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As a primary cause of dementia and death in older people, Alzheimer’s disease (AD) has
become a common problem and challenge worldwide. Abnormal accumulation of tau
proteins in the brain is a hallmark pathology of AD and is closely related to the clinical
progression and severity of cognitive deficits. Here, we found that overexpression of
phosphatase and tensin homolog (PTEN)-induced kinase 1 (PINK1) effectively promoted
the degradation of tau, thereby rescuing neuron loss, synaptic damage, and cognitive
impairments in a mouse model of tauopathy with AAV-full-length human Tau (hTau)
injected into the hippocampal CA1 area (hTau mice). Overexpression of PINK1
activated autophagy, and chloroquine but not MG132 reversed the PINK1-induced
decrease in human Tau levels and cognitive improvement in hTau mice. Furthermore,
PINK1 also ameliorated mitochondrial dysfunction induced by hTau. Taken together, our
data revealed that PINK1 overexpression promoted degradation of abnormal accumulated
tau via the autophagy–lysosome pathway, indicating that PINK1 may be a potential target
for AD treatment.
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INTRODUCTION

Tauopathies are a group of human neurological disorders, which are pathologically characterized by
abnormal accumulation of tau filaments in the brain. Among the tauopathies, Alzheimer’s disease
(AD) is the most studied (Tapia-Rojas et al., 2019). The main hallmarks of AD pathology are
intracellular deposition of tau neurofibrillary tangles and extracellular amyloid-β (Aβ) plaques.
Despite being initially considered as a pathological change driven by the toxic effects of amyloid
peptide, our understanding of the role that tau plays in AD has been continuously evolving (Götz
et al., 2019). Growing evidence indicates that tau pathology can also exert synergistic effects with
amyloid peptide and that it correlates more closely to the progression and cognitive impairment of
AD than Aβ plaques (Bejanin et al., 2017; Guo et al., 2020). Additionally, given the failure of various
clinical Aβ-directed therapies, more efforts have been focused on exploring tau-targeted therapies
worldwide in recent years (Congdon and Sigurdsson, 2018).
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Phosphatase and tensin homolog (PTEN)-induced kinase 1
(PINK1), a serine/threonine kinase mainly localized to
mitochondria, has attracted more and more attention since its
mutation was identified in hereditary early-onset Parkinson’s
disease (PD) (Valente et al., 2004; Rasool and Trempe, 2018).
PINK1 is widely distributed across multiple tissues and organs of
the human body, with the brain being the region with the highest
expression (Fagerberg et al., 2014). Under normal conditions,
after being imported to the mitochondrial membrane, PINK1 is
cleaved by mitochondrial presenilin-associated rhomboid-like
(PARL) protease, after which it is transported into the
cytoplasm, where it gets degraded. Upon mitochondrial
depolarization, PINK1 is stabilized and activated on the
mitochondrial membrane, and can initiate PINK1-Parkin
dependent mitophagy (Arena and Valente, 2017). Beyond its
originally perceived role as an initiator of mitophagy, PINK1 has
also shown to be involved in regulating autophagy–lysosome
pathway (ALP), ubiquitin–proteasome system (UPS), neurite
outgrowth and neuron survival, inflammation, tumor
suppression, and apoptosis (Michiorri et al., 2010; McLelland
et al., 2014; Parganlija et al., 2014; Akabane et al., 2016; Arena and
Valente, 2017; Sliter et al., 2018). In addition to PD, PINK1 has
also been proven to exert neuroprotective effects in other
neurodegenerative diseases, including Huntington’s disease,
amyotrophic lateral sclerosis, and AD (Khalil et al., 2015;
Quinn et al., 2020; Baek et al., 2021).

Several studies have reported abnormal expression of PINK1
in patients with AD as well as in cellular and animal models of
AD. Among them, most studies showed decreased levels of
PINK1 in the context of AD pathology (Choi et al., 2014; Du
et al., 2017; Manczak et al., 2018; Reddy et al., 2018; Fang et al.,
2019; Ochi et al., 2020; Zhao et al., 2020; Liang et al., 2021),
although there are also a minority of studies with opposing
conclusions (Mise et al., 2017; Pakpian et al., 2020; Zheng
et al., 2020). Researchers showed that the increasing
expression of PINK1 lessened Aβ plaques accumulation and
rescued cognitive impairments in AD mice. The underlying
mechanisms probably included induction of the autophagy
pathway, altering APP transcription or secretases, increasing
the phagocytosis of Aβ plaques by microglia, promoting
mitophagy, and improving mitochondrial function (Du et al.,
2017; Fang et al., 2019; Han et al., 2020). However, the specific
impact of PINK1 on tau pathology remains largely underexplored
and existing relevant and targeted studies are suggestive but
inadequate. A previous study showed that activation of
mitophagy reduced tau levels, while PINK1 knockdown
abolished this effect (Fang et al., 2019). In a different study,
G309D PINK1 mutation led to a significant increase in
phosphorylated tau (Ser396/404) through inhibition of GSK3β
activation in cells (Ye et al., 2015). More efforts are needed to
establish the precise role of PINK1 in tau pathology and its
possible underlying mechanisms.

Here, using a mouse model of tauopathy injected with
AAV2-full-length human TAU into the hippocampus, we
showed that upregulation of PINK1 significantly alleviated
the deposition of pathological tau, neuron loss, synaptic
damage, and cognitive impairments in mice. This occurred

through inducing tau degradation via ALP, reducing tau
accumulation in mitochondria and ameliorating
mitochondrial disorders. Taken together, our study
supports that PINK1 may be a promising target for AD
treatment.

