping only the
base or codon path, assessed the performance of the single-path
models, and compared their performance to our original di-path
model. Figure 6 is the heatmap showing the difference of AUROC
on corresponding contig lengths combinations between the di-path
model and each single-path model. In the heatmap, deeper green
means the di-path model performs better than the single path model,
whilst red cell means the di-path model underperforms.

Figure 6 shows that the base-path model does not perform as
well as the di-path and codon-path models, while the di-path model
and the codon-path model perform similarly. We utilized the
Wilcoxon signed-rank test to quantify the difference between mod-
els. For the base-path model and the di-path model, we got p ¼
2:41� 10�8 with the alternative hypothesis that the AUROC of
base-path model was smaller than that of the di-path model. This
indicates that the di-path model performs significantly better than
the base-path model. However, when comparing the codon-path
model and di-path model, we got p¼0.472 with two-sided alterna-
tive hypothesis, and thus we cannot reject the null hypothesis that
the two models perform the same.

From the observation, we can conclude that the di-path model
was not able to provide any significant advantage over using codon-

path alone. Despite the aforementioned result, there was no appar-
ent drawback of keeping both paths in the model compared to using
only the codon path, and with multiple potential benefits of overpar-
ameterization in model convergence and generalization (Allen-Zhu
et al., 2019), we kept the di-path structure in our model.

3.5 Sequencing errors and chimeric contigs decrease

the performance of ContigNet
Figures 7 and 8 show the performance of ContigNet trained with
error-free training set and tested with validation set with artificially
introduced errors. Figure 7 shows the change of performance with
different levels of simulated sequencing error rates. The performance
of ContigNet decreases with both substitution and insertion/deletion
rates as expected. However, even with very high values of insertion/
deletion rate d ¼ 0:1 and substitution rate l ¼ 0:1, ContigNet still
maintains a high AUROC score of above 0.805, a slight decrease
from 0.840 when no errors are introduced to the validation set.

Figure 8 shows the AUROC scores of ContigNet with different
levels of artificial chimeras for phage contigs only, host contigs only
and both phage and host contig pairs. The dash line shows the
AUROC score of ContigNet for no chimeras as the baseline. Both
the phage and host contig lengths were set at 5 kbps. The figure

Fig. 5. Heatmap of AUROCs for different phage and host contig lengths. The x-axis

represents host contig lengths and the y-axis represents phage contig lengths

Fig. 6. The AUROC value difference between ContigNet with di-path model and (a)

base-path only model and (b) codon-path only model

Phage–bacterial contig association prediction with a convolutional neural network i49



shows that ContigNet is robust to phage chimeras, with AUROC
staying around that for ContigNet with no chimeras. The impact of
host chimeras on ContigNet is higher than that for phage contigs.
ContigNet still maintains AUROC above 0.805 when the fraction of
sequence from others is below 0.20. For the different impacts be-
tween host chimeras and phage chimeras on ContigNet, it can pos-
sibly be attributed to the inherent diversity differences between
phages and hosts. The phages are more diverse and are more likely
to exchange genetic materials compared to hosts.

3.6 Performance of ContigNet on new datasets
To further validate that ContigNet works well for novel data, we
tested ContigNet on two separate databases. The first database is
the MGV catalogue (Nayfach et al., 2021). The investigators used
multiple viral-informative features, including the presence/absence
of viral protein families, the presence of viral nucleotide signatures
and multiple adjacent genes on the same strand (Nayfach et al.,
2021) to identify viral contigs based on 11 810 distinct human gut
metagenomic samples. The viral genomes with completeness >50%
were then selected from all identified viral genomes, and their hosts
were identified using CRISPR-spacer matches and whole-genome
alignment. Both methods require near exact matches and the pre-
dicted hosts for the viral genomes have a high specificity. We col-
lected the phage–host pairs from the MGV database with hosts of
the phages predicted at the genus level. A total of 77 348 phage–
host pairs were identified. To remove phages with high similarity to
phages in Virus-Host DB, we clustered the phage genomes from
Virus-Host DB and MGV. The total number of phages were around
80 000. CD-Hit was not able to give a result in a reasonable time,
due to not fully utilizing multi-threading. We applied MMseqs2
(Steinegger and Söding, 2017) with parameters local sequence iden-
tity with sequence identity threshold 95% and 50% alignment
coverage for the shorter sequence, which were the same as we used
when clustering the Virus-Host DB alone. Phage–host pairs from

MGV with phage appeared in the same clusters as phages from
Virus-Host DB were removed. Phage–host pairs with hosts under
the same genus as hosts from VirHost DB were also removed. The
resulting test set contains 39 916 phage–host pairs with 39 916
phages and 134 genera.

