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Abstract 

Clostridioides difficile is a gastrointestinal pathogen of both humans and agricul-

tural animals and thus a major One Health threat. The C. difficile species consists 

of five main clades, with Clade 5 currently undergoing speciation from Clades 1–4. 

Since Clade 5 strains are highly prevalent in agricultural animals and a frequent 

cause of zoonotic infections, these strains may have evolved phenotypes that 

distinguish them from Clade 1–4 strains. Here, we compare the growth properties 

of Clade 5 strains to those of Clade 1–4 strains using anaerobic time-lapse micros-

copy coupled with automated image analysis. Our analyses indicate that Clade 

5 strains grow faster and are more likely to form long chains of cells than Clade 

1–4 strains. Using comparative genomic and CRISPRi analyses, we show that the 

chaining phenotype of Clade 5 strains is driven by the orientation of the invertible 

cmr switch sequence, with chaining strains exhibiting a bias to the cmr-ON state. 

Interestingly, Clade 5 strains with a bias towards the cmr-ON state shifted to a 

largely cmr-OFF state during murine infection, suggesting that the cmr-OFF state 

is under positive selection during infection. Collectively, our data reveal that Clade 

5 strains have distinct growth properties, which may allow them to inhabit diverse 

ecological niches.
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Author summary

The Clade 5 strains of the Clostridioides difficile species are so phylogeneti-
cally divergent that they almost meet the threshold of being a distinct species. 
 Although these strains are ubiquitously isolated from agricultural and environ-
mental settings and an important source of zoonotic and community-acquired 
infections, it is unclear whether they have distinct phenotypic properties that al-
low them to colonize diverse hosts or persist in the environment. By combining a 
novel anaerobic time-lapse microscopy method with automated image analysis, 
we discovered that Clade 5 strains grow faster than strains from other C. difficile 
clades and that they frequently form long chains. These chaining properties are 
driven by the environmentally responsive expression of a non-canonical signal 
transduction system, which our analyses suggest is selected against during mu-
rine infection. Collectively, our analyses reveal that Clade 5 strains have distinct 
growth properties that may promote their persistence in the environment.

Introduction

Clostridioides difficile is a leading cause of nosocomial infections in the United States, 
with approximately 500,000 new infections and 14,000 deaths being attributed to 
this organism annually [1,2]. As an obligate anaerobe, C. difficile relies on its hardy, 
metabolically dormant spore form to survive outside the host and transmit disease to 
new hosts [3]. When C. difficile spores are ingested by susceptible hosts [4,5], they 
germinate and outgrow into vegetative cells that subsequently colonize the colon. 
The vegetative cells secrete toxins that damage gut epithelial tissue [6], which trig-
gers an inflammatory response that can cause disease pathologies ranging from mild 
diarrhea to pseudomembranous colitis and even death [2,4]. C. difficile also causes 
recurrent infections in ~20% of infections, which can lead to more severe disease 
symptoms [2,7,8].

C. difficile’s success as a pathogen may be related to its tremendous genetic 
diversity [9–11], with genomic analyses indicating that C. difficile’s core genome 
represents only ~10–20% of its pan-genome [9,10]. The plasticity of its “open” pan- 
genome likely helps C. difficile colonize the gastrointestinal tract of diverse animals, 
from mammals to invertebrates, and persist in environmental reservoirs like sewage 
and compost [12]. Indeed, the C. difficile species is so genetically diverse that it has 
been divided into five distinct phylogenetic clades based on multi-locus sequence 
typing (MLST) analyses, and the clades have been further subdivided into different 
ribotypes (RTs) or sequence types (STs) [10,13].

Between these five clades, there are notable differences in geographic and host 
distributions. Clade 1 is the largest, most heterogeneous clade with the broad-
est geographic distribution [14,15]. It includes over 200 STs, which can contain 
both toxin-producing and non-toxigenic strains; the well-characterized, geneti-
cally tractable toxigenic strain 630 is a member of this clade [9]. Clade 2 harbors 
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epidemic-associated strains found within the ribotype 027 (RT027) lineage. Strains from this ribotype have been associ-
ated with outbreaks in hospitals, particularly in North America, due to their frequent resistance to fluoroquinolones [16–18]. 
These epidemic strains can also cause severe disease symptoms, in part due to their production of three toxins: TcdA, 
TcdB, and CDT (binary toxin) [6]. Although RT027 strains have frequently been associated with “hypervirulence,” there is 
considerable phenotypic diversity within this lineage with respect to virulence, toxin production levels, flagellar motility, and 
sporulation [19–22]. Clade 3 strains are relatively uncommon and harbor a unique cell surface due to their lack of CwpV 
production [23], but phenotypic analyses of biofilm formation and motility suggest that they share similarities with Clade 2 
strains like R20291 [24]. Clade 4 contains RT017 (ST37) strains, which only encode a single toxin, TcdB (i.e., TcdA–CDT–), 
and are often clindamycin- and fluoroquinolone-resistant. RT017 strains have been associated with outbreaks in Europe 
and North America and are the most common strains found in Asia [25]. Clade 5 is the most genetically distant from the 
other 4 main C. difficile clades and is thought to have emerged before Clades 1-4 [26]. While the average nucleotide iden-
tity (ANI) for Clades 1-4 ranges between 97.1 - 99.8%, Clade 5 strains exhibit ANI values around 96%, which is close to 
the ANI value demarcation used by NCBI to define organisms of the same species [10,27]. Thus, Clade 5 strains appear 
to be actively diverging from Clades 1-4 [10].

Clade 5 strains are an increasing problem in healthcare and agricultural settings because they can cause severe dis-
ease in humans and are commonly found in livestock, particularly pigs [12,28]. While other C. difficile strains have been 
known to infect both humans and animals, only Clade 5 strains have been associated with zoonotic transmission from 
both animal-to-human and human-to-animal [28,29]. The mechanisms underlying this bidirectional zoonotic transmission 
are poorly understood, but the increased carriage of antimicrobial resistance genes by Clade 5 strains may contribute to 
their ability to persist in agricultural and community settings [28,30]. Thus, Clade 5 strains are of particular relevance from 
a One Health perspective [12,31], especially since they frequently cause community-acquired infections [30] and are often 
detected in retail foods [32]. These observations highlight the importance of understanding the unique properties of this 
group of strains. Indeed, a recent genomic analysis suggests that RT078/ST11 strains within Clade 5 frequently carry zinc 
acquisition and homeostasis genes [11].

Despite numerous genomic analyses revealing the remarkable genetic diversity of C. difficile strains, relatively few stud-
ies have investigated the phenotypic diversity between strains from different clades. Clade-specific differences in colony 
morphology between Clade 5 strains relative to Clade 1-4 strains have been described in a limited set of analyses [26,33], 
suggesting that differences in growth and/or cellular morphology may exist within clades. While differences in bulk growth 
rates between C. difficile strains have been reported [34], most phenotypic analyses have been conducted on a limited 
subset of strains within a given clade. Furthermore, systematic comparisons of the growth properties of different clades 
have only recently been described [35], while comparisons of their cell morphology have not been performed to date.

Here, we compare the growth properties of multiple strains derived from all five phylogenetic clades of C. difficile using 
anaerobic time-lapse microscopy. These analyses unexpectedly reveal striking differences in the growth and cell morphol-
ogy of the Clade 5 lineage relative to strains from Clades 1-4. Specifically, we found that Clade 5 strains grow faster and 
frequently form long chains, in contrast with Clades 1-4 strains. Our genomic comparisons and genetic analyses indicate 
that the chaining phenotype of Clade 5 strains is driven by the phase-variable expression of the cmrRST operon by the 
invertible cmr switch [33], although Clade 5 strains with a strong cmr-ON bias mostly reverted to a cmr-OFF phenotype 
during murine infection. Taken together, our data reveal that Clade 5 strains have unique growth properties relative to 
Clade 1-4 strains that may contribute to the widespread distribution of Clade 5 strain among diverse animal hosts.