MATERIALS AND METHODS

Animals
Wild-type C57BL/6J mice (male, 8–10 weeks-age, 20–25 g) were
acquired from Beijing Vital River Laboratory Animal Technology
Co., Ltd. Animals were randomly assigned into cages (4–5 mice
per cage), under normative cultured environment: 12-h
day–night cycle with freely available food and water. All
animal experiments were performed according to the “Policies
on the Use of Animals and Humans in Neuroscience Research”
revised and approved by the Society for Neuroscience in 1995, the
Guidelines for the Care and Use of Laboratory Animals of the
Ministry of Science and Technology of the People’s Republic of
China, and the Institutional Animal Care and Use Committee at
Tongji Medical College. The animal study was reviewed and
approved by Ethics Committee of Tongji Medical College,
Huazhong University of Science and Technology.

Stereotactic Brain Injection and Drug
Administration
pAAV-SYN-human Tau-mCherry-3×FLAG-WPRE (1.30 ×
1013 vg/ml), pAAV-SYN-PINK1-EGFP-3×FLAG-WPRE (1.35
× 1013 vg/ml), and corresponding vehicles pAAV-SYN-MCS-
mCherry-3×FLAG (2.09 × 1013 vg/ml) and pAAV-SYN-MCS-
EGFP-3×FLAG (2.84 × 1013 vg/ml) were generated by OBio
Tech. Inc. (Shanghai, China). After being fixed on stereotaxic
apparatus with adequate anesthesia, mice were injected with 1 µl
of virus into the hippocampal CA1 area bilaterally (AP-1.94,
ML ± 1.2, DV-1.6). Injection rate was maintained at 100 nl/min,
and the needle syringe was kept in situ for an additional 10 min
after the virus was fully injected. Before putting them back into
cages, mice were placed on an electric blanket for revival.

Fourteen days after virus injection, mice were treated with (1)
the autophagy inhibitor chloroquine (CQ) (C6628, Sigma-
Aldrich) at 50 mg/kg body weight (Campos et al., 2020; Chen
et al., 2020), (2) the proteasome inhibitorMG132 (M8699, Sigma-
Aldrich) at 0.5 mg/kg body weight (Lu et al., 2017), or (3) the
same volume of vehicle daily for 16 days via intraperitoneal
injection.

Behavior Tests
One month after the stereotactic injection, behavioral
experiments were conducted to evaluate the spatial
learning and memory capabilities of the mice. The novel
object recognition (NOR) test is a learning and memory
evaluation method based on the principle that animals are
born with a tendency to explore new things. This test was
conducted as follows (Hong et al., 2020): 24 h before the test,
mice were placed in the arenas (50 cm × 50 cm container)
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without objects for a 5-min habituation. The next day, mice
were put into the arenas (one sidewall with two identical
objects A and A′ separately located on either end) for 5 min.
One hour later, object A′ was replaced by a different object,
object B, and then the animals were put into the arenas again
and allowed to explore both objects for 5 min. A video camera
above the arenas logged the experimental behavior. The time
that mice spent exploring object A and object B was recorded
as TA and TB, respectively. TB/(TA + TB) was set as the
recognition index.

The Morris water maze (MWM) test is used to assess the
learning and memory abilities of laboratory animals in the
context of spatial position and orientation (Morris, 1984). It
was performed as follows: during the spatial learning phase, mice
were trained to find a concealed platform in a fixed position below
the waterline for five consecutive days. The training time was
fixed at 12:00 pm-17:00 pm. In each training session, mice were
gently put into water from one of the other three quadrants
(without target platform), facing the pool wall. If the platformwas
not sought out within 60 s, mice would be directed to the platform
andmade to stay in it for another 30 s. On day 7, the platform was
removed, and mice were put in the water maze for 60 s to test
spatial memory. The motion trails of mice were recorded and
analyzed using MWZ-100 system (Techman, China).

Protein Extraction
Hippocampal regions infected with virus were isolated and
mechanically homogenized in lysis buffer for Western blotting
(P0013, Beyotime). Homogenate was mixed with 8% (wt/vol)
SDS buffer and boiled for 10 min. The sample was further
disintegrated through sonication and centrifugation at
12,000 ×g for 15 min at 4°C. Supernatant was collected as total
protein extract.

For preparation of sarkosyl soluble/insoluble fractions
(Goedert et al., 1992; Schlegel et al., 2019; Ferrer et al., 2020),
the sample was mechanically homogenized in 10 volumes (w/v)
of pre-cooling lysis buffer (10 mM Tris-HCl, pH 7.4, 0.8 M NaCl,
1 mM EGTA, 10% sucrose) and then centrifuged at 20,000 ×g for
20 min at 4°C. The supernatant (S1) was transferred to a new
Eppendorf tube, and the pellet was re-homogenized in 5 volumes
(w/v) of lysis buffer and spun at 20,000 ×g for 20 min. The
supernatant (S2) was mixed with supernatant (S1) and
incubated with 1% N-lauroylsarkosynate (w/v) for 1 h at room
temperature while shaken. The sample was then spun at
100,000 ×g for 1 h at 4°C. The supernatant was transferred to a
new Eppendorf tube, designated as the soluble fraction. The pellet
was re-suspended (0.2 ml/g) in 50 mM Tris–HCl (pH 7.4) and
stored as sarkosyl insoluble fraction.

To separate out mitochondria from cytoplasm, we used the
Tissue Mitochondria Isolation Kit (C3606, Beyotime). Following
manufacturer’s instructions, tissue sample was homogenized in
solution A and centrifuged at 1,000 ×g for 10 min at 4°C.
Supernatant was collected and centrifuged at 11,000 ×g for
another 10 min at 4°C. Then, supernatant was transferred to a
new Eppendorf tube, designated as cytoplasm fraction. The
deposit was re-suspended in a lysis buffer supplied by the kit
and stored as mitochondrial fraction.