The ContigNet model was trained on the entire Virus-Host DB,
and tested on the MGV dataset. The AUROC results for different
combinations of phage and host contig lengths are shown in
Figure 9. As a baseline, we tested d�2 and WIsH on the MGV dataset
with 50 kbps contigs. The selection of positive and negative pairs
was the same as the aforementioned method. The AUROC score
was 0.516 and 0.518, respectively. Shorter contigs were not tested
because the AUROC score for longer contigs was already low. In
comparison, the AUROC for ContigNet with 200 bps contigs pairs
is 0.601. Compared to the result of d�2 and WIsH it is a significant
improvement. With contig pairs of 50 kbps, the AUROC score is
0.698, a further improvement. The score converges as we further in-
crease the phage and host contig lengths, with 0.698 for phage con-
tig of 50 kbps and host contig of 100 kbps. The heatmap for
different contig length combinations is shown in Figure 9. The
AUROC scores are generally lower than that in Figure 5, probably
due to sequencing errors and chimeric contigs.

The second database we used was the PLSDB dataset (Galata
et al., 2019). We wondered whether the ContigNet model we devel-
oped can be used to predict plasmid-host associations. For each plas-
mid entry in the PLSDB dataset, a corresponding host species was
provided. To evaluate the performance of our model on PLSDB, we
first trained our model on the entire Virus-Host DB. For each posi-
tive plasmid-host pair in PLSDB, a different host species were ran-
domly selected to construct the negative plasmid-host pair. The
AUROC was then calculated for different plasmid and host contig
lengths ranging from 200 bps to 5 kbps, and the AUROC was
reported for different contig length combinations. Because plasmid
and phage are two different classes of MGEs, there were no overlaps
between Virus-Host DB as training set and the PLSDB as testing set.
Therefore, no redundancy removal steps were required. The results
are shown in Figure 10a. The figure shows that the resulting
AUROCs range from 0.734 to 0.85. For comparison, we calculated
the AUROC scores when we used d�2 and WIsH to predict the associ-
ation status when the contig lengths were 200 bps, 1 kbps 5 kbps
and 50 kbps, respectively. The results are shown in Figure 10b and
c, where the AUROC ranged from 0.489 to 0.771. By comparing
the results, we can see that ContigNet has provided significant im-
provement even if the model was trained on a totally different
dataset.

The performance of ContigNet on PLSDB seemed unexpected,
considering the distinct lifestyle between plasmids and phages.
However, from evolutional perspective, both MGEs depend on
organelles of hosts to replicate and have to adapt to the internal en-
vironment of a particular host, including the bias of nucleotides,
codons, di-codons etc. The experiment above proves that our model

Fig. 8. The performance of ContigNet with different levels of artificially introduced

chimera for phage contigs only, host contigs only and both phage and host contig

pairs. The dash line represents the baseline AUROC of ContigNet with no chimeras

Fig. 9. Heatmap of AUROC for different contig lengths on MGV dataset for model

trained with Virus-Host DB. The x-axis represents host contig lengths and the

y-axis represents phage contig lengths

Fig. 7. ContigNet performance with different levels of artificially introduced

sequencing errors to the test set. The dash line stands for the baseline when no errors

were introduced
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is able to capture this relationship between phages and hosts, and
apply it to make plasmid-host association prediction.

3.7 Computational cost
The training of the model pre-loads the whole Virus-Host DB and
corresponding hosts into the memory to reduce I/O overhead, so a
machine with over 128GB memory is recommended. We used a
workstation with AMD EPYC 7742 CPU, NVIDIA RTX 2080Ti
GPU and it took <5 h for training, <1 h for testing.

4 Discussion

In this article, we present ContigNet, a deep learning-based method
for predicting phage–host contig interactions, the first deep learning
method for this task. We showed that ContigNet outperforms other
k-mer-based method such as d�2 or Markov chain-based method,
WIsH, for predicting phage–host contig associations.