Results

Development of a simple method for time-lapse imaging under anaerobic conditions

Time-lapse imaging of single cells has been widely used to study phenotypic heterogeneity in bacteria, which can impact 
important traits like antibiotic resistance and virulence [33,36–39]. However, live single-cell analyses in C. difficile have 
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been complicated by its inability to grow in the presence of atmospheric oxygen [40]. While time-lapse microscopy analy-
ses of C. difficile have previously been reported, they require custom growth chambers to maintain anaerobic conditions 
[41], which may limit the accessibility of these experimental systems.

To overcome these limitations, we established a simple system that relies solely upon commercially available reagents 
and materials to grow C. difficile cells under anaerobic conditions. This system uses gas-tight, adhesive Gene Frames, 
which have been used extensively in imaging applications for bacteria [42]. Notably, the gas-impermeability of these com-
mercial seals allows anaerobic conditions to be maintained when agarose pads made with growth media are prepared in 
the anaerobic chamber (Fig 1). Gene Frames also generate thick agarose pads, which are critical for C. difficile to grow in 
a sealed system under ambient conditions. After agarose pads are prepared in the anaerobic chamber, C. difficile cultures 
are inoculated onto the pads, and the pads are sealed with a coverslip. The growth chamber is then removed from the 
chamber and imaged on a heated microscope stage under ambient conditions for up to 6 hours or until C. difficile stops 
growing as a monolayer.

Time-lapse microscopy reveals clade-specific differences in elongation rate and cell length

Having established an anaerobic time-lapse imaging setup, we compared the single-cell growth properties of represen-
tative C. difficile strains from Clade 1 (630, ribotype (RT) 012), Clade 2 (R20291, RT027), Clade 3 (E15, RT075), Clade 
4 (M68, RT017), and Clade 5 (M120, RT078) (Fig 2, Table 1). The five “representative” strains were all isolated from 
patients with C. difficile-associated disease and are frequently used as reference genomes for their clades and ribotype 
groups. Notably, RT027 (ST1), RT017 (ST45), and RT078 (ST11) strains are from ribotypes/ multi-locus sequencing types 
frequently isolated from patients with C. difficile infection (CDI) [12,16,19,25]. In contrast, Clade 3 strains are rarer and the 
least characterized of C. difficile strains [23].

The growth properties of single cells visualized by time-lapse microscopy were quantified using Deep Learning for 
Time-lapse Analysis (DeLTA) software, which rapidly and accurately segments and tracks bacteria growing in two dimen-
sions on agarose pads [43,44]. This software uses deep convolutional neural networks to analyze time-lapse microscopy 
images, allowing the growth properties of individual cells growing in microcolonies on agarose pads to be determined. The 
segmentation and tracking of C. difficile cells were highly accurate (Fig 1), and minimal user input or post-image process-
ing was needed to obtain growth property measurements.

Robust growth for all strains was observed using our system. Growth was quantified by measuring the elongation rate, 
which was defined as doublings/hr to indicate the number of times that a cell’s length doubles in one hour. The elongation 
rate (doublings/hr) is distinct from the doubling time, or generation time, which represents the length of time that it takes 
before a bacterium divides. Instead, the elongation rate reflects how fast the cell is increasing in length over time. Nota-
bly, the Clade 5 strain M120 elongated the fastest (2.1 doublings/hr, p < 0.05), followed by Clade 3 E15 (2.0 doublings/hr) 
and Clade 2 strain R20291 (1.8 doublings/hr), and then Clade 1 strain 630 and Clade 4 strain M68 (1.6-1.7 doublings/hr) 
(Fig 2A).

Importantly, the differences in single-cell elongation rates measured for the five strains were also observed in bulk 
population analyses of their growth using optical density in TYC and BHIS media (Figs 2B and S1). These analyses 
confirmed that the Clade 5 strain M120 grows faster (based on optical density-based analyses) in these media than 
the Clade 1-4 strains (p < 0.001). In contrast, negligible differences in bulk growth rates were observed between Clade 
1-4 strains in BHIS media, although, in TYC medium, the Clade 3 strain grew faster than Clades 1, 2, and 4 strains 
(Figs 2B and S1).

The Clade 5 strain M120 exhibited another distinct growth property from the Clade 1-4 strains. While strains from 
Clades 1-4 produced cells of similar length prior to cell division, with an average apparent length of ~13 µm, cells of Clade 
5 strain M120 were significantly longer, with an average apparent length of ~22 µm. Indeed, cells ~50 µm were readily 
observed for the Clade 5 strain M120 (Fig 2C), and these cells appeared to bend readily (Fig 2D). By incorporating the 
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FM4-64 membrane stain into the agarose pads to visualize division septa [45], we assessed whether the Clade 5 strain 
M120 forms chains vs. filaments, These analyses revealed that septa were readily observed in Clade 5 strain M120 
across the length of a given cell (Fig 3, inset), Since the spacing between division septa was relatively consistent, the 
Clade 5 strain M120 appears to undergo cell separation less efficiently than strains from the other clades tested. Indeed, 
cell separation was so inefficient that it was often necessary to stitch together several fields of view to fully visualize M120 
chains, which approached several hundred microns and even up to ~1 mm in length (Fig 3).

Fig 1. Schematic of the anaerobic single-cell imaging set-up. Exponentially growing C. difficile cells in TY medium supplemented with cysteine 
(TYC) are spotted onto 1.5% agarose pads formed within gas-tight adhesive Gene Frames inside the anaerobic chamber. Up to 6 strains can be spotted 
onto a pad. The pad is sealed with a coverslip, and the imaging chamber is removed from the anaerobic chamber and transferred to a heated (37˚C) 
microscope stage. Time-lapse microscopy is used to visualize the growth of individual bacterial cells for 2-6 hrs. The output data is segmented and 
tracked with the DeLTA Python package (191). An example filmstrip of strain 630 grown on TYC medium over time is shown (Bottom).

https://doi.org/10.1371/journal.ppat.1013155.g001

https://doi.org/10.1371/journal.ppat.1013155.g001
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Clade 5 clinical isolates typically form long chains and grow more quickly than strains from other clades

Since prior work indicated that Clade 5 strains produce colony morphologies distinct from Clade 1, 2, and 4 strains [26], 
we sought to determine whether the striking cell chaining phenotype and faster growth rate observed in Clade 5 strain 
M120 were properties shared by other Clade 5 strains. Thus, we compared the single-cell growth properties of five addi-
tional Clade 5 clinical isolates obtained from several hospitals around the country on TYC agarose (Table 1) using time-
lapse microscopy analyses (Fig 2). Clade 1 strain 630 was included as a control since it does not form chains in any of 
the conditions we have tested.

