

http://pubs.acs.org/journal/acsodf

# Experimental Study on the Effect of CO<sub>2</sub> Injection Pressure on the Migration Characteristics and Extraction Effects of Replacement CH<sub>4</sub>

Zhihao Fu, Baoshan Jia,\* Yanming Wang, and Weipeng Tian



**ABSTRACT:** To study the effect of  $CO_2$  injection pressure on gas migration characteristics and coalbed methane (CBM) extraction, a platform for the experimental replacement of  $CH_4$  with  $CO_2$  was used to conduct experiments on the replacement of  $CH_4$  under different  $CO_2$  injection pressures and analyze the gas transport characteristics and  $CH_4$  extraction during the experiment. The results reveal that the rate of gas migration out of the coal seam accelerates with increasing gas injection pressure, as determined by comparisons of the migration rates between adjacent monitoring points. The change trend of the  $CH_4$  desorption rate under different gas injection pressures is divided into slow decline, sharp decline, and stability stages, and the maximum value of the effective diffusion coefficient increases from  $2.3 \times 10^{-5}$  to  $3.4 \times 10^{-5}$  and  $4.6 \times 10^{-5}$  cm<sup>2</sup>/s as the gas injection pressure increases from 0.6 to 0.8 and 1.0 MPa. Similarly, the change pattern of coal seam permeability can be divided into slow decline, sharp decline, and stability stages. After the gas injection pressure was increased from 0.6 to 0.8 and 1.0 MPa, the  $CH_4$  desorption volume increased from 90.2 to 94.1 and 97.8 L, whereas the coal seam  $CO_2$  sequestration volume increased from 269.2 to 274.2 and 322.8 L, respectively. In contrast, the  $CH_4$  extraction efficiency increased from 76.9 to 80.2 and 82.9%, respectively. The research results have important reference value and practical significance for optimizing the  $CO_2$  injection pressure and improving the CBM extraction.

# 1. INTRODUCTION

Energy is crucial to human life and greatly influences the world economy; however, the supply of traditional fossil energies such as oil and natural gas is under severe threat. According to BP's Energy Outlook, the consumption of natural gas as a major energy source has increased by 74% over the last 20 years and will continue to be a major source of energy in the future.<sup>1</sup> Conventional fossil fuels have prominent drawbacks; they release large amounts of CO<sub>2</sub> when used, which places a huge strain on the ecological environment.<sup>2,3</sup> Therefore, countries globally have adopted different methods to address the increasingly serious greenhouse effect.<sup>4,5</sup> Research has revealed that CO<sub>2</sub> capture and storage and CO<sub>2</sub>-enhanced coal bed methane mining can effectively control CO<sub>2</sub> emissions.<sup>6,7</sup> Coalbed methane (CBM) is an important component of unconventional natural gas that can replace fossil energy, making it of great significance in reducing CO<sub>2</sub> emissions and mitigating the greenhouse effect. The strong adsorption

capacity of the coal seam for  $CO_2$  means that it can compete with  $CH_4$  for adsorption and displace  $CH_4$  from the coal seam, thus improving the efficiency of  $CH_4$  extraction from the coal seam and achieving geological storage of  $CO_2$ .<sup>8,9</sup> China's coal reserves are large, with numerous CBM resources. Therefore, the effective enhancement of CBM production should be investigated.

In recent years, many scholars at home and abroad have conducted extensive research on the mechanism of the  $CO_2$  injection for  $CH_4$  replacement, and they have analyzed the

 Received:
 May 2, 2023

 Accepted:
 July 11, 2023

 Published:
 July 24, 2023





© 2023 The Authors. Published by American Chemical Society desorption and diffusion of gas during replacement and obtained meaningful research results. $^{10,11}$  The injection of  $CO_2$ ,  $N_2$ , or a mixture of  $CO_2/N_2$  into coal seams can improve the gas production efficiency of CBM.<sup>12-16</sup> The pore space of the coal seam generates a pressure potential difference after CO<sub>2</sub> injection. This can increase the desorption rate of CH<sub>4</sub> in the coal seam, which has a strong adsorption capacity for  $CO_{2}$ , and the use of CO<sub>2</sub> to replace CH<sub>4</sub> can improve the CH<sub>4</sub> extraction rate and reduce the residual CH4 in the coal seam.<sup>17-19</sup> Numerous scholars have experimentally investigated  $CO_2$  injection to improve the CBM recovery rate.<sup>20-22</sup> Tu and Tang et al.<sup>23,24</sup> studied binary gas adsorption and desorption patterns in coal seams and concluded that CO<sub>2</sub> concentration gradually increases and CH<sub>4</sub> concentration gradually decreases during desorption, and the coal seam has a stronger adsorption capacity for CO<sub>2</sub>. Long, Liu, and An et al.<sup>25-27</sup> studied the diffusion properties of multigases in coal seams and found their diffusion to be diverse. Yang et al.<sup>28</sup> studied different pressures and gases to remove CH4 from coal seams and concluded that the duration required for CO2 to escape the coal seam shortens with the increase in gas injection pressure, proving that increasing the gas injection pressure is beneficial for improving the CH<sub>4</sub> extraction efficiency. Wu et al.<sup>29</sup> used a self-developed triaxial desorption and adsorption test platform to analyze the mechanical properties and gas permeability experimentally and concluded that a higher CO<sub>2</sub> injection pressure lowers the strength and elastic modulus of the coal body. Yang et al.<sup>30</sup> found the replacement effect to dominate at the beginning of  $CO_2$  injection to replace  $CH_4$ , which gradually shifted to a repelling effect. Jing et al.<sup>31</sup> studied the influence of different factors on the replacement of  $CH_4$  by  $CO_2$  and determined that the injection temperature of  $CO_2$  is directly proportional to the replacement efficiency, whereas the water content is inversely proportional to the replacement efficiency. Zhou et al.<sup>32</sup> analyzed the replacement efficiency under multifactor coupling and concluded that the replacement efficiency increased with the injection pressure and injection temperature, whereas it decreased when the water content increased. Meng et al.<sup>33</sup> combined molecular simulations with methane desorption experiments to analyze the effect of the water content on the methane desorption rate and concluded that the greater the water content in a coal seam, the slower the methane desorption rate.