Co-Immunoprecipitation
Hippocampal regions infected with virus were isolated and
mechanically homogenized in lysis buffer for
immunoprecipitation (IP) (P0013, Beyotime). Then, the
homogenate was centrifuged at 3,000 rpm, for 20 min at 4°C.
The supernatant was incubated with the primary antibody Tau5
(2 µg/100 µg) (ab80579, Abcam) overnight at 4°C and then
Protein A+G Agarose (30 µl/100 µl) (P2012, Beyotime) was
added into the sample for 4–6 h. After that, the agarose was
washed three times. Proteins attached to the agarose were
resuspended in buffer (50 mM Tris-HCl, pH 6.8, 2% SDS, 10%
glycerol) and boiled for 10 min. Collected protein sample was
analyzed by Western blot.

Western Blot
Via SDS acrylamide gel electrophoresis, protein sample was
transferred to nitrocellulose filter membrane (10600002,
Whatman) and then blocked in 5% skimmed milk for 1 h.
The membrane was then incubated with primary antibodies
overnight at 4°C and then incubated with secondary antibody
for 1 h. Antibodies used in this study are listed in Table 1.
Odyssey Infrared Imaging System (LI-COR Biosciences,
Lincoln, NE, United States) and ECL Imaging System
(610007-8Q, Clinx Science Instruments Co., Ltd.) were used
for visualization of protein bands. Quantitative analysis of
blots was performed using ImageJ software (Fiji) (Li et al., 2021).

Quantitative Real-Time PCR
Total RNA was isolated from virus-infected mice
hippocampal region using Trizol reagent (15596018,
Thermo Fisher Scientific). The transcription reagent kit
(RR037, Takara) was then used for cDNA synthesis.
Quantitative PCR was conducted using the One-Step SYBR
PrimeScript PLUS RT-PCR Kit (RR096A, Takara) following
the manufacturer’s instructions. The PCR system contained
1 µl of forward and reverse primers, 1 µl of cDNA, 3 µl of
diethylpyrocarbonate (DEPC H2O), and 5 µl of SYBR Green
PCR master mixes. RT-PCR was performed and analyzed
using an ABI Step one plus Real-Time PCR System (Applied
Biosystems). Primers for human TAU were F: 5′-CGCCAG
GAGTTCGAAGTGAT-3′ and R: 5′-TCTTGGTGCATGGTG
TAGCC-3′ (Korhonen et al., 2011) and primers for β-actin
were F: 5′- CAAATGTTGCTTGTCTGGTG-3′ and R: 5′-
GTCAGTCGAGTGCACAGTTT-3′ (Wan et al., 2021).

Immunohistochemical and Nissl’s Staining
Mice brain slices (paraffin section, 4 µm thick) were baked at
55°C for 1 h and immersed into xylene for 40 min. After being
dewaxed, slices were dehydrated through graded ethanol
(100%, 100%, 95%, 90%, and 80%) for 5 min each time.
Brain slices were immersed into citric acid buffer (pH �
6.0, 10 mM) and heated in a microwave for 10 min to
maximize tissue antigen recovery. Then, slices were
incubated with 3% H2O2 for 30 min and blocked in 5%
BSA solution containing 0.5% Triton X-100 for 40 min.
Next, slices were incubated with primary antibody (listed
in Table 1) at 4°C for 24–48 h. After incubation with
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secondary antibody at 37°C for 1 h, slices were stained with
DAB reagent (G1212, Servicebio). Then, slices were
rehydrated through graded ethanol (80%, 90%, 95%, 100%,
and 100%) for 5 min each time, transparentized using xylene
for 20 min, and mounted with neutral balsam. For Nissl’s
staining, after deparaffinage and gradient alcohol
dehydration, slices were washed with PBS for 3 × 5 min,
and then dyed with 0.5% toluidine blue reagent (G1036,
Servicebio) for 2–5 min. If the slice was hyperchromatic,
0.1% glacial acetic acid was used for differentiation. Baked
slices were mounted with neutral balsam. A scanning
microscope (SV120, OLYMPUS) was used for imaging.

Immunofluorescence Staining
After aforementioned deparaffinage, dehydration, and
antigen recovery, mice brain slices were washed with PBS
for 3 × 5 min and blocked in 5% donkey serum containing
0.5% Triton X-100 for 40 min. Next, slices were incubated
with primary antibody (listed in Table 1) at 4°C for 24–48 h.
After incubation with secondary antibody at 37°C for 1 h,
slices were washed with PBS for 3 × 5 min and stained with
DAPI reagent (G1012, Servicebio) for 10 min at room
temperature. Slices were sealed with anti-fluorescence
quencher (G1401, Servicebio) and imaged using a scanning
microscope (SV120, OLYMPUS).

Golgi Staining
FD Rapid GolgiStain™ Kit (FD Neuro Technologies, PK401)
was used for Golgi staining. After being deeply anesthetized,
the brain of mice was removed and immersed in mixture
solution A + B (1:1) for 2–4 weeks. Then, the brain was
transferred to solution C for 3–7 days, after which it was
placed on an oscillating tissue slicer and cut into slices
(100 µm thick). After being air dried in the dark, the slices
were stained with a mixture of solution D + E + double
distilled water (1:1:2) as per manufacturer’s instructions.
Images were taken using an optical microscope (Nikon,
Japan).