These analyses revealed that all but one of the Clade 5 strains tested formed long chains, with TAL29600 forming the 
longest chains (29 µm on average, Fig 4A-4C). In contrast, strain TAL29996 formed shorter chains that were comparable 
in length to those observed for strains from Clades 1-4 (12-13 µm, Figs 2C and 4C). Notably, DeLTA segmented many 

Fig 2. Clade 5 strain M120 elongates more quickly and exhibits cell chaining. (A) Violin plot of the elongation rates measured during time-lapse 
microscopy analyses of strains 630 (Clade 1), R20291 (Clade 2), E15 (Clade 3), M68 (Clade 4), and M120 (Clade 5) grown on TY supplemented with 
cysteine (TYC) agar. Data are from three biological replicates, with the mean of each replicate shown as a point on the violin. (B) Optical density-based 
analyses of bulk population growth of the indicated strains in TYC or BHIS media. The number in brackets indicates the clade to which a given strain 
belongs. (C) Violin plot of the cell or chain length measured during time-lapse microscopy for the strains shown in A. Each replicate mean is shown as a 
point on the violin. Statistical significance for A and B was determined by comparing the mean of the three replicates of strains from Clades 1-4 strains 
relative to the Clade 5 M120 strain using a Kruskal-Wallis test * p < 0.05. (B) Phase-contrast image from time-lapse microscopy movies. Scale bar is  
10 μm.

https://doi.org/10.1371/journal.ppat.1013155.g002

https://doi.org/10.1371/journal.ppat.1013155.g002
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Clade 5 chains as single cells because cell separation (i.e., invagination) had not yet initiated at division septa visualized 
via FM4-64 staining. To overcome this limitation and accurately quantify cell length within long chains, namely the distance 
between division septa, we modified our image processing pipeline to use a thresholding method to detect division septa. 
After generating masks in DeLTA to segment the chains, we modified the mask so that only the interior of the contour 

Table 1. Clostridioides difficile clinical isolates used in this study.

Strain Name Clade Ribotype ST group Source Reference

630 1 012 2 Zurich, 1982 (Sanger Institute) [87]

BBL2 1 012 2 Memorial Sloan Kettering [20]

WU38 1 012 2 Barnes-Jewish Hospital [20]

190B 1 087 46 Memorial Sloan Kettering [20]

R20291 2 027 1 London, 2006 (Sanger Institute) [88]

Wup14 2 027 1 Barnes-Jewish Hospital [20]

BBL4 2 027 1 Memorial Sloan Kettering [20]

186A 2 027 1 Memorial Sloan Kettering [20]

E15 3 075 unknown France (Bruno Dupuy/ Lynn Bry) [89,90]

BI1 3 unknown unknown Bruno Dupuy/ Lynn Bry This study

95-978 3 unknown unknown Bruno Dupuy/ Lynn Bry This study

M68 4 017 81 Dublin, 2006 (Sanger Institute) [53]

1002 4 unknown 39 Memorial Sloan Kettering [20]

M120 5 078 11 UK, 2007 (Sanger Institute) [53]

TAL28131 5 078 11 NY Presbyterian/Weill Cornell Medical Center [91]

TAL29600 5 078 11 RM Alden Research Lab [91]

TAL29996 5 078 11 Vines VA Hospital [91]

TAL30550 5 078 11 Mayo Clinic [91]

TAL30574 5 078 11 Tufts Medical Center [91]

V48 5 078 11 Brigham & Women’s Hospital This study

139b 5 078 11 Memorial Sloan Kettering [20]

WU66 5 078 11 Barnes-Jewish Hospital [20]

Memorial Sloan Kettering Cancer Center (MSK), Barnes-Jewish Hospital (BJH).

https://doi.org/10.1371/journal.ppat.1013155.t001

Fig 3. C. difficile Clade 5 can form large heterogenous chains.  Large mosaic phase-contrast image of the Clade 5 strain M120. Inset shows chains 
revealed by staining with the membrane dye FM4-64; septa are highlighted with yellow arrows. The image was stitched from 8 individual fields of view at 
63X magnification. Scale bar is 100 μm.

https://doi.org/10.1371/journal.ppat.1013155.g003

https://doi.org/10.1371/journal.ppat.1013155.t001
https://doi.org/10.1371/journal.ppat.1013155.g003
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was analyzed. We then applied an adaptive thresholding method to identify division septa based on their elevated fluo-
rescence relative to the long axis of the cell; the thresholds were defined using a Gaussian-weighted method (Fig 4A, red 
dots, 4B). Septa detected with this automated method were also manually inspected. Our analyses revealed that the aver-
age length of cells within the chains of cells made by Clade 5 strains is only slightly longer than the average length of cells 
made by strains that do not form chains, namely Clade 1 strain 630 and Clade 5 strain TAL29996 (Fig 4C, Table 2). For 
example, the Clade 5 strains that produced the longest chains (TAL29600 and TAL30550) had average cell lengths of 14 
and 12 µm, respectively, which is only 30-50% longer than the non-chaining strains 630 (Clade 1, 8.5 µm) and TAL29996 
(Clade 5, 9.4 µm) (Table 2). Notably, even though the Clade 5 strain TAL29996 did not form chains, it still exhibited faster 
elongation rates, which were similar to those measured for other Clade 5 strains (2.1 doublings/hr vs. 1.7 doublings/hr for 
Clade 1 strain 630, Fig 4D).

Importantly, the additional Clade 5 strains tested also grew faster in bulk optical density-based analyses in broth culture 
than Clade 1-4 strains, irrespective of their ability to form chains (S2 Fig). To assess whether these findings would extend 

Fig 4. Faster growth is a common feature of Clade 5 strains, but the chaining phenotype is not fully penetrant in Clade 5 strains. (A) 
Phase-contrast microscopy images from time-lapse microscopy studies of Clade 5 strains; Clade 1 strain 630 is included for comparison. Fluorescence 
microscopy was used to visualize the FM4-64 stain incorporated into the agarose pads. Masks generated using DeLTA are shown, with the bottom panel 
showing division septa identified with our adaptive thresholding approach (red dots). (B) Example image showing the parameters identified using DeLTA 
combined with our adaptive threshold method for detecting division septa (red dot) within a chain of cells. Following the automated thresholding analysis 
for detecting septa, the images were manually inspected to ensure that all septa were properly identified. (C) Cell or chain length measured using 
automated DeLTA analyses (pink violin plot) or DeLTA combined with the adaptive threshold-manual inspection analyses (purple violin plot). The former 
method is more likely to measure chain length, while the latter method accurately measures cell length. (D) Violin plot of the elongation rates measured 
based on three biological replicates. Each replicate mean is shown as a point on the violin; statistical significance was determined by comparing the 
mean of the three replicates using a Kruskal-Wallis test, * p < 0.05.

https://doi.org/10.1371/journal.ppat.1013155.g004

https://doi.org/10.1371/journal.ppat.1013155.g004
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to additional Clade 5 strains vs. Clade 1-4 strains, we analyzed the growth of additional strains from all five clades in broth 
culture. These analyses confirmed that Clade 1-4 strains grow at similar rates in BHIS media, which are slower than those 
observed for the nine Clade 5 strains analyzed in this media (S2 Fig). However, Clade 3 strains grew relatively faster than 
the Clade 1 630 strain in TYC medium, but their growth was still slower than the Clade 5 strain M120 (S2 Fig). Taken 
together, these analyses strongly suggest that Clade 5 strains grow faster than Clade 1-4 strains and are more likely to 
form chains, presumably because their cell separation mechanisms are less efficient.

Cell chaining in Clade 5 strains is not dependent on growth on a solid medium

C. difficile has previously been shown to promote cell elongation and chain formation upon induction of the cmrRST locus 
[33], which encodes a non-canonical signal transduction system. Expression of this locus is also responsive to c-di-GMP 
levels [46], which increases in cells grown on solid surfaces such as in a biofilm or on an agar plate [46]. To test whether 
the chaining phenotype observed in Clade 5 strains is induced by growth on a surface, we assessed the chaining prop-
erties of Clade 5 strains during logarithmic growth in rich medium broth culture using the fluorescent D-amino acid label, 
HADA, to stain septa. These analyses revealed that Clade 5 strains still form chains during broth culture growth, although 
the chains are not as long as those observed during growth on the agarose pads (Figs 5 and S3).