The influence of gas migration characteristics on  $CH_4$ replacement in coal seams with different  $CO_2$  injection pressures has not been sufficiently studied. Therefore, three sets of experiments were conducted at different injection pressures to record data during experiments on the replacement of  $CH_4$  with  $CO_2$  in real time. The  $CH_4$ migration rate,  $CH_4$  desorption rate,  $CH_4$  effective diffusion coefficient, and coal seam permeability were accurately recorded during the replacement of  $CH_4$  with  $CO_2$  to analyze the gas migration characteristics and  $CH_4$  extraction effect during replacement at different pressures.

#### 2. EXPERIMENTAL METHODS

**2.1. Experimental Theoretical Analysis.** During the  $CO_2$  injection to replace  $CH_4$  in coal seams, binary gases compete for adsorption, resulting in  $CH_4$  gas escaping from coal seams through desorption-diffusion-percolation. The characteristics of gas transport in the pores, fractures, and coal matrix of the coal seam during gas injection replacement are shown in Figure 1.



Figure 1. Gas migration characteristics during  $\mathrm{CO}_2$  replacement of  $\mathrm{CH}_4$ .

After CO<sub>2</sub> injection, the free-state CH<sub>4</sub> gas in the coal seam fissure is channeled out of the coal seam under seepage action, and the CH<sub>4</sub> content in the coal seam pore fissure continually decreases, whereas the CH<sub>4</sub> pressure continually decreases. Gas diffusion commences after CH<sub>4</sub> is discharged from the pore fissures of the coal seam, and the adsorbed CH<sub>4</sub> gas molecules within the coal matrix diffuse outward. The CH<sub>4</sub> gas molecules on the surface of the coal seam pore fissures then begin to desorb into the fissure channels to escape from the coal seam via displacement.<sup>34–36</sup> The gas injected into the coal seam to expel CH<sub>4</sub> is subject to the joint action of desorption–diffusion–percolation, and the extraction efficiency of CH<sub>4</sub> is affected by all three factors.

**2.2. Coal Sample Preparation and Industrial Analysis.** The experimental coal samples were taken from freshly exposed coal blocks in a mine in Shanxi Province. The coal was of poor rank, with a gas content between 14 and 18 m<sup>3</sup>/t, implying a low gas drainage efficiency. To protect the experimental samples from oxidation during long-distance transportation, they were wrapped in plastic wrap and sent to the laboratory. After the original coal samples were pulverized into powder, they were screened through a standard sieve shaker, and 60–80 mesh coal samples larger than the 120 mesh were selected for industrial analysis. The results of the industrial analysis are shown in Table 1.

Table 1. Industrial Analysis Results

| moisture/ $M_{\rm ad}$ | $ash/A_{ad}$ | volatile fraction/ $V_{\rm ad}$ | fixed carbon/ $F_{\rm ad}$ |
|------------------------|--------------|---------------------------------|----------------------------|
| 1.50                   | 12.06        | 9.14                            | 77.30                      |

**2.3. Experimental Procedure.** The detailed experimental steps are as follows.

- 1 The coal sample was ground to powder, placed it in the experimental tank, compacted it to ensure that the device is air-tight, and evacuated and degassed the experimental device.
- 2 The pressure-reducing valve of the  $CH_4$  gas bottle was opened so that the coal sample in the adsorption tank adsorbs  $CH_4$  gas until it is saturated.
- 3  $CO_2$  gas is injected into the adsorption tank to replace the  $CH_4$  gas, and NaOH solution is used to collect and discharge  $CO_2$  from the gas mixture.
- 4 Accurate, real-time monitoring data were collected until the end of the experiment.
- 5 The experimental parameters and the next set of experiments were modified according to the above steps.

The experimental design parameters are listed in Table 2.

Table 2. Experimental Design Parameters

| CO <sub>2</sub> injection pressure /MPa | CH <sub>4</sub> adsorption<br>equilibrium<br>pressure /MPa | experimental<br>temperature /°C | CO <sub>2</sub> gas<br>temperature /°C |
|-----------------------------------------|------------------------------------------------------------|---------------------------------|----------------------------------------|
| 0.6                                     | 0.4                                                        | 30                              | 30                                     |
| 0.8                                     | 0.4                                                        | 30                              | 30                                     |
| 1.0                                     | 0.4                                                        | 30                              | 30                                     |

#### 3. RESULTS AND DISCUSSION

**3.1. Gas Migration Rate.** The migration rate of the  $CH_4/CO_2$  gas mixture in the coal seam during the experiment is determined by the following equation

$$\nu = \frac{l}{\Delta t} \tag{1}$$

where  $\nu$  is the migration rate of the gas mixture, cm/s; *l* is the distance between adjacent temperature monitoring points, cm; and  $\Delta t$  is the corresponding time difference between adjacent temperature monitoring points, s.

The experimental tank had three temperature monitoring points, each 10 cm apart, and the average migration rate of the gas mixture from temperature monitoring point  $T_1$  to temperature monitoring points  $T_2$  and  $T_3$  was calculated.