ATP Assay
ATP levels were measured using the ATP bioluminescence
detection kit (S0026, Beyotime). Briefly, the hippocampal
regions infected with virus was extracted and pyrolyzed with a
lysis buffer supplied with the kit. The homogenate was
centrifuged at 12,000 ×g for 5 min at 4°C. Supernatant was
collected for ATP detection. Protein concentration of the
supernatant was measured using the BCA Protein Assay Kit
(P0012S, Beyotime). Furthermore, 100 µl of supernatant and
100 µl of ATP detection buffer were mixed and the
luminescence was measured using a microplate reader.
Gradient dilution of the standard solution was conducted to

TABLE 1 | Antibodies used in this study.

Antibody Host Dilution
WB

Dilution
IHC

Dilution
IF

Source

Anti-PINK1 Rabbit 1:500 BC100-494, Novus Biologicals
Anti-PINK1 Rabbit 1:500 ab23707, Abcam
HT7 Mouse 1:1,000 1:100 MN1000, Thermo Fisher Scientific
Tau5 Mouse 1:1,000 ab80579, Abcam
Anti-Tau (pS396) Rabbit 1:1,000 1:100 11102, Signalway Antibody
Anti-Tau (pS404) Rabbit 1:1,000 1:100 11112, Signalway Antibody
Anti-Tau (pT205) Rabbit 1:1,000 11108, Signalway Antibody
Anti-GAPDH Mouse 1:5,000 60004-1-Ig, Proteintech
Anti-LC3B Rabbit 1:1,000 ab51520, Abcam
Anti-P62/SQSTM1 Rabbit 1:1,000 18420-1-AP, Proteintech
Anti-LAMP2 Mouse 1:1,000 66301-1-Ig, Proteintech
Anti-Beclin1 Rabbit 1:1,000 11306-1-AP, Proteintech
Anti-Ubiquitin Mouse 1:1,000 sc-8017, Santa Cruz Biotechnology
Anti-Parkin Mouse 1:1,000 4211S, Cell Signaling Technology
Anti-COX IV Rabbit 1:1,000 11242-1-AP, Proteintech
Anti-Caspase 3 Rabbit 1:1,000 9662S, Cell Signaling Technology
Anti-Cleaved caspase 3 Rabbit 1:500 9661S, Cell Signaling Technology
Anti-EGFP Rabbit 1:100 GB11602, Servicebio
Anti-Iba1 Mouse 1:100 GB12105, Servicebio
Anti-mouse IgG Goat 1:10,000 A23910, Abbkine
Anti-rabbit IgG Goat 1:10,000 A23920, Abbkine
Anti-mouse IgG Goat 1:3,000 A25012, Abbkine
Anti-mouse IgG Goat 1:5,000 SA00001-1, Proteintech
Anti-rabbit IgG Goat 1:5,000 SA00001-2, Proteintech
Anti-NeuN Rabbit 1:200 ab177487, Abcam
Anti-NeuN Mouse 1:200 ab104224, Abcam
Anti-mouse IgG Goat 1:200 G1216-3, Servicebio
Anti-rabbit IgG Goat 1:200 G1215-3, Servicebio
Anti-rabbit IgG Donkey 1:200 ANT024S, Antgene
Anti-mouse IgG Donkey 1:200 ANT029S, Antgene

WB, Western blot; IHC, immunohistochemical staining; IF, immunofluorescence staining.
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generate the standard curve (1 nM–1 µM). ATP levels were
calculated according to the standard curve and normalized
against the standards’ protein concentration.

Malondialdehyde Assay
Malondialdehyde (MDA) levels were measured using the Lipid
Peroxidation MDA Assay Kit (S0131S, Beyotime). As per
manufacturer’s instructions, hippocampal regions infected with
virus was extracted and pyrolyzed in RIPA lysis buffer (P0013D,
Beyotime) and then centrifuged at 12,000 ×g for 10 min at 4°C.
Supernatant was collected for MDA detection. Protein
concentration of the supernatant was measured using a BCA
Protein Assay Kit (P0012S, Beyotime). One hundred microliters
of supernatant was mixed with 200 µl of MDA detection working
buffer containing thiobarbituric acid (TBA) and the MDA-TBA
adduct was measured using a microplate reader at 535 nm.
Gradient dilution of standard solutions was conducted to
generate the standard curve (1–100 µM). MDA levels were
calculated according to the standard curve and normalized
against the standards’ protein concentration, shown as nmol/
mg protein.

Statistical Analysis
All data were collected and analyzed in a blinded manner. Data
were shown as mean ± SEM or mean ± SD and analyzed using
GraphPad Prism (GraphPad Software, Inc., La Jolla, CA,
United States). Statistical analyses were conducted using two-
tailed unpaired t-tests, one-way ANOVA, or two-way repeated
measures ANOVA followed by Tukey multiple-comparisons
post-hoc tests. p < 0.05 was set as the level of statistical
significance.

RESULTS

PINK1 Rescues Cognitive Impairments in
hTau Mice
We injected pAAV-SYN-human Tau-mCherry-3×FLAG-
WPRE into the hippocampal CA1 region of mice for
1 month to mimic Alzheimer-like deposits of tau in the
brain (Andorfer et al., 2003; Lasagna-Reeves et al., 2011; Li
et al., 2019; Wan et al., 2021). Meanwhile, pAAV-SYN-
PINK1-EGFP-3×FLAG-WPRE was also co-injected to
explore its effect on tau pathology. SYN is a neuron-
specific promoter, which means exogenous PINK1 and
hTau would be specifically expressed in neurons. A high
transfection efficiency of the virus was confirmed by
Western blot, immunofluorescence and
immunohistochemistry (Figures 4A,B,E; Supplementary
Figure S1). As core symptoms of AD, cognitive decline
and dementia are tightly associated with tau pathology
(Bejanin et al., 2017). Thus, we conducted behavioral tests
on the mice to assess cognitive function (Figure 1A). In
contrast with WT mice, human Tau (hTau) mice (injected
with pAAV-SYN-human TAU-mCherry-3×FLAG-WPRE)
showed obvious learning and memory impairments as
evaluated by NOR and MWM tests, while overexpression