Since Clade 5 strains grow rapidly in rich media, we considered the possibility that the chaining phenotype might be 
mitigated by allowing more time for cell separation to occur after cell division. To test this possibility, we grew Clade 5 
strains in CDDM minimal medium and analyzed their chaining properties [47]. While Clade 5 strains grew slower in CDDM 
medium relative to richer media (compare S4A to  S2 Figs), the Clade 5 strains nevertheless formed chains in minimal 
medium (S4B Fig), with the exception of strain TAL29996. Taken together, our results reveal that Clade 5 strains undergo 
cell separation less efficiently in a range of growth conditions relative to strains from other clades.

Cell length does not correlate with the propensity to sporulate

We next wondered whether the propensity to form chains impacts the ability of Clade 5 strains to sporulate. Analyses in 
Bacillus subtilis suggest that smaller cells, such as those formed during stationary phase growth [48], are more likely to 
sporulate presumably because they concentrate the phosphorelay proteins that induce sporulation [49,50]. For example, 
a decrease in cell length in B. subtilis helps the kinase KinA reach the threshold concentration needed to trigger sporu-
lation initiation. Although C. difficile lacks homologs of KinA and other components of the phosphorelay system [51], the 

Table 2.  Cell size and growth rate statistics for the studied strains.

Strain Name Clade Mean Growth rate Mean Cell
Length (um)

Mean Chain
Length (um)

630 1 1.63 ± 0.02 8.5 ± 2.2 12.5 ± 3.5

R20291 2 1.88 ± 0.01 not measured 11.7 ± 3.2

E15 3 1.92 ± 0.01 not measured 13.6 ± 4.2

M68 4 1.64 ± 0.01 not measured 13.7 ± 4.3

M120 5 2.15 ± 0.01 not measured 21.8 ± 10.2

TAL29996 5 2.15 ± 0.02 9.4 ± 2.7 13.7 ± 3.9

TAL28131 5 2.17 ± 0.02 11.2 ± 3.3 19.7 ± 6.9

V48 5 2.10 ± 0.02 10.8 ± 3.7 19.4 ± 8.5

TAL30550 5 2.05 ± 0.04 11.8 ± .3.3 27.3 ± 9.8

TAL29600 5 2.11 ± 0.02 14.0 ± 4.4 29.1 ± 13.1

The ± interval represents the 95% confidence interval of the mean growth rate. The standard deviation (S.D) is provided.

https://doi.org/10.1371/journal.ppat.1013155.t002

https://doi.org/10.1371/journal.ppat.1013155.t002
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longer cells generated by Clade 5 strains may be less likely to induce sporulation due to dilution of a currently unknown 
sporulation regulator. To test this hypothesis, we analyzed the propensity of Clade 5 strains to form spores when plated 
on 70:30 sporulation medium using phase-contrast microscopy and heat resistance assays. These analyses revealed 
that Clade 5 strains exhibit striking differences in sporulation frequency, with some strains exhibiting close to 100% 
sporulation levels, and others exhibiting levels closer to 20% (Figs 6 and S5). Interestingly, strain TAL29600 exhibited 
extremely low levels of sporulation (0.003%), and it continued to form chains during growth on 70:30 medium. In con-
trast, the other Clade 5 strains analyzed did not form long chains when grown on 70:30 sporulation medium, and the 
spores produced by these isolates exhibited similar lengths and proportions relative to the Clade 1 strain 630 (S6 Fig). 
These data suggest that Clade 5 strains alter their cell length and propensity to form chains depending on the growth 
conditions encountered.

Consistent with this hypothesis, even though strain M120 forms long chains during growth in or on rich medium  
(Figs 3 and S3), it readily formed spores during growth on 70:30 medium (~100% sporulation frequency, S5 Fig). Nota-
bly, the average cell length for visibly sporulating Clade 5 cells was ~5-6 µm (S8 Fig) compared to the average ~11 µm 
cell length measured for the Clade 5 strains in rich broth culture. This reduced cell length was observed even for Clade 5 
strain TAL29600 (S8 Fig), which sporulates poorly on 70:30 medium, indicating that there was little correlation between 
cell length and propensity to sporulate for the Clade 5 strains analyzed.

Comparative genomics reveals that the chaining phenotype of Clade 5 strains is driven by cmrRST operon 
expression

Given the phenotypic difference in chaining observed for the TAL29996 strain relative to the 8 other Clade 5 strains ana-
lyzed, we sought to gain insight into the mechanism driving this difference by comparing the genomes of five of the Clade 
5 strains, including TAL29996. These analyses revealed that the average nucleotide identity (ANI) for orthologous genes 
ranged between 99.83-99.99% (S1 Table) and that the pan-genome between the five strains is 12%. Thus, all five strains 
are quite closely related. The pan-genome analysis revealed that, relative to the other four strains, TAL29996 is missing 
one duplication of blaR1, which encodes an integral membrane protein that senses beta-lactams, and a gene region 
predicted to be involved in nicotinate metabolism. To identify SNPs that might distinguish TAL29996 from the other strains, 
we used breseq [52]; the Clade 5 strain M120 genome sequence was used as the reference genome because it is the 
Clade 5 strain traditionally characterized [34,53]. These analyses identified 10 SNPs that were unique to TAL29996, but 
none were obviously involved in regulating cell separation or peptidoglycan synthesis (S2 Table).

Fig 5. Clade 5 strains form chains during logarithmic growth in broth culture. Representative micrographs showing phase-contrast (top) and pep-
tidoglycan labeling with the fluorescent D-amino acid, HADA, (bottom) following growth in rich broth (BHIS) to mid-logarithmic phase. All strains shown, 
with the exception of Clade 1 strain 630, are Clade 5 strains. Scale bar, 10 µm. Data are representative of three independent experiments. ADJ indicates 
that the brightness of the image was enhanced to detect HADA labeling in V48.

https://doi.org/10.1371/journal.ppat.1013155.g005

https://doi.org/10.1371/journal.ppat.1013155.g005
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We next took a candidate approach to gain insight into why TAL29996 mediates cell separation more efficiently than 
the other Clade 5 strains by analyzing the orientation of the cmr switch, also known as the Cdi6 DNA invertible element 
[33,54]. This phase-variable element affects the expression of the adjacent cmrRST operon, which encodes a non- 
canonical CmrRST signal transduction system that regulates cell chaining and colony morphology [33,46,54]. Cells from 
rough colonies form chains and are highly biased to the ON orientation of the cmr switch, whereas cells from smooth 
colonies do not form chains and are highly biased to the OFF orientation [33]. Although the sequence of the cmr switch is 
identical between the Clade 5 strains analyzed, including strain TAL29996, we found that the orientation of the cmr switch 
during growth in broth culture was markedly different for Clade 5 strain TAL29996. Specifically, qPCR analyses revealed 
that Clade 5 strains that form chains are biased towards the cmr-ON orientation (between 70–96% ON) (Fig 7A), whereas 
the cmr-ON orientation was markedly less frequent in the non-chaining strain TAL29996 (~20%, Fig 7).

Since these analyses correlated the cmr-ON switch orientation to the chaining phenotype of Clade 5 strains, we tested 
whether knocking down the expression of the cmrRST operon using CRISPRi in strains biased towards the cmr-ON state 
would reduce their chaining properties. A plasmid targeting the cmrR gene using CRISPRi was introduced into the Clade 5 
strains TAL28131, TAL30550, and TAL30574, which typically produce chains and are found predominantly in the cmr-ON 
state in rich broth culture (70–96%). Knocking down the expression of the cmrRST operon in all three strain backgrounds 
reduced their chaining phenotypes under these conditions (Figs 7B and S8), indicating that the expression of the cmrRST 
operon in Clade 5 strains drives their propensity to form chains.