The experiments to replace  $CH_4$  with  $CO_2$  were performed at pressures of 0.6, 0.8, and 1.0 MPa, and the migration rate of the gas mixture obtained from the experiments is shown in Figure 2.



Figure 2. Gas migration rate under different gas injection pressures.

As shown in Figure 2, the gas injection pressure accelerates the rate of gas migration from  $T_1$  to  $T_2$  and from monitoring points  $T_2$  to  $T_3$  in all cases. After increasing the injection pressure from 0.6 to 0.8 MPa and then to 1.0 MPa, the migration rate increased from 0.005 to 0.00597 and 0.00671 cm/s for  $T_1-T_2$ , and from 0.0067 to 0.00694 and 0.00833 cm/ s for  $T_2-T_3$ . The gas injection pressures of 0.8 and 1.0 MPa increased the transport rates from  $T_1$  to  $T_2$  by 18.2 and 32.9%, respectively, and from  $T_2$  to  $T_3$  by 4.1 and 24.9%, respectively, compared to those at 0.6 MPa. The average migration rate between  $T_2$  and  $T_3$  is higher than the average migration rate between  $T_1$  and  $T_2$  at the same gas injection pressure. Noticeably, when the gas injection pressure is increased, the migration rate of the gas mixture out of the coal seam is accelerated, implying that increasing the gas injection pressure can enhance the extraction of  $CH_4$ .

**3.2.** CH<sub>4</sub> Desorption Rate. The CH<sub>4</sub> desorption rate can describe CH<sub>4</sub> desorption at a specific point in the experiment to replace CH<sub>4</sub> with CO<sub>2</sub> and be used to determine how to increase the CH<sub>4</sub> extraction rate. The experiments to replace CH<sub>4</sub> with CO<sub>2</sub> were performed at 0.6, 0.8, and 1.0 MPa; the trend of the CH<sub>4</sub> desorption rate from the experiments is shown in Figure 3.

As shown in Figure 3, the trend of the gas desorption rate at different injection pressures comprises slowly decreasing, rapidly decreasing, and stable stages.

Stage I: the desorption rate of  $CH_4$  decreased slowly. At the beginning of the experiment, the  $CH_4$  content in the coal seam was high, and the amount of injected  $CO_2$  was small, which had little influence on  $CH_4$  desorption; accordingly, the trend is slowly downward. When the injection pressure was 0.6 MPa, the  $CH_4$  desorption rate slowly decreased from 974.7 to 767.8 mL/min. The  $CO_2$  percolation rate was maintained at approximately 10 mL/min. At 0.8 MPa, the  $CH_4$  desorption rate was maintained at  $CO_2$  percolation rate was maintained at approximately 10 mL/min. At 0.8 MPa, the  $CH_4$  desorption rate slowly from 976.3 to 832.9 mL/min, and the  $CO_2$  percolation rate was maintained at approximately 18 mL/min. At an injection pressure of 1.0 MPa, the  $CH_4$  desorption rate slowly decreased from 1010.1 to 954.9 mL/min, and the percolation rate of  $CO_2$  was maintained at approximately 40 mL/min.

Stage II: the desorption rates of CH<sub>4</sub> and CO<sub>2</sub> after CO<sub>2</sub> broke through the coal seams sharply decreased and increased, respectively. This is attributable to the amount of CO<sub>2</sub> gas in the coal seam increasing and the amount of CH4 gas decreasing, corresponding to increases and decreases in the partial pressures of CO<sub>2</sub> and CH<sub>4</sub>, respectively, resulting in a decrease in the rate of CH<sub>4</sub> desorption and an increase in the rate of CO<sub>2</sub> percolation. At an injection pressure of 0.6 MPa, the CH<sub>4</sub> desorption rate decreased rapidly from 767.7 to 25.5 mL/min, whereas the CO<sub>2</sub> percolation rate rapidly increased to 580 mL/min. At an injection pressure of 0.8 MPa, the CH<sub>4</sub> desorption rate decreased rapidly from 832.9 to 130.6 mL/ min, whereas the CO<sub>2</sub> percolation rate increased rapidly to 386 mL/min. At an injection pressure of 1.0 MPa, the CH<sub>4</sub> desorption rate decreased rapidly from 954.9 to 82.1 mL/ min, and the CO<sub>2</sub> percolation rate increased rapidly to 622 mL/min.

Stage III: the desorption rate of  $CH_4$  stabilized at approximately 30 mL/min, and the  $CO_2$  percolation rate stabilized between 533.5 and 591.1 mL/min. At an injection pressure of 0.8 MPa, the desorption rate of  $CH_4$  stabilized at approximately 20 mL/min, whereas the  $CO_2$  percolation rate slightly decreased but remained at approximately 300 mL/min. At an injection pressure of 1.0 MPa, the desorption rate of  $CH_4$  was stable at approximately 20 mL/min, whereas the  $CO_2$ percolation rate decreased slowly and stabilized at approximately 400 mL/min at the end of the test.

Later in the experiment, the concentration of  $CH_4$  gas at the outlet progressively decreased and gradually approached zero. The amounts of  $CO_2$  injected and  $CO_2$  discharged gradually approached each other until they were largely similar. Therefore, the penetration time of  $CO_2$  can serve as an index for the rate at which the experiment proceeds, which is of great significance for measuring the repulsive effect of  $CO_2$  on  $CH_4$ .







Figure 3. Variation law of gas desorption rate under different gas injection pressures.