of PINK1 rescued the cognitive dysfunction. More
specifically, in the NOR test, the time that hTau mice
spent on exploring novel object was significantly reduced;
however, this recognition index was improved by PINK1
overexpression (Figures 1B–D). In the MWM test,
compared with the WT group, hTau mice had a longer
latency period before finding the hidden platform at
3rd–5th days during the training stage. During the test
stage, longer latency to reach the place where the platform
was previously placed before, less retention time in the target
quadrant, and fewer times crossing the platform region were
observed in hTau mice, while overexpressing PINK1
attenuated the above learning and memory deficits, as
evidenced by decreased time to find the platform during
the 4th and 5th day during the training phase, less escape
latency, more retention time in the target quadrant, and more
times crossing the platform region during the test phase
(Figures 1E–I). There was no significant difference in
swimming speed among the four groups of mice
(Figure 1J), which excluded defects in motor ability.
Overall, our data demonstrated that PINK1 overexpression
ameliorates cognitive deficits in hTau mice.

PINK1 ameliorates hTau-Induced Neuron
Loss and Synaptic Damage
Growing evidence supports the neurotoxic effects of tau as a
primary event for neuron loss and synaptic injury, both of
which are common neuropathologic manifestations in AD
and closely related to the severity of cognitive disfunction
(Iqbal and Grundke-Iqbal, 2002; Giannakopoulos et al.,
2003). Especially, neuron loss in the hippocampal CA1
region is a prominent feature of AD (West et al., 1994;
Simic et al., 1997). Therefore, we aimed to investigate the
underlying mechanisms by which PINK1 ameliorated
cognitive deficits in hTau mice. Nissl’s staining and
immunohistochemical staining were used to observe and
compare neuron morphology and number in the
hippocampal CA1 area of mice. In WT mice, irrespective
of whether injected with PINK1 or not, neurons in the CA1
region had a full and orderly shape and were closely arranged
with the Nissl bodies. Meanwhile, hTau mice displayed a
reduced number of intact neurons (Figures 2A,B). Neurons
had abnormal morphology, with an obscure structure and
disorganized arrangement (Figure 2A). Interestingly, this
phenotype was noticeably attenuated following PINK1
overexpression (Figures 2A,B). NeuN staining data also
supported the finding that PINK1 overexpression
ameliorated the neuron loss induced by accumulation of
hTau (Figures 2C,D). In addition, overexpression of
PINK1 attenuated the observed increased levels of cleaved
caspase-3 induced by hTau, thus suggesting that PINK1
alleviates hTau-induced cell apoptosis (Supplementary
Figure S2).

The dendritic spine, functional protrusions on dendrite
branches, is the main site of synaptogenesis, and so is closely
related to synaptic transmission (Chidambaram et al., 2019).
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Here, we identified and quantified dendritic spines in the CA1
region using Golgi staining. Compared with WT mice,
dendritic branches were sparser, and the dendritic spine
density was significantly reduced in hTau mice (Figure 3).

Meanwhile, overexpression of PINK1 attenuated such
phenotype in hTau mice (Figure 3). These data indicated
that PINK1 attenuates hTau-mediated neuron loss and
synaptic damage.

FIGURE 1 | PINK1 ameliorates cognitive impairments in hTau mice. (A) Experimental processes of virus injection and behavioral tests. (B–D) PINK1
improved cognitive performance of hTau mice in the NOR test shown by elevated recognition index. One-way ANOVA followed by Tukey multiple-comparisons
tests. *p < 0.05, **p < 0.01. (E) Representative swimming path of mice in each group during the MWM probe test. (F) PINK1 improved learning ability in hTau
mice shown by shortened latency to find the hidden platform during training stage in the MMW test. Two-way repeated-measures ANOVA followed by
Tukey multiple-comparisons tests. *p < 0.05, **p < 0.01 vs. WT + Vec; #p < 0.05 vs. hTau + Vec. (G–I) PINK1 improved memory ability in hTau mice shown by
decreased latency to reach the location of platform (G), longer retention time in the target quadrant (H), and more target zone crossings (I) during the MWM
probe test. One-way ANOVA followed by Tukey multiple-comparisons tests. *p < 0.05, **p < 0.01. (J) No significant difference in swimming speed was seen
among the four groups during the MWM probe test. One-way ANOVA followed by Tukey multiple-comparisons tests. All data were presented as mean ± SEM.
n � 10 mice for each group.
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PINK1 Overexpression Reduces Tau
Protein Levels in hTau Mice
We observed obvious accumulation of exogenous tau (human
Tau) proteins in the hippocampal CA1 region of hTau mice,
including total human tau (detected using the HT7 and Tau5
antibodies) and phosphorylated tau at Ser396, Ser404, and
Thr205 (Figures 4A,B,E), as detected by Western blot or
immunohistochemistry. Simultaneously overexpressing
PINK1 significantly reduced the levels of exogenous total
and phosphorylated tau proteins (Figures 4A,B,E).
Furthermore, we found that PINK1 overexpression
decreased soluble and insoluble exogenous total and
phosphorylated tau proteins compared with hTau mice
(Figures 5E–H, 1–3 lane vs. 4–6 lane). PINK1 did not alter
the mRNA levels of hTau (Figure 4D), which suggested that

overexpressing PINK1 decreased hTau protein levels as a
result of an increase in its degradation. Although the
endogenous levels of mouse tau displayed a downward
trend in the context of PINK1 overexpression, there was no
significant difference among the four groups (Figures 4A,C).
Overall, these data showed that PINK1 decreases the
pathological accumulation of tau proteins induced by hTau
overexpression.