Surface motility in Clade 5 strains relative to strains of other clades

Since the cmr-ON state has also been correlated with increased surface motility [33], we analyzed the surface motility 
of our Clade 5 strains. Consistent with prior reports [33], the primarily cmr-ON state strains exhibited greater and more 
uniform surface motility (Fig 7C), whereas the predominantly cmr-OFF state TAL29996 strain exhibited less and more 
asymmetric surface motility, with fractal-like extensions emerging from only a few sites. This asymmetric phenotype has 
previously been reported for the Clade 2 strain R20291, whose cmr switch is predominantly in the OFF position in liquid 
cultures but converts to the ON orientation during growth on plates [33]. These observations suggest that, even though 
TAL29996 is biased to the cmr-OFF orientation during broth culture growth, a subset of TAL29996 cells switch to the 
cmr-ON orientation during growth on BHIS agar, leading to the asymmetric spreading phenotype.

We next assessed whether additional Clade 1–4 strains exhibit surface motility. These analyses revealed that asym-
metric motility was more frequently observed in Clade 2 strains, although Clade 2 strain Wup14 exhibited little surface 
motility (S9 Fig). Clade 1 strains exhibited a range of surface motility, from high surface motility with strain 630 to lower 

Fig 6. Sporulation levels in Clade 5 isolates grown on 70:30 medium. Phase-contrast microscopy of the indicated strains ~24 hrs after sporulation 
induction. All strains shown with the exception of 630 (Clade 1) are Clade 5 strains. The percent heat-resistant spores is indicated below the respective 
images. The percentage was determined from 20-24 hr sporulating cultures and represent the mean and standard deviation for a given strain based on a 
minimum of three biological replicates. Statistical significance relative to strain 630 was determined using a one-way ANOVA and Tukey’s test. The scale 
bar represents 5 µm.

https://doi.org/10.1371/journal.ppat.1013155.g006

https://doi.org/10.1371/journal.ppat.1013155.g006
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surface motility with strain WU38 (S9 Fig). While the data suggest that cmr switching in Clade 2 strains varies between 
strains during growth on agar medium, Clade 5 strains biased towards the cmr-ON state are more likely to exhibit sur-
face motility. However, it is important to note that additional factors contribute to surface motility beyond expression of the 
cmrRST operon [33], since loss of pili can also decrease surface motility on plates [55]. Regardless, the data imply that 
the cmr-ON state promotes surface motility in Clade 5 strains.

Colonization and virulence properties of Clade 5 strains

Beyond the effects of the CmrRST system on cell chaining and surface motility, this system has also been shown to 
impact the virulence of the Clade 2 strain, R20291, in a hamster model of infection, with loss of cmrR reducing R20291’s 
ability to cause disease and the cmr-OFF orientation correlating with less severe disease in hamsters [33]. Since chaining 
in Bacillus anthracis strains promotes virulence [56], while chaining in Enterococcus faecalis promotes colonization [57], 
we compared the ability of Clade 5 strains to colonize mice and cause disease. Mice were infected with 105 spores of sev-
eral Clade 5 strains and the Clade 1 strain 630, and the weight loss induced by these strains, their colonization levels, and 
orientation of the cmr switch over the course of the 14-day infection were assessed. For this latter analysis, we focused on 
strains TAL29600 and TAL29996 because they exhibited the highest and lowest cmr-ON orientations, respectively, during 
growth in rich media (Fig 7A).

Fig 7. The orientation of the cmr switch promotes Clade 5 strain cell chaining and surface motility. (A) Orientation-specific qPCR for detecting 
the orientation of the cmr switch in the indicated strains. The mean and standard deviation based on one to three biological replicates are shown. Sta-
tistical significance relative to strain TAL29996 was determined using a one-way ANOVA and Tukey’s test for strains where data from three independent 
experiments was obtained. **** p < 0.0001. (B) Representative micrographs of cmrRST CRISPRi knock-down strains compared to a no target control. 
Phase-contrast (top) and peptidoglycan labeling with the fluorescent D-amino acid, HADA, (bottom) images following growth in rich broth (BHIS) to 
mid-logarithmic phase. Scale bar, 5 µm. (C) Representative images of surface motility 5 days after exponentially growing liquid cultures of the indicated 
strains were spotted onto BHIS agar plates.

https://doi.org/10.1371/journal.ppat.1013155.g007

https://doi.org/10.1371/journal.ppat.1013155.g007
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All Clade 5 strains tested colonized to relatively similar levels throughout the 14 days of the infection. Strain 630 also 
colonized mice to similar levels in the first two days of infection and then maintained colonization, albeit at 1–2 logs 
lower than the Clade 5 strains (Fig 8A). Interestingly, only the Clade 5 strain TAL29600 caused significant weight loss 
relative to the other strains on Days 2 through 4, although the Clade 1 strain 630 caused some weight loss on Day 3 
(Fig 8B). This latter phenotype is consistent with prior reports of strain 630 causing only mild disease symptoms in the 
cefoperazone model of murine infection [58,59]. Analyses of the cmr orientation revealed that the cmr-OFF orientation 
appeared to be selected for over the course of the infection. While the TAL29600 spore inoculum started off with ~30% 
cmr-ON frequency, the frequency of TAL29600 cells detected in the cmr-ON orientation decreased rapidly to < 5% 
cmr-ON by 24 hrs post-inoculation (Fig 8C). As the infection progressed, two of the 8 mice tested exhibited an increase 
in TAL29600 cells with the cmr-ON orientation (6–30% cmr-ON) (S10 Fig). Conversely, the TAL29996 strain retained 
the ~ 1% cmr-ON frequency of the inoculum for the greater part of the 14-day infection (Fig 8C). Taken together, these 
analyses reveal that Clade 5 RT078 strains efficiently colonize mice but vary in their ability to cause disease. Further-
more, the ability of the Clade 5 strains to colonize or cause disease did not strongly correlate with their ability to form 
chains in broth culture.

Fig 8. Infection and colonization dynamics of Clade 5 strains in mice. (A) Fecal colony-forming units measured by selective plating and (B) Per-
centage of weight loss to baseline of infected mice on Days 1-4, 7, and 14. The mean and standard deviation are shown based on the results of two 
experiments consisting of four mice each (n = 8). (C) Percentage of cmr-ON switch orientation measured in fecal pellets on the indicated days by qPCR. 
For the strain TAL29996 inoculum, 1% of the spores had the cmr-ON switch orientation, while the TAL29600 inoculum consisted of 32% cmr-ON spores. 
The mean and standard deviation based on analyses of eight mice are shown, although fecal pellets could not be collected from some of the mice on 
Day 2. The same mouse exhibited a higher cmr-ON frequency for TAL29600 over time (15%, Day 7 and 27%, Day 14).

https://doi.org/10.1371/journal.ppat.1013155.g008

https://doi.org/10.1371/journal.ppat.1013155.g008
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Discussion

While Clade 5 strains are genetically distinct [10,26] and more prevalent in animals than Clade 1-4 strains [12,29,30], the 
phenotypes that distinguish Clade 5 strains from Clade 1-4 strains are not well understood. By phenotypically character-
izing C. difficile strains from multiple clades using time-lapse microscopy, we discovered that Clade 5 strains have distinct 
growth properties from Clade 1-4 strains. Specifically, Clade 5 strains elongate more quickly (Figs 2, 4, S1) and form long 
chains more readily than strains from Clades 1-4, irrespective of media type or growth on a surface (Figs 2, 4, S2, and 
S4). In contrast, long chains were not observed in any of the Clade 1-4 strains, regardless of whether the cells were grown 
on agarose pads or in broth culture. Thus, Clade 5 strains undergo cell separation far less efficiently than strains from 
other clades during growth in rich media. While our analyses of Clade 5 strains were largely limited to the RT078 ribotype, 
we note that a prior report described an RT126 strain isolated from a patient experiencing multiple recurrences that also 
formed long chains [60]. Since the RT126 ribotype is closely related to the RT078 ribotype [12], it is likely that the chaining 
phenotype will be observed in other Clade 5 ribotypes.