**3.3. Effective Diffusion Coefficient of CH<sub>4</sub>.** Diffusivity is the ratio of CH<sub>4</sub> diffusion to the amount of CH<sub>4</sub> adsorbed by the coal body at any moment in the experiment, and the kinetic curve of CH<sub>4</sub> diffusion can serve as the curve of diffusivity with time. Equation 2 describes the single-pore diffusion model for gas diffusion in porous media.<sup>37</sup>

$$\frac{Q_{t}}{Q_{\infty}} = 1 - \frac{6}{\pi^{2}} \sum_{n=1}^{\infty} \frac{1}{n^{2}} \exp\left(-\frac{n^{2}\pi^{2}D}{r_{0}^{2}}t\right)$$
(2)

where  $Q_t$  is the amount of gas diffusion at a given moment, mL/g;  $Q_{\infty}$  is the amount of gas adsorbed in the coal seam, mL/g; *D* is the diffusion rate, m<sup>2</sup>/s; and  $r_0$  is the coal particle radius, cm.

Equation 2 is a level addition and solution for  $n = 1 - \infty$ , which is extremely difficult to solve when n > 1. Therefore, letting *n* be 1, it can be simplified to obtain eq 3.

$$\ln\left(1 - \frac{Q_{t}}{Q_{\infty}}\right) = -\frac{\pi^{2}D}{r_{0}^{2}}t + \ln\frac{\pi^{2}}{6}$$
(3)

The above equation reveals that the slope of the tangent line at any point of the curve is  $-D/r_0^2 \cdot \pi^2$ . Taking  $D/r_0^2$  for the effective diffusion coefficient  $D_e$ , further processing can yield the effective diffusion coefficient  $D_e$  and time *t* between the curve. The effective diffusion coefficient  $D_e$  represents the degree of gas diffusion and reflects the diffusion capacity of the gas. Accurate calculations of the effective diffusion coefficient of CH<sub>4</sub> are useful for studying CH<sub>4</sub> diffusion in coal and estimating the amount of CH<sub>4</sub> loss. It can also be used to predict the occurrence of gas disasters.

Figure 4 shows the effective diffusion coefficient variation curve for different  $CO_2$  injection pressures and the  $CH_4$  effective diffusion coefficient and coal bed  $CH_4$  gas pressure variation curves at 0.6 MPa.

Figure 4 shows that the pattern of change in the effective diffusion coefficient comprises a rapidly increasing first stage, a rapidly decreasing second stage, and a final stabilization stage.

First stage: the  $CH_4$  gas in the fissure in the coal seam has been adsorbed in equilibrium, the  $CH_4$  gas pressure in the coal seam is high, the injected  $CO_2$  gas starts to carry free-state  $CH_4$ out, and the  $CH_4$  gas pressure exhibits a slow decreasing trend.



Figure 4. Variation curves of effective diffusion coefficient with different  $CO_2$  injection pressures and  $CH_4$  effective diffusion coefficient and coal bed  $CH_4$  gas pressure at 0.6 MPa.

From a macroscopic point of view, the  $CO_2$  concentration differs with location in the coal seam fracture, and these differences result in the gradual increase in the effective diffusion coefficient of  $CO_2$ . Microscopic analysis reveals that the  $CO_2$  injection at the beginning of the experiment is small, the coal seam has not yet adsorbed  $CO_2$ , and the displacement of  $CO_2$  and  $CH_4$  in the pores positively affects diffusion.

Second stage: the free-state CH<sub>4</sub> in the pores has escaped, and CO<sub>2</sub> molecules start to compete with CH<sub>4</sub> molecules for adsorption at the adsorption sites inside the coal seam. Moreover, the adsorbed  $CH_4$  is replaced by the injected  $CO_2$ . An exothermic CO<sub>2</sub> adsorption process occurs in the coal seam, resulting in the CH<sub>4</sub> gas molecules absorbing heat, and the adsorbed CH<sub>4</sub> molecules in the pores start to desorb and escape from the coal seam. Meanwhile, the CH<sub>4</sub> gas pressure in the coal seam drops rapidly. After  $CO_2$  penetrates the coal seam, the partial pressure of  $CO_2$  gas in the coal seam increases rapidly, the coal seam pores adsorb numerous CO<sub>2</sub> molecules, and the amount of CO<sub>2</sub> in the pores increases. Due to the replacement by  $CO_2$  gas, the  $CH_4$  content in the coal seam decreases, the CH<sub>4</sub> concentration gradient in the pores decreases, the diffusion effect begins to weaken, and the effective diffusion coefficient of CH<sub>4</sub> begins to decrease.

Third stage: most of the  $CH_4$  gas in the coal seam has been replaced and escaped, the  $CH_4$  gas pressure in the coal seam is stable at its lowest, the coal seam has adsorbed a large amount of  $CO_2$  gas, and the pores are largely saturated with  $CO_2$  gas molecules. Subsequently, the concentration of  $CH_4$  gas in the pore is very low; the  $CH_4$  diffusion is very small, which has little influence on the diffusion of  $CH_4$ ; and the effective diffusion coefficient tends to be stable.

The effective diffusion coefficient becomes larger when the gas injection pressure increases. After the injection pressure increases from 0.6 to 0.8 MPa and then to 1.0 MPa, the maximum value of the effective diffusion coefficient increases from  $2.3 \times 10^{-5}$  to  $3.4 \times 10^{-5}$  and  $4.6 \times 10^{-5}$  cm<sup>2</sup>/s. Increasing the gas injection pressure can make CH<sub>4</sub> diffuse more fully in the coal seam, so the higher the gas injection pressure is at the later stage of the experiment, the lower the value of its effective diffusion coefficient.