Several state-of-the-art tools are available for phage–host associ-
ation prediction, including PHP (Lu et al., 2021), HoPhage (consist-
ing of HoPhage-G and HoPhage-S) (Tan et al., 2022), VPF-Class
(Pons et al., 2021), VHM-Net (Wang et al., 2020), vHULK
(Amgarten et al., 2020), RaFAH (Coutinho et al., 2021) and HostG
(Shang and Sun, 2021). Each of these tools has its own limitations

making it unsuitable for the question of predicting phage–host con-
tig associations in natural metagenomic settings. For instance,
HoPhage-G, VPF-Class, VHM-Net, vHULK and RaFAH are multi-
class classifiers with fixed candidate host set and thus cannot be
used for phage–host contig association predictions. PHP is another
k-mer-based method and was shown to underperform WIsH when
the viral contigs were shorter than 10 kbps (Lu et al., 2021).
HoPhage-S uses coding sequences to build HMM but short contigs
may not contain coding sequences. HostG uses BLASTN matches to
construct phage–host connections when building the graph and inte-
grate new hosts into the graph. However, such matches can be
scarce between contigs. Therefore, all aforementioned softwares are
not suitable to predict the reference-independent contig-level phage–
host associations.

On the other hand, ContigNet can also take the whole phage
and host genomes as input because it supports contigs with any
length. We compared its performance with other methods on the
whole genomes according to the experimental steps described in
Shang and Sun (2021) by testing the methods on the whole dataset
and the dataset with only phage–host pairs without alignment
results. And the results are shown in Figures 11 and 12. From the
figures, we can observe that ContigNet still outperforms WIsH.
However, ContigNet underperforms other state-of-the-art
approaches for phage–host genome associations that were optimized
for such a purpose. Therefore, users are advised to use existing
methods specialized for whole-genome association if the host whole
genome is available.

With the incorporation of shared weights of convolutional paths
between phage and host, we observed increased performance and
generalizability. If we consider ContigNet as consisting of two com-
ponents, the convolutional layers and the linear layers, the convolu-
tional layers can be considered as a feature extractor and the linear
layers can be considered as a classifier accepting the 512 features
extracted from phage contig and host contigs, respectively. The
applications of the extracted features are not restricted to the
phage–host association status prediction itself, and the derived
model can also be used for plasmid-host contig association predic-
tions, a completely different problem. Our results show the great po-
tential that our model can be adapted for much broader
applications, either directly use the model for sequence feature ex-
traction, or use our model as a foundation and use transfer learning
to fine-tune the parameters for new problems. Therefore, in our soft-
ware, we provide a feature extraction mode as well as the trained
model so that other investigators can use features to train new mod-
els for different questions.

However, there are still more valuable topics to explore for this
method in the future. Poor explainability has long been a

Fig. 10. ContigNet can be used to predict plasmid-host associations with high accur-

acy. (a) Heatmap of AUROC for different contig lengths on plasmid dataset

(PLSDB) for model trained with virus dataset (Virus-Host DB). The x-axis repre-

sents host contig lengths and the y-axis represents plasmid contig lengths. (b) The

ROC curves of d�2 method on PLSDB for contigs with different lengths. (c) The

ROC curves of WIsH on PLSDB for contigs with different lengths

Fig. 11. Host prediction accuracy for whole genomes from genus to phylum

Fig. 12. Host prediction accuracy for whole genomes without alignment results

from genus to phylum
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shortcoming for deep learning-related methods in different applica-
tions, and this applies to our model too. In traditional methods, the
features extracted from a sequence have clear meanings, for ex-
ample, k-mer frequencies are the frequencies of oligonucleotides in
the given sequence. Among the 512 features extracted from a se-
quence, 256 of them are from base information and 256 of them are
from codon information, but there is no clear biological meaning for
each individual feature. Therefore, an explainable feature extractor
is a topic for future studies.

In conclusion, ContigNet showed a competitive performance on
identifying the relationship between phage and host contigs. It can
be a useful tool for biological researchers when studying novel meta-
genomic samples from diverse natural environments, particularly
those ones poorly represented in genomic databases.
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The data underlying this article are available at https://github.com/
tianqitang1/ContigNet
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