PINK1 Promotes Clearance of hTau
Accumulation via the Autophagy–Lysosome
Pathway
Given the protective effects of PINK1 against abnormally
accumulated tau protein in mice, we sought to find out the

FIGURE 2 | PINK1 alleviates hTau-induced neuronal loss in the hippocampal CA1 region of mice. (A) PINK1 ameliorated hippocampal CA1 neuronal loss in hTau
mice exhibited by representative images of Nissl staining. (B)Quantitative analysis of numbers of intact neurons in area framed within black bordered rectangle. Neurons
with visible nuclei, distinctive nucleolus, and cytoplasmic Nissl staining were regarded as intact neurons and counted. One-way ANOVA followed by Tukey multiple-
comparisons tests. **p < 0.01, ***p < 0.001. (C) Representative images of NeuN immunohistochemical staining. (D) Quantitative analysis of numbers of neurons
with positive NeuN staining in area framed within black bordered rectangle. One-way ANOVA followed by Tukey multiple-comparisons tests. **p < 0.01, ***p < 0.001. All
data were presented as mean ± SD. n � 3 mice for each group.
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potential underlying mechanism. As PINK1 did not lead to
changes in the mRNA levels of hTau (Figure 4D), we
inferred that PINK1 may affect the degradation pathways
of hTau proteins. It has been previously shown that both
UPS and ALP contribute to the degradation of tau aggregation
in AD (Cheng et al., 2018), and there are also data that
indicate the promotive effects of PINK1 on ALP (Michiorri
et al., 2010; Parganlija et al., 2014; Du et al., 2017). Therefore,
we aimed to detect the expression of autophagic markers
(Abdelfatah et al., 2021). As illustrated in Figures 5A,B,
PINK1 overexpression induced an increase in the
expression of LC3 II and lysosomal protein LAMP2, and a
decrease in the levels of p62 in the hippocampal CA1 region of
hTau mice. The level of Beclin1 was not significantly altered
among the four groups. Thus, these results suggest that PINK1
activates ALP in hTau mice.

To further confirm the pathway by which PINK1 induces
elimination of abnormal accumulation of tau, MG132, an
inhibitor of proteasome pathway, or chloroquine (CQ), an
inhibitor of autophagy that blocks the fusion of
autophagosome and lysosome, was used to treat the mice
overexpressing hTau and PINK1, respectively. We found that
CQ (lanes 10–12) but not MG132 treatment (lanes 7–9) reversed
the decreased total (Tau5) and phosphorylated tau (pS396, pS404,
and pT205) levels induced by PINK1 (Figures 5C,D;
Supplementary Figure S3). Soluble and insoluble proteins
were extracted, and total or phosphorylated tau levels were
detected by Western blot. The levels of total and
phosphorylated tau in the soluble and insoluble fraction of
hTau mice were decreased following PINK1 overexpression,
while CQ reversed the PINK1-induced reduction of total or
phosphorylated tau levels (Figures 5E–H, lanes 10–12 vs.
lanes 4–6; Supplementary Figure S3). MG132 treatment
merely induced a small increase in total and phosphorylated
tau levels in the soluble fraction, but had no effects in the levels of
total or phosphorylated tau in the insoluble fraction (Figures
5E–H, lanes 7–9 vs. lanes 4–6; Supplementary Figure S3). We
also observed that CQ caused an increase in the levels of

endogenous tau (Figures 5E,F; Supplementary Figures
S4A,B). All these data suggest that PINK1 decreases the levels
of tau through the autophagy pathway.

CQReverses the Improved Effects of PINK1
on Cognition
Furthermore, we conducted behavioral experiments to investigate
whether the improved cognitive function induced by PINK1 was
also reversed by CQ treatment (Figure 6A). Unsurprisingly, we
found that CQ treatment caused a distinct cognitive decline in
hTau and PINK1 overexpressing mice. This was evidenced by a
lower recognition index in the NOR test (Figures 6B,C), a longer
latency period to reach the hidden platform on days 3–5 during
the training phase, as well as a longer escape latency, shorter
residence time in the target quadrant, and decreased platform
zone crossing times during the test phase of the MWM test
(Figures 6D–I). Treatment with MG132 did not induce
significant changes in the cognition of hTau and PINK1
overexpressing mice (Supplementary Figure S5).

PINK1Reduces the Accumulation of hTau in
Mitochondria and Improves Mitochondrial
Function
Besides our above discovery that PINK1 reduces tau proteins
through the autophagy pathway, PINK1 has been widely
reported to play vital roles in maintaining mitochondrial
homeostasis (Arena and Valente, 2017). Here, we extracted
the mitochondrial and cytoplasmic fraction from the
hippocampal CA1 region of mice, and found accumulation
of hTau in the mitochondrial fraction of hTau mice, which is
consistent with our previous study in cells overexpressing
hTau (Hu et al., 2016) as well as other previous studies
(Lasagna-Reeves et al., 2011; Grassi et al., 2019; Torres
et al., 2021), Meanwhile, PINK1 overexpression decreased
the levels of hTau in both the mitochondrial and cytoplasmic
fraction of hTau mice (Figures 7A,B). Furthermore, we