**3.4. Coal Seam Permeability Variation.** The pumping injection was maintained throughout the experiment, which affected the pore structure of the coal seam and constantly changed it; thus, the permeability of the experimental coal body changes dynamically; eq 4 is used to calculate the permeability.<sup>38</sup>

$$K = \frac{2QP\mu L}{A(P_{\rm a}^2 - P_{\rm b}^2)} \tag{4}$$

where K is the permeability,  $10^{-9} \ \mu m^2$ ; P is the standard atmospheric pressure,  $1.01 \times 10^5$  Pa; Q is the flow rate, mm<sup>3</sup>/s;  $P_a$  is the inlet gas pressure, MPa;  $P_b$  is the outlet gas pressure, MPa; L is the specimen size, mm; A is the specimen cross-sectional area, mm<sup>2</sup>; and  $\mu$  is the dynamic viscosity of CO<sub>2</sub>,  $\mu$ Pa s.

The pattern of coal seam permeability change under the three experimental conditions is shown in Figure 5.



Figure 5. Variation in permeability with time under different pressures.

As can be seen from Figure 5, the trend of permeability change is the same for the three groups of experimental coal seams.

First stage: the permeability decreased slowly due to the increase in the amount of gas in the coal seam after a small amount of  $CO_2$  was injected at the beginning of the experiment. The permeability of the three experimental coal seams was reduced from  $1.13 \times 10^{-9}$  to  $1.10 \times 10^{-9} \ \mu m^2$ , 0.68  $\times 10^{-9}$  to  $0.62 \times 10^{-9} \ \mu m^2$ , and  $0.52 \times 10^{-9}$  to  $0.48 \times 10^{-9} \ \mu m^2$ .

Second stage: the permeability decreases sharply because CH<sub>4</sub> continues to desorb and escape from the coal seam as the experiment progresses, and the amount of CO<sub>2</sub> gas adsorbed in the coal seam increases, leading to an increase in replacement adsorption–desorption. Moreover, the continuous adsorption–desorption causes the pores of the coal seam to expand and contract. As a large amount of CH<sub>4</sub> gas desorption escapes from the coal seam, the adsorption of CO<sub>2</sub> by the coal seam begins to dominate. This increases the amount of gas adsorbed in the pores of the coal seam, which is not conducive to seepage, so the permeability decreases. The permeability of the three experimental coal seams was reduced from  $1.13 \times 10^{-9}$  to  $0.12 \times 10^{-9} \,\mu\text{m}^2$ ,  $0.62 \times 10^{-9}$  to  $0.05 \times 10^{-9} \,\mu\text{m}^2$ , and  $0.48 \times 10^{-9}$  to  $0.03 \times 10^{-9} \,\mu\text{m}^2$ .

Third stage: the  $CO_2$  gas molecules in the pores of the coal seam were gradually saturated, largely reaching the adsorption equilibrium. As the experiment progresses, the overall temperature of the coal sample in the adsorption tank increases, and the thermal effect of the coal seam influences the change process of the pores and cracks in the coal seam. Some pores and cracks change from the expanded state to the closed state, the deformation of the pores reaches the maximum limit of elastic deformation, and seepage is primarily stable, so the permeability tends to be stable.

#### 3.5. Effectiveness of Coalbed Methane Extraction.

(1) Amount of desorbed  $CH_4$ : the experiments were performed at 0.6, 0.8, and 1.0 MPa to replace  $CH_4$  with  $CO_2$ , and the trend of  $CH_4$  desorption during the experiments is shown in Figure 6.

As can be seen from Figure 6, the patterns of  $CH_4$  desorption at each injection pressure become largely similar



**Figure 6.** Variation trend of  $CH_4$  desorption under different gas injection pressures.

as the experiment progresses, with  $CH_4$  continuously escaping from the coal seam as the experiment progresses. Furthermore, the amount of desorbed  $CH_4$  continuously increases before stabilizing at the end of the experiment.

At the beginning of the experiment, the desorption rate of  $CH_4$  was high, and the replacement rate was highest. The desorbed  $CH_4$  gas in the pores of the coal seam was mainly free  $CH_4$ , which was relatively easy to replace.

Halfway into the experiment, the rate of the  $CH_4$  desorption volume increase was low, and the  $CH_4$  desorption rate was low. This is mainly because most of the  $CH_4$  gas in the coal seam had been expelled from the coal seam, and replacing and repelling the remaining  $CH_4$  gas in the coal seam is difficult.

The CH<sub>4</sub> desorption volume increased from 90.2 to 94.1 and 97.8 L after the gas injection pressure was increased from 0.6 to 0.8 MPa and then to 1.0 MPa, which were 1.9 and 3.4% higher than that at 0.6 MPa. A higher gas injection pressure simultaneously corresponds to more CH<sub>4</sub> desorption.

(2)  $CO_2$  storage capacity: the experiments were conducted at 0.6, 0.8, and 1.0 MPa to replace  $CH_4$  with  $CO_2$ , and the trend of the  $CH_4$  storage capacity during the experiments is shown in Figure 7.

It can be seen from Figure 7 that the trend of CO<sub>2</sub> sequestration in the coal seams is similar to that of CH<sub>4</sub> desorption under the three experimental conditions. At the beginning of the experiment, the concentration of  $CO_2$  gas at the exit was zero, which indicates that all the injected CO<sub>2</sub> gas in the coal seam was absorbed, and the CO<sub>2</sub> storage increased rapidly. As CO<sub>2</sub> began to rush out of the coal seam, the concentration of CO2 gas at the exit increased rapidly, and most of the injected  $\mathrm{CO}_2$  gas escaped with the gas flow. In contrast, the growth rate of  $CO_2$  storage reduced before finally stabilizing. During the experiment, a higher gas injection pressure corresponded to greater  $CO_2$  storage in the coal seam because the higher the gas injection pressure is, the more  $CO_2$ gas molecules enter the pores of the coal seam and fully contact with them. This increases the amount of  $CO_2$  entering the tiny pores of the coal seam and enhances the displacement between CO<sub>2</sub> and CH<sub>4</sub> molecules in the pores of the coal seam, which leads to an increase in the CH<sub>4</sub> gas replaced and amount of CO<sub>2</sub> adsorbed in the coal seam.