Our data indicate that the chaining phenotype of Clade 5 strains relates to their propensity to express the cmrRST 
operon [33,46] because they favor the cmr-ON state (Fig 7). The non-chaining TAL29996 strain has a low cmr-ON ori-
entation frequency (20%), whereas the 8 other Clade 5 strains have a strong bias for the cmr-ON orientation (~70-96%, 
Fig 7). The chaining phenotype of Clade 5 strains biased to the cmr-ON state was enhanced during growth on a solid 
surface compared to broth culture (Figs 4, 5), consistent with prior analyses of the Clade 2 strain R20291, which exhibits 
greater cmrRST expression during growth on agar plates due to elevated c-di-GMP levels [46]. In addition, Clade 5 strains 
exhibit high levels of surface motility on agar plates, which is a cmrRST-induced phenotype in strain R20291 [33]. Finally, 
 knocking-down the expression of the cmrRST operon in three Clade 5 strains biased to the cmr-ON state reduced their 
propensity to form chains (Figs 7 and S8).

These findings lead to the question of what benefit cmrRST expression might confer to Clade 5 strains. In the Clade 2 
R20291 strain, cmrRST expression is negatively correlated with flagellar motility, and growth conditions that favor flagellar 
motility select against the cmr-ON state [33]. Since Clade 5 strains lack flagellar motility [12], it is tempting to hypothesize 
that they are “primed” to form chains as a method to promote motility. Analyzing the regulation of c-di-GMP in different 
growth conditions in Clade 5 strains, particularly for TAL29996 relative to the other strains, will likely provide insight into 
the mechanisms that drive cmrRST expression, chaining, and surface motility in Clade 5 strains and the importance of 
these properties to these strains.

While the propensity of Clade 5 strains to form chains in a cmrRST-dependent manner might be expected to pro-
mote colonization or disease in mice based on studies of other Gram-positive pathogens [56,57], we found that the 
frequency of cmr-ON cells decreases during the first 4 days of infection for strain TAL29600 (Fig 8). This suggests 
that there may be a selection against cmr-ON cells during the initial stages of murine colonization. Consistent with 
this hypothesis, a decrease in the cmr-ON orientation was observed for the Clade 2 strain R20291 during infection 
of hamsters [33]. However, since the frequency of cmr-ON TAL29600 cells increased in some mice at later stages of 
colonization (Fig 8), our data imply that the invertibility of the cmrRST switch region may promote C. difficile’s ability 
to adapt to different growth conditions. While it is possible that high levels of c-di-GMP induce the expression of the 
cmrRST operon expression during murine infection [46], assessing whether Clade 5 strains form long chains during 
murine infection, for example, using fluorescence in situ hybridization [61,62] or using transcriptional reporters to 
visualize the expression of the cmrRST operon at the single-cell level during infection would provide insight into these 
questions.

Indeed, the avirulence of most Clade 5 strains analyzed during murine infection (Fig 8) was somewhat surprising 
given that all of these strains were isolated from human patients experiencing CDI-related disease symptoms (Table 1). 
To our knowledge, very few Clade 5 strains have been analyzed during murine infection, with one study observing minor 
disease symptoms in mice for two Clade 5 strains three days post-infection, despite one of the strains causing severe 
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disease in humans [20]. Interestingly, RT078 Clade 5 strains frequently cause asymptomatic infections in agricultural 
animals [32,63] and mice may be important vectors of transmission in these settings [64,65]. Thus, it is possible that 
Clade 5 strains are adapted for colonization rather than virulence in non-human systems. Consistent with this hypothe-
sis, we found that the Clade 5 strains persist at high levels in the murine gut over time compared to the Clade 1 strain 
630 (Fig 8, p < 0.005). Identifying factors that allow Clade 5 strains to grow more quickly would provide insight into 
whether their faster growth rate promotes their persistence in mice. It is also possible that increasing the inoculum could 
have allowed for a greater degree of disease severity to be observed and differences in virulence between the strains to 
be detected.

Interestingly, the chain length of Clade 5 strains did not correlate with their propensity to sporulate (Fig 6). The Clade 
5 strains tested varied markedly in their sporulation frequencies, with most strains forming spores at frequencies >30% 
unlike strain TAL29600, which sporulates ~5,000-fold less efficiently than the other Clade 5 strains (Fig 6). While little 
is known about the mechanisms regulating sporulation initiation outside of strains 630 and R20291, analyses of strain 
TAL29600, which sporulates poorly under laboratory conditions (Fig 6), could provide insight into the molecular determi-
nants of sporulation initiation in Clade 5 strains. For example, differences in gene presence or polymorphisms in several 
c-di-GMP-related genes were observed in TAL29600 relative to the other Clade 5 strains (S2 Table), and c-di-GMP has 
been implicated in regulating sporulation initiation events through unknown mechanisms [66,67].

Our time-lapse microscopy analyses further revealed that a delay between cell division and cell separation is 
 common to C. difficile strains, irrespective of their propensity to form long chains, because chains of two cells were 
frequently observed for Clades 1-4 and Clade 5 strain TAL29996 (Figs S3 & 4). Notably, these two-cell chains were typ-
ically segmented by DeLTA as a single cell because cell separation had not initiated, i.e., no invagination was detected 
(Fig 4, red dot). The loose coordination between cell division and cell separation in C. difficile relative to other bacteria 
likely relates to the absence of FtsEX homologs in C. difficile. In diverse bacteria, the FtsEX complex couples septal PG 
synthesis with PG hydrolases that mediate cell separation to result in a fast splitting of recently divided cells [68–71]. 
While it remains unclear whether coordination between cell division and cell separation exists in C. difficile, recent 
work has identified novel factors that control chaining in C. difficile. The CwlA peptidoglycan hydrolase mediates cell 
separation in C. difficile [72], and its export and thus activity is controlled by the Ser/Thr kinase PrkC [72]. The septum- 
localizing MldA or MldB proteins also promote chaining in C. difficile through unknown mechanisms [73], so future work 
could address whether the inefficient cell separation phenotype of Clade 5 strains is due to decreased CwlA export or 
MldA/MldB levels.

Importantly, these insights into the basic physiology of C. difficile were enabled by our development of a facile method 
for conducting time-lapse microscopy under anaerobic conditions. Since the growth chamber set-up involves commer-
cially available GeneFrames and open-source software for conducting automated image analyses of time-lapse micros-
copy data [43,44], the methods described in this manuscript can be applied to many anaerobic systems for studying the 
growth properties of diverse organisms and the impact of different growth conditions and mutant backgrounds on these 
properties. Our anaerobic set-up could be further coupled with recently developed, fluorogen-activated anaerobic imag-
ing tags [74] to facilitate single-cell analyses of gene-specific transcription during anaerobic growth and dynamic protein 
localization studies [75]. Thus, there are many potential applications for the simple methods described here for studying 
the growth of anaerobes over time at the single-cell level.