FIGURE 3 | PINK1 reverses the decreased dendritic spine density in the hippocampal CA1 region of hTau mice. (A) Representative images of Golgi Staining in the
hippocampal CA1 region of mice. (B) Quantitative analysis of spine density in the CA1 area of mice. Thirty neurons from each group were analyzed. One-way ANOVA
followed by Tukey multiple-comparisons tests. ****p < 0.0001. All data were presented as mean ± SD. n � 3 mice for each group.
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found reduced levels of Parkin in the mitochondrial and
cytoplasmic fraction of mice with PINK1 overexpression
(Figures 7A,C), indicating an activation of Parkin by PINK1 as
activation of Parkin would induce its own ubiquitylation and
degradation (Zhang et al., 2000; Xiong et al., 2009; McWilliams
et al., 2018). In line with previous studies (Li et al., 2016; Guha et al.,
2020; Szabo et al., 2020), assessment of mitochondrial function
revealed mitochondrial dysfunction in hTau mice, as evidenced by

reduced levels of ATP and elevatedMDA levels, both of whichwere
reversed in the context of PINK1 overexpression (Figures 7D,E).

DISCUSSION

As a primary cause of dementia and death in older people, AD
has become a common problem and challenge in an aging

FIGURE 4 | Overexpression of PINK1 decreases tau protein levels in hTau mice. (A,B) Representative images and quantitative analysis of Western blot showed
overexpression of PINK1 diminished levels of exogenous tau (∼106 kDa, human tau), including total tau (HT7, Tau5) and phosphorylated tau (pS396, pS404, and pT205)
in the hippocampal CA1 area of hTau mice. Unpaired t-tests. **p < 0.01, ***p < 0.001, ****p < 0.0001. (C) Significant alteration of endogenous tau (∼55 kDa) was not
found among the four groups. One-way ANOVA followed by Tukey multiple-comparisons tests. (D) The levels of human TAU mRNA had no significant changes
with PINK1 overexpression. One-way ANOVA followed by Tukey multiple-comparisons tests. ****p < 0.0001. (E) Representative images of immunohistochemical
staining showed PINK1 reduced tau pathology (total tau, phosphorylated tau at Ser396 or Ser404) in the hippocampal CA1 area. HT7 antibody exclusively reacts to
human tau proteins. All data were presented as mean ± SD. n � 3 mice for each group.
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FIGURE 5 | PINK1 promotes clearance of hTau mainly through the autophagy pathway. (A,B) PINK1 increased the levels of LC3 II and lysosomal protein LAMP2,
as well as decreased p62 levels detected by Western blot. One-way ANOVA followed by Tukey multiple-comparisons tests. *p < 0.05, **p < 0.01, ***p < 0.001,
****p < 0.0001 vs. WT + Vec; #p < 0.05, ##p < 0.01 vs. hTau + Vec. (C,D) In total fraction of mice hippocampal CA1, PINK1 diminished the levels of exogenous tau (∼106
kDa, human tau: both total and phosphorylated tau), while CQ treatment reversed this reduction shown by Western blot. Treatment with MG132 induced relatively
small increase in the levels of hTau proteins in hTau and PINK1 overexpressing mice. (E–H) In both the soluble (E, G) and insoluble fraction (F, H) of mice hippocampal
CA1 area, PINK1 decreased the levels of exogenous tau (∼106 kDa, human tau: both total and phosphorylated tau) in hTau mice, while CQ treatment reversed the
reduction. Treatment with MG132 induced relatively small increase in the levels of hTau proteins in the soluble fraction. One-way ANOVA followed by Tukey multiple-
comparisons tests. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001 vs. hTau + Vec; #p < 0.05, ##p < 0.01, ###p < 0.001, ####p < 0.0001 vs. hTau + PINK1. All data were
presented as mean ± SD. n � 3 mice for each group.
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society due to a lack of effective diagnosis and treatment.
Here, we injected AAV2-full-length human TAU into the
hippocampal CA1 region of mice to mimic Alzheimer-like
tau pathology in the brain. We observed an obvious
accumulation of tau proteins, neuron loss, synapse injury,
mitochondrial function disorders, and cognitive impairments
in hTau mice. We also found that overexpression of PINK1
effectively reduced neuropathological accumulation of tau
proteins, ameliorated mitochondrial function, attenuated

damage to neurons and synapses, and thus rescued
cognitive decline in hTau mice.

In our study, overexpression of PINK1 led to activation of
ALP, as evidenced by increased LC3 II and lysosomal protein
LAMP2, as well as decreased levels of p62. PINK1-induced
ALP activation has also been observed in other studies
(Michiorri et al., 2010; Parganlija et al., 2014; Du et al.,
2017). In transgenic mAPP mice, overexpression of PINK1
increased the expression of LC3 II, lysosome-associated