When the injected  $CO_2$  starts to break through the coal seam and escape, the amount of sequestered  $CO_2$  varies with injection pressure. At 0.6 MPa, the  $CO_2$  breakthrough time was 4560 s, and the  $CO_2$  storage capacity was 146.0 L. At 0.8 MPa, the  $CO_2$  breakthrough time was 4440 s, and the  $CO_2$ storage capacity was 193.5 L. At 1.0 MPa, the  $CO_2$ breakthrough time was 3890 s, and the  $CO_2$  storage capacity was 204.4 L. At the end of the experiment, the  $CO_2$  storage capacities were as follows: the amount of  $CO_2$  sequestered in the coal seam was 269.2, 274.2, and 322.8 L for injection pressures of 0.6, 0.8, and 1.0 MPa, respectively. Notably, the amount of  $CO_2$  sequestered in the coal seam increased when the  $CO_2$  injection pressure was increased.

(3) Extraction efficiency: to further analyze the effect of replacement of CH<sub>4</sub> by CO<sub>2</sub>, the CH<sub>4</sub> extraction efficiency was calculated using the following equation

$$E = \frac{Q_{a}(CH_{4})}{Q_{b}(CH_{4})} \times 100\%$$
(5)



Figure 7. Desorption efficiency of CH<sub>4</sub> under different gas injection pressures.

where *E* is the CH<sub>4</sub> extraction efficiency, %;  $Q_a$  (CH<sub>4</sub>) is the amount of CH<sub>4</sub> desorbed from the coal seam, L; and  $Q_b$  (CH<sub>4</sub>) is the amount of original CH<sub>4</sub> from the coal seam, L.

The  $CH_4$  extraction efficiency during the experiments at different pressures is shown in Figure 8.

As can be seen from Figure 8, after the CO<sub>2</sub> injection pressure was increased from 0.6 to 0.8 MPa and then to 1.0 MPa, the CH<sub>4</sub> extraction efficiency increased from 76.9 to 80.2 and 82.9%. Compared with that at the injection pressure of 0.6 MPa, the extraction efficiency increased by 4.3 and 7.8% when the injection pressure was 0.8 and 1.0 MPa, respectively. The coal seam pressure was in a state of dynamic change during the experiment, which affected the pore structure of the coal seam. The higher the  $CO_2$  injection pressure is, the greater the change in the coal seam pressure, and the more its pore structure is affected. Therefore, more CH4 gas was desorbed from the coal seam, and the CH4 extraction efficiency increased. When the CO<sub>2</sub> injection pressure is increased, the replacement effect of CO2 on CH4 in the coal seam is enhanced, so increasing the CO<sub>2</sub> injection pressure improves the CH<sub>4</sub> extraction effect in the coal seam.



Figure 8. Extraction efficiency of CH<sub>4</sub> under different gas injection pressures.

# 4. CONCLUSIONS

Herein, an experimental study on the replacement of  $CH_4$ under different  $CO_2$  injection pressures was conducted using the  $CO_2$  replacement  $CH_4$  experimental platform, and the gas transport characteristics and CBM extraction effects during the experimental process were analyzed. The main conclusions are as follows.

- 1 The gas migration rate accelerated when the gas injection pressure was increased. After the gas injection pressure was increased from 0.6 to 0.8 MPa and then to 1.0 MPa, the migration rates from monitoring points  $T_1$  to  $T_2$  were 0.005, 0.00597, and 0.00671 cm/s, respectively, whereas the migration rates from monitoring points  $T_2$  to  $T_3$  were 0.0067, 0.00694, and 0.00833 cm/s, respectively. Comparisons of the migration rates between adjacent monitoring points revealed that they accelerated with the increase in gas injection pressure. As the gas injection pressure increases, the rate of gas migration out of the coal seam is accelerated, and increasing the gas injection pressure can improve the CH<sub>4</sub> extraction.
- 2 The change trend of the gas desorption rate under different injection pressures can be divided into slow decline, sharp decline, and stability stages with the increase in injection pressure. Moreover, the CO2 breakthrough time is increased, and the change in the CH<sub>4</sub> desorption rate is accelerated. The higher the gas injection pressure is, the larger the maximum effective diffusion coefficient. Moreover, after increasing the gas injection pressure from 0.6 to 0.8 MPa and then to 1.0 MPa, the maximum effective diffusion coefficient increases from 2.3  $\times$  10<sup>-5</sup> to 3.4  $\times$  10<sup>-5</sup> and 4.6  $\times$  $10^{-5}$  cm<sup>2</sup>/s. The change pattern of the coal seam permeability can also be divided into three stages: slowly decreasing, sharply decreasing, and stable. The permeability change pattern can also be divided into slow decline, sharp decline, and stability stages, and increasing the gas injection pressure can accelerate the change in permeability.
- 3 As the gas injection pressure increases, the  $CH_4$  desorption volume,  $CO_2$  sequestration volume in the coal seam, and  $CH_4$  extraction efficiency increase. After the injection pressure was increased from 0.6 to 0.8 MPa and then to 1.0 MPa, the  $CH_4$  desorption volume increased from 90.2 to 94.1 and 97.8 L, whereas the  $CO_2$  sequestration volume in the coal seam increased from 269.2 to 273.2 and 322.8 L. In contrast, the  $CH_4$  extraction efficiency increased from 76.9 to 80.2 and 82.9%.