Materials and methods

Ethics statement

Mouse experiments were performed under the guidance of veterinary staff within the Tufts Comparative Medicine Ser-
vices (TCMS) core. All animal studies were done with prior approval from the Tufts Institutional Animal Care and Use 
Committee (IACUC protocol #B2024-30).
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Bacterial strains and growth conditions

All C. difficile strains were grown on brain heart infusion (BHIS) medium supplemented with 0.5% w/v yeast extract and 
0.1% w/v L-cysteine with taurocholate (TCA; 0.1% w/v; 1.9 mM). Strains were sub-cultured into tryptone yeast extract (TY) 
broth supplemented with 0.1% w/v L-cysteine (TYC medium) prior to inoculation onto the time-lapse microscopy agarose 
pads. All strains were grown at 37°C under anaerobic conditions using a gas mixture of 85% hydrogen, 5% CO2, and 10% 
H2. For time-lapse experiments, 1.5% agarose pads supplemented with TYC medium were used as described above. 
Sporulation analyses were carried out on 70:30 medium (70% BHIS and 30% SMC) for 24h as described previously [76].

Anaerobic time-lapse imaging of C. difficile growth

All imaging was carried out on a Leica DMi8 inverted microscope with a HC plan apochromat 63x 1.4 NA oil immersion 
phase contrast objective. Fluorescent membrane staining experiments were done with a Lumencor Spectra X light source, 
coupled with an XLED-QP quadruple-band dichroic beam-splitter (Leica) (transmission: 415, 470, 570, and 660 nm) along 
with an external emission filter wheel (Leica). FM4-64 was excited using a 470nm LED through a 470/20nm excitation 
filter and emitted light was filtered through a 590/50nm emission filter and captured with a Leica DFC9000GTC sCMOS 
camera. All experiments were carried out at 37°C using a microscope incubation system (Pecon), Leica Adaptive Focus 
Control hardware autofocus, and a high precision stage (Pecon) were used for all imaging experiments.

For time-lapse imaging of C. difficile growth, all bacterial strains were grown in 2 mL liquid TY medium to a turbid 
OD600 > 2-3; after 2 hours of growth, bacteria were diluted 1:100 for Clade 5 strains and all other strains were diluted 
1:50 in fresh media and grown to mid-log phase (OD600 0.4-0.7).

An imaging chamber with a gas-tight seal was constructed using a 125 μL Gene Frame (Thermo Fisher) adhered to a 
glass slide generating a well for growth medium. The slide was then transferred to the anaerobic chamber. In the anaero-
bic chamber, the gene frame was filled with 500 μL 1.5% Top vision low melting point agarose and tryptone yeast extract 
media containing 0.1% w/v L-cysteine to scavenge oxygen and maintain anaerobic conditions. While the agarose was 
molten, a second clean slide was placed over the top and the agar pad was placed on a frozen small freezer block (for 
holding PCR strip tubes) for 10-30 minutes until the agarose-media mixture was solid. For experiments using FM4-64, 
agarose pads were made the same way, with the addition of FM4-64 to a final concentration of 1 μg/mL directly to the 
agarose/media solution prior to making the agar pad.

The agar pad was dried for 5-10 minutes until visible liquid on the surface of the pad was evaporated. 1 μL of mid-log 
cells were spotted on the pad, dried, and a #1.5 coverslip (VWR) was adhered to the Gene Frame. The cells were imaged 
at 37°C until they reached confluency in the field of view. This was anywhere from 2.5 hours for Clade 5 strains to 6 hours 
for Clades 1-4 for all experiments with images taken at 5-minute intervals.

Image analysis, computing hardware, and statistical analysis

All movie frames were trimmed to the point when cells were not overlapping and out of focus regions were cropped. The 
resulting images were analyzed using the Python library DeLTA 2.0 [43,44]. All image and data analyses were done on 
a PC running Windows 10 equipped with an AMD Ryzen 5900HX 8-core CPU, 32GB DDR4 RAM, 2 1TB NVME SSDs, 
and an NVIDIA RTX3080 GPU with 16GB VRAM. Analysis of the output data and data visualizations were done in Python 
using Matplotlib/Seaborn, Pandas, Numpy, Scipy, and the Statannotations library.

Septum detection during live-cell microscopy

The image processing starts with the masks generated using DeLTA. First, we performed erosion on the mask with a disk 
of radius of 1 pixel to avoid effects of membrane fluorescence. The photo was cropped following the eroded mask contour. 
Hence, only the interior of the contour was considered. Pixel values were rescaled such that the minimum pixel value of 
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inner pixels was mapped to 0 and the maximum was mapped to 255. We set a threshold intensity as the pixel value of the 
95% quantile of pixel intensities. The image was slightly blurred by convolution with a Gaussian filter with standard devia-
tion of 2 pixels. The septum corresponds to the contours found after performing an adaptive thresholding based on thresh-
olds defined using a Gaussian-weighted method. This thresholding was performed using the open cv2 library in Python. 
The resultant contours were manually verified from videos generated using the tracking from the outputs from DeLTA. The 
manual validation mainly involved filling in the time points where the algorithm missed a ring that was visible in the video. 
We did not assume the existence of a ring if the algorithm did not detect it in a previous frame.

Cell length estimation

We measured the cell projected area from the DeLTA contours of the images as the pixel amount of the contours. How-
ever, estimating cell length was challenging because some cells were very long and bent. To overcome this problem, we 
selected 30 images of three different cells (from strains 630, TAL3050 and TAL28131) that were straight and had differ-
ent lengths. For these cells, we calculated the cell length as the longest side of the minimum bounding rectangle of the 
contour. From these lengths of straight cells, we also estimated the best cell width as the average of the projected area 
divided by the length. Considering the extreme cell length, the effects of the rounded tips were negligible and the rectan-
gle shape adequately approximated length. We verified that this mean value showed low variability for the three strains. 
Then, we used this width value to estimate the length of all the cells, including the bent ones, by dividing their projected 
area by the width. This way, we obtained a consistent measure of cell length that was independent of bending.

Elongation rate estimation

We tracked cell size over time and identified the division points as the ones where the cell size (projected area) dropped 
by more than 30% compared to the current cell size value. We fitted an exponential function (with base e) of time to the 
data points between two divisions and estimated the elongation rate from the exponent of the best fit. We expressed the 
elongation rate in doublings/hr, which means how many times the cell size doubles in one hour. For example, an elonga-
tion rate of 2 doubling/hr means that the cell size doubles two times in 1 hr, which corresponds to an exponent of 2ln(2) 
1/hr. For the statistics, we only included the elongation rates that had a high quality of fit, with an R2 coefficient greater 
than 0.9.

Bulk growth measurements

Starter cultures were grown until early stationary phase in BHIS (or TYC medium as indicated) then diluted 1:50 into BHIS 
(or TYC medium). For the CDDM growth analyses, starter cultures were prepared in CDDM medium at a relatively high 
density and then back-diluted 1:25 into CDDM. When the cultures (for all three media conditions) reached an OD

600
 of 0.5, 

they were diluted 1:50 into 200 µL of either BHIS, TYC, or CDDM in a flat 96 well polystyrene plate (CellTreat). The OD
600

 
was analyzed every 15 min for 24 hrs in a BioTek Epoch plate reader with shaking. Bulk growth measurements are based 
on a minimum of three independent replicates across a minimum of 2 experiments. The growth rate was calculated from 
the linear range of the growth curves, between 105 min to 180 min of growth.