FIGURE 6 | CQ treatment reverses the improved cognition induced by PINK1 overexpression. (A) Experimental processes of virus injection, drug treatment, and
behavioral tests. (B,C) CQ treatment lowered the recognition index of hTau and PINK1 overexpressing mice in the NOR test. Unpaired t-tests. *p < 0.05. (D)
Representative swimming path of mice in each group during theMWMprobe test. (E)CQ treatment impaired the learning ability of hTau and PINK1 overexpressingmice,
shown by prolonged latency to find the hidden platform during training stage in the MWM test. Two-way repeated-measures ANOVA followed by Tukey multiple-
comparisons tests. *p < 0.05, **p < 0.01. (F–H)CQ treatment impaired the memory ability of hTau and PINK1 overexpressingmice, shown by longer latency to reach the
location of platform (F), shorter retention time in the target quadrant (G) and fewer target zone crossings (H) during the MWM probe test. Unpaired t-tests. *p < 0.05,
**p < 0.01, ***p < 0.001. (I) No significant difference in swimming speed was seen between the two groups during the MWM probe test. Unpaired t-tests. All data were
presented as mean ± SEM. n � 10 mice for each group.
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membrane protein 1 (LAMP1), lysosomal proteases
cathepsin D, autophagy receptor OPTN and NDP52, thus
leading to the clearance of Aβ plaques (Du et al., 2017). SH-
SY5Y cells with PINK1 knockdown showed decreased mRNA
levels of ATG5, ATG6, ATG7, LC3A, P62, LAMP1, and
LAMP2 (Parganlija et al., 2014). PINK1 was also reported
to directly interact with Beclin1 to promote autophagy
(Michiorri et al., 2010). Taken together, our results
indicate that PINK1 promotes degradation of tau via ALP.
After pharmaceutical blockade of the fusion between
autophagosome and lysosome by CQ, we found that the
decreased hTau proteins in hTau and PINK1-
overexpressed mice, including total and phosphorylated
tau in whole tissue homogenate, soluble and insoluble
portions, were all reversed. In contrast, inhibiting
proteasome by MG132 just induced partial increase of
hTau proteins in hTau and PINK1-overexpressed mice.
This increase was mainly observed in the soluble portion,
which is in accord with the idea that the proteasome has a
limited ability to deal with oligomeric and aggregated
proteins (Kirkin et al., 2009). CQ also reversed the PINK1-
induced improvements on cognitive impairment. Overall, the
above findings verified that PINK1 relies on ALP to clear
abnormal accumulated hTau proteins and ameliorate
cognitive deficits. Thus, in future research, we will explore

the detailed mechanism by which PINK1 overexpression
leads to the degradation of tau via ALP.

Previous research has shown that cytosolic PINK1
fragments enhanced Parkin-mediated ubiquitination and
degradation of Parkin substrates in neuroblastoma cells
and human brain lysates (Xiong et al., 2009), and
bioinformatic analysis presented the potential involvement
of Parkin in the ubiquitination of tau (Kumar and Kumar,
2019). Researchers have also shown that Parkin brings about
Lys63-linked polyubiquitination of misfolded proteins and
leads to their clearance via the autophagy pathway (Olzmann
and Chin, 2008; Khandelwal et al., 2011). In this study, a Co-
IP experiment revealed upregulated ubiquitination of tau
protein in the hippocampal CA1 region of mice with
PINK1 overexpression (Supplementary Figure S6).

Our previous studies found that hTau can accumulate in
mitochondria, inhibit mitophagy, disrupt mitochondrial
dynamics, and induce mitochondrial dysfunction in cellular
or animal models overexpressing hTau (Hu et al., 2016; Li
et al., 2016), which are considered drivers of synaptic
dysfunction and cognitive decline in AD (John and Reddy,
2021; Sharma et al., 2021). In this study, we verified the
pathological accumulation of tau in mitochondria, which
was reported to induce mitochondrial dysfunction, thus
contributing to synaptic impairment and memory deficits in

FIGURE 7 | PINK1 reduces tau accumulation in mitochondria and rescues mitochondrial disorders. (A–C) The levels of exogenous tau (∼106 kDa,
human tau) (A,B) or Parkin (A, C) in both cytoplasm and mitochondria fraction of mice hippocampal CA1 region were detected by Western blot and
quantitative analysis. Unpaired t-tests. *p < 0.05, **p < 0.01. (D, E) Overexpression of PINK1 reversed the decreased ATP levels (D) or increased MDA levels
(E) in hTau mice. One-way ANOVA followed by Tukey multiple-comparisons tests. *p < 0.05. All data were presented as mean ± SD. n � 3 mice for
each group.
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mice (Torres et al., 2021). PINK1 has been widely reported to
play vital roles in maintaining mitochondrial homeostasis
(Voigt et al., 2016; Arena and Valente, 2017). Parkin is a
cytosolic member of E3 ubiquitin ligase family, and
overexpression PINK1 can recruit Parkin to mitochondria
and activate it via phosphorylation of its UBL domain.
Then, Parkin transfers ubiquitin chains to the
mitochondrial outer membrane to induce the elimination of
mitochondria through mitophagy (Okatsu et al., 2012; Du
et al., 2017; Gundogdu et al., 2021). Our study showed that
PINK1 reduced hTau accumulation in mitochondria. We
observed mitochondrial dysfunction in hTau mice, which
was rescued following overexpression of PINK1, possibly
because of PINK1-induced reduction of intracellular tau
accumulation (Li et al., 2016; Guha et al., 2020; Szabo et al.,
2020) and the direct protective effects of PINK1 on
mitochondria (Voigt et al., 2016; Arena and Valente, 2017).

It has been extensively reported that tau accumulation induces
neuron loss and synaptic impairments, which are closely related
to cognitive deficits in AD (Iqbal and Grundke-Iqbal, 2002;
Giannakopoulos et al., 2003; Yin et al., 2016). We also found
that overexpression of hTau or P301L hTau activated STAT1 and
inactivated STAT3 to inhibit the expression of NMDARs, thus
inducing dendritic plasticity deficits, including LTP suppression
and spine density decrease, and memory deficits (Li et al., 2019;
Hong et al., 2020; Wan et al., 2021). In this study, PINK1
overexpression rescued neuron loss and synaptic damage, and
ameliorated cognitive impairments by promoting the degradation
of accumulated tau in the autophagy pathway, reducing tau
accumulation in mitochondria and alleviating mitochondrial
disorders. These findings, together with the previous finding
that PINK1 decreased Aβ level in transgenic mAPP mice (Du
et al., 2017), indicate the potential of PINK1 as a therapeutic
target for AD treatment.
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