# AUTHOR INFORMATION

# **Corresponding Author**

Baoshan Jia – College of Safety Science and Engineering, Liaoning Technical University, Fuxin, Liaoning 123000, China; Key Laboratory of Mine Thermodynamic Disasters and Control of Ministry of Education, Liaoning Technical University, Huludao, Liaoning 125105, China; orcid.org/ 0009-0001-2267-5952; Email: jiabaoshan@Intu.edu.cn

#### Authors

Zhihao Fu – College of Safety Science and Engineering, Liaoning Technical University, Fuxin, Liaoning 123000, China; Key Laboratory of Mine Thermodynamic Disasters and Control of Ministry of Education, Liaoning Technical University, Huludao, Liaoning 125105, China

- Yanming Wang College of Safety Science and Engineering, Liaoning Technical University, Fuxin, Liaoning 123000, China; Key Laboratory of Mine Thermodynamic Disasters and Control of Ministry of Education, Liaoning Technical University, Huludao, Liaoning 125105, China
- Weipeng Tian College of Safety Science and Engineering, Liaoning Technical University, Fuxin, Liaoning 123000, China; Shanxi Coal Import & Export Group Zuoyun Donggucheng Coal Company Limited, Datong, Shanxi 037100, China

# Complete contact information is available at: https://pubs.acs.org/10.1021/acsomega.3c03016

### Notes

The authors declare no competing financial interest.

# ACKNOWLEDGMENTS

We sincerely thank the editors and anonymous reviewers for improving the quality of this manuscript, as well as MJEditor (www.mjeditor.com) for providing English editing services.

## REFERENCES

BP Energy Outlook, 2019 ed.: London, United Kingdom, 2019.
 Orr, F. M. Onshore Geologic Storage of CO<sub>2</sub>[J]. Science 2009, 325, 1656–1658.

(3) Anwar, M. N.; Fayyaz, A.; Sohail, N. F.; Khokhar, M. F.; Baqar, M.; Yasar, A.; Rasool, K.; Nazir, A.; Raja, M.; Rehan, M.; et al.  $CO_2$  utilization: turning greenhouse gas into fuels and valuable products. *J. Environ. Manage.* **2020**, *260*, 110059.

(4) Opara, A.; Adams, D. J.; Free, M. L.; McLennan, J.; Hamilton, J. Microbial production of methane and carbon dioxide from lignite, bituminous coal, and coal waste materials. *Int. J. Coal Geol.* **2012**, *96*–*97*, 1–8.

(5) Oreggioni, G. D.; Luberti, M.; Tassou, S. A. Agricultural greenhouse  $CO_2$  utilization in anaerobic-digestion-based biomethane production plants: a techno-economic and environmental assessment and comparison with  $CO_2$  geological storage. *Appl. Energy* **2019**, 242, 1753–1766.

(6) Liu, Y.; Rui, Z. A storage-driven CO<sub>2</sub> EOR for a net-zero emission target. *Engineering* **2022**, *18*, 79–87.

(7) Fan, C.; Elsworth, D.; Li, S.; Zhou, L.; Yang, Z.; Song, Y. Thermo-hydro-mechanical- chemical couplings controlling  $CH_4$  production and  $CO_2$  sequestration in enhanced coalbed methane recovery. *Energy* **2019**, *173*, 1054–1077.

(8) Qin, L.; Ma, C.; Li, S.; Lin, H.; Ding, Y.; Liu, P.; Wang, P.; Gao, Z. Liquid Nitrogen's Effect on the Mechanical Properties of Dried and Water-Saturated Frozen Coal. *Energy Fuels* **2022**, *36*, 1894–1903.

(9) Qin, L.; Wang, W.; Lin, H.; Liu, P.; Long, H.; Yang, E.; Lin, S. Temperature evolution and freeze-thaw characteristics of watersaturated-dried coal samples during low-temperature freeze-thaw process. *Fuel* **2022**, *324*, 124689.

(10) Du, Y. ScCO<sub>2</sub> Experimental Study on Mineral Geochemistry and Reservoir Structure Response of Injected Coal Seam; China University of Mining and Technology, 2018.

(11) Rathi, R.; Lavania, M.; Singh, N.; Manab Sarma, P.; Kishore, P.; Hajra, P.; Lal, B. Evaluating indigenous diversity and its potential for microbial methane generation from thermogenic coal bed methane reservoir. *Fuel* **2019**, *250*, 362–372.

(12) Mazzotti, M.; Pini, R.; Storti, G. Enhanced coalbed methane recovery. J. Supercrit. Fluids **2009**, 47, 619–627.

(13) Yu, S.; Bo, J.; Meijun, Q. Molecular Dynamic Simulation of Self- and Transport Diffusion for  $CO_2/CH_4/N_2$ in Low-Rank Coal Vitrinite. *Energy Fuels* **2018**, *32*, 3085–3096.

(14) Zeng, Q.; Wang, Z.; Liu, L.; Ye, J.; McPherson, B. J.; McLennan, J. D. Modeling  $CH_4$  Displacement by  $CO_2$  in Deformed Coalbeds during Enhanced Coalbed Methane Recovery. *Energy Fuels* **2018**, *32*, 1942–1955.