Cell wall labeling

HADA (Tocris Bioscience) was added to exponentially growing cell culture to a final concentration of 50–100 µM and 
incubated for ~2 mins before cell fixation. Cells were fixed as previously described [77]. Briefly, 500 µL of cell suspension 
was added to 120 μL of a 5X fixation solution containing paraformaldehyde and NaPO

4
 buffer. Samples were mixed and 

incubated in the dark for 30 min at room temperature, followed by 30 min on ice. Fixed cells were washed three times in 
phosphate-buffered saline (PBS) and resuspended in ~50 µL of PBS. Cells were imaged within 72 hours after fixation.
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Sporulation assays

Starter cultures were grown until early stationary phase in BHIS then diluted 1:50 into BHIS. When the cultures reached 
an OD

600
 between 0.35 and 0.75, 120 µL of the culture was spread onto 70:30 (70% SMC media and 30% BHIS media) 

agar plates (40 ml media per plate) and then incubated for 20–24 hrs before the sporulating cells were scraped from the 
plate into phosphate-buffered saline (PBS). Sporulation levels were visualized by phase-contrast microscopy as previ-
ously described [78].

Heat resistance assay

Heat-resistant spore formation was measured 20–24 hrs after sporulation was induced on 70:30 agar plates as previously 
described [76]. The percent sporulation of given culture represents the ratio of heat-resistant colony-forming units (CFUs) 
to total CFUs. Percent sporulation was determined from a minimum of 3 biological replicates.

Spore purification

Spores were purified as previously described [79] by scraping up sporulating cells incubated on 70:30 medium for 3 days 
into ice-cold H

2
O. The cells were washed several times in ice-water over the course of a day and incubated on ice over-

night. The following morning, the sample was pelleted, and cells were suspended in 1 X DNAse buffer (New England 
Biolabs) and then treated with DNAse (New England Biolabs) for 30 min at 37˚C. The samples were washed one more 
time before being resuspended in 20% Histodenz and then layered onto a 50% Histodenz layer. The resulting mixture was 
pelleted, and the supernatant was aspirated off using a vacuum aspirator. The pelleted spores were washed in ice-cold 
water 2–3 times and the optical density of the purified spores was measured.

Genomic DNA preparation

Starter cultures were grown until early stationary phase in BHIS then back-diluted 1:50 into BHIS and grown until an OD
600

 
of around 0.7-0.8 was reached. 10 mL of the culture was pelleted and then frozen at -80˚C. After thawing the sample, it was 
resuspended in a 25% sucrose TE buffer (10 mM Tris, 1mM EDTA), incubated with 100 mg/mL lysozyme for 37˚C for 1 hr. 
After the cultures tarted to lyse, proteinase K, RNAse A, EDTA, Sarkosyl, and NaCl was added. Phenol:Chloroform:IAA 
(25:24:1) was added to extract proteins, gently mixed, and then the sample was pelleted to separate the phenol and aque-
ous layer. The aqueous layer was then added to Chloroform:IAA (24:1), mixed gently, then centrifuged. The aqueous layer 
was then precipitated using isopropanol and incubated at -20˚C for a minimum of 15 min. The precipitated DNA was pelleted 
and then washed with 70% ethanol. The pellet was air dried and then gently resuspended in 10 mM Tris pH 8.0 elution buffer.

Genomic analyses

Genomic DNA was sequenced by MiGS at the University of Pittsburgh (now SeqCenter) according to their standard pro-
tocol. Libraries were sequenced on an Illumina NextSeq 500 platform to generate paired-end 150 bp reads. Illumina reads 
of RT078 genomes were assembled into contigs using SPAdes (v3.13.0), [80] and genes were called and annotated using 
Prokka (v1.11) [81]. Assembled and annotated contigs of five RT078 strains (TAL28131, TAL29600, TAL29996, TAL30550, 
TAL30574) were applied for pangenomic analysis. Default settings were used based on the Anvi’o workflow for microbial 
pangenomcis with adjustments for minbit as 0.5 and mcl-inflation as 10 [82–84]. For SNPs analyses, reads of five RT078 
genomes were aligned to the reference M120 and variants were called by breseq (v. 0.38.1) by default settings [85,86].

qPCR analyses

Each genomic DNA sample was analyzed by qPCR with primers that amplify the cmr-ON sequence orientation, the cmr-
OFF orientation, or the reference gene rpoA [33]. Each 20-µL qPCR reaction consisted of 100 ng genomic DNA, 100 nM 
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primers, and SensiMix™ SYBR reagents (Bioline). The reactions were run on a LightCycler 96 (Roche Diagnostics), and 
cmr switch orientation frequencies were calculated as described previously [46].

Surface motility assays

Starter cultures were grown until early stationary phase in BHIS then back-diluted 1:50 into BHIS and grown until an OD
600

 
of 0.5 was reached. 10 µL of the exponential-phase cultures were then spotted onto BHIS plates and incubated at 37˚C 
for 5 days after which the plates were scanned using a flatbed scanner.

Mouse infection experiments

Conventional 7-week-old C57BL/6 female mice from Jackson Laboratories were housed in a sterile (autoclaved cage and 
bedding) large cage (24”x17”) with autoclaved water and irradiated food (Teklad 2918) for 10 days to allow for normalization of 
microbiota across mice through coprophagy. After the 10-day normalization period, mice were started on cefoperazone, which 
was added to their water at a concentration of 0.5mg/ml. Mice were allowed to drink the cefoperazone water ad libitum for 10 
days, after which they were placed back on sterile water without antibiotic. After a 2-day period of being on normal sterile water, 
mice were weighed and given a single dose of clindamycin (10mg/kg) via intraperitoneal injection. Immediately after IP injec-
tion, mice were moved to standard-size autoclaved mouse cages (4 mice per cage) with sterile food and water. 24 hours follow-
ing the clindamycin injection, mice were inoculated with 1 x 105 spores of C. difficile (in 1xPBS) via oral gavage using a metal, 
reusable needle. Mice were weighed by being placed in a plastic Nalgene cup on top of a scale. Fecal pellets were collected 
just prior to oral gavage to ensure no prior C. difficile colonization and to note a baseline weight. Following inoculation, mice 
were weighed to monitor % weight change over time on days 1–4, 7, and 14. Fecal pellets were collected in duplicate on the 
same days for C. difficile CFU enumeration and qPCR for detection of cmr switch orientation. On day 14, a terminal weight was 
taken, and a fecal pellet was collected, followed by sacrifice via CO

2
 inhalation with cervical dislocation as secondary method of 

euthanasia. Two experimental replicates were completed using 4 mice per group, resulting in a total of 8 mice per condition.

C. difficile CFU enumeration from mouse fecal pellets

C. difficile engraftment in mice was monitored over a 14-day period. Fecal pellets were collected from mice on days 0–4, 
7, and 14. Each pellet was weighed and then suspended in 1x PBS. 10 µL of the suspension was then serially diluted 1:10 
in 1x PBS in a 96 well plate, and 5 µL was spotted onto TCCFA agar to select for C. difficile, such that the dilutions plated 
were 2 x 103 – 2 x 107. C. difficile colonies were counted 24 hours after plating to allow for sufficient growth. C. difficile 
CFUs were normalized by gram of fecal material.
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S1 Fig.  Growth rates measured from optical density-based analyses of bulk population growth in TYC and BHIS 
media. 
(TIF)
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S5 Fig.  Sporulation levels in clinical isolates grown on 70:30 medium. 
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S6 Fig.  Spores purified from Clade 5 strains. 
(TIF)
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(TIF)

S8 Fig.  Cell length during growth on 70:30 sporulation medium. 
(TIF)

S9 Fig.  Surface motility in Clade 1–4 strains. 
(TIF)

S10 Fig.  Infection and cmr switch orientation dynamics during TAL29600 infection. 
(TIF)
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(PDF)
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