(15) Aminu, M. D.; Ali Nabavi, S.; Rochelle, C. A.; Manovic, V. A review of developments in carbon dioxide storage. *Appl. Energy* **2017**, 208, 1389–1419.

(16) Xiao, B.; Liu, S.; Li, Z.; Ran, B.; Ye, Y.; Yang, D.; Li, J. Geochemical characteristics of marine shale in the Wufeng Formation–Longmaxi Formation in the northern Sichuan Basin, South China and its implications for depositional controls on organic matter. J. Petrol. Sci. Eng. **2021**, 203, 108618.

(17) Yu, H.; Jiang, Q.; Song, Z.; Ma, Q.; Yuan, B.; Xiong, H. The economic and  $CO_2$  reduction benefits of a coal-to-olefins plant using a  $CO_2$ -ECBM process and fuel substitution. *RSC Adv.* **2017**, *7*, 49975–49984.

(18) Fujioka, M.; Yamaguchi, S.; Nako, M.  $CO_2$ -ECBM field tests in the Ishikari Coal Basin of Japan. *Int. J. Coal Geol.* **2010**, *82*, 287–298.

(19) White, C. M.; Smith, D. H.; Jones, K. L.; Goodman, A. L.; Jikich, S. A.; LaCount, R. B.; DuBose, S. B.; Ozdemir, E.; Morsi, B. I.; Schroeder, K. T. Sequestration of carbon dioxide in coal with enhanced coalbed methane recovery: A review. *Energy Fuels* **2005**, *19*, 659–724.

(20) Yu, H.; Yuan, J.; Guo, W.; Cheng, J.; Hu, Q. A preliminary laboratory experiment on coalbed methane displacement with carbon dioxide injection. *Int. J. Coal Geol.* **2008**, *73*, 156–166.

(21) Prusty, B. K. Sorption of methane and  $CO_2$  for enhanced coalbed methane re-covery and carbon dioxide sequestration. *J. Nat. Gas Chem.* **2008**, *17*, 29–38.

(22) Bai, G.; Su, J.; Zhang, Z.; Lan, A.; Zhou, X.; Gao, F.; Zhou, J. Effect of  $CO_2$  injection on  $CH_4$  desorption rate in poor permeability coal seams: An experimental study. *Energy* **2022**, 238, 121674.

(23) Tu, B.; Xie, C.; Li, W.; et al. Study on the adsorption/desorption patterns of  $CO_2$ ,  $CH_4$  and  $N_2$  by coal seams. *Coal Sci. Technol.* **2012**, 40, 70–72.

(24) Tang, S.; Tang, D.; Yang, Q. The variation law of gas fraction in isothermal adsorption-desorption of binary gases. *J. China Univ. Min. Technol.* **2004**, *04*, 86–90.

(25) Long, H.; Lin, H. F.; Yan, M.; et al. Adsorption and diffusion characteristics of  $CH_4$ ,  $CO_2$ , and  $N_2$  in micropores and mesopores of bituminous coal: Molecular dynamics. *Fuel* **2021**, *292*, 120268.

(26) Liu, Y. W.; Liu, M. J. Effect of particle size on the variability of gas desorption diffusion of soft and hard coal grains. *J. Coal* **2015**, *40*, 579–587.

(27) An, F. H.; Jia, H. F.; Liu, J. Research on gas diffusion model based on coal pore composition. *J. Rock Mech. Eng.* **2021**, 40, 987–996.

(28) Yang, H. M.; Liang, L. H.; Feng, C. Y.; et al. Influence of gas injection pressure on displacement effect of gas from different injection sources. *Chin. J. Saf. Sci.* **2017**, *27*, 7.

(29) Wu, D.; Liu, X. Y.; Sun, K. M.; et al. Experimental study on mechanical properties and permeability of coal and rock containing  $CH_4$  after  $CO_2$  injection. *Chin. J. Saf. Sci.* **2015**, *25*, 5.

(30) Yang, T. H.; Chen, L. W.; Yang, H. M.; et al. Experimental study on the transformation process of the mechanism of carbon dioxide injection to promote coal seam gas drainage. *J. Northeast. Univ., Nat. Sci.* **2020**, *41*, 623–628.

(31) Jing, J. J. Experimental Study on the Influence of Coal Water Content on  $CO_2$  Displacement of  $CH_4$ ; Taiyuan University of Technology: Taiyuan, 2016.

(32) Zhou, X. H.; Jiang, P. F.; Bai, G.; et al. Test and analysis of replacement efficiency of  $CO_2$  displacing  $CH_4$ . *Chin. J. Saf. Sci.* **2020**, 30, 6.

(33) Meng, J. Q.; Li, S. C.; Niu, J. X.; Meng, H. X.; Zhong, R. Q.; Zhang, L. F.; Nie, B. Effects of moisture on methane desorption characteristics of the Zhaozhuang coal: experiment and molecular simulation. *Environ. Earth Sci.* **2020**, *79*, 44. (34) Wu, S.; Guo, Y. Discussion on the mechanism of gas injection to develop coalbed methane. *J. Taiyuan Univ. Technol.* **2000**, *4*, 361–363.

(35) Mazumder, S.; Wolf, K. H. A. A.; van Hemert, P.; Busch, A. Laboratory Experiments on Environmental Friendly Means to Improve Coalbed Methane Production by Carbon Dioxide/Flue Gas Injection. *Transp. Porous Media* **2008**, *75*, 63–92.

(36) Li, J.; Zhang, L.; Xue, J.; Zhang, C.; Huang, M.  $CO_2$  in gas injection displacementReplacement of coal body  $CH_4$  Behavior characteristics. *J. Coal Sci.* **2021**, *46*, 385–395.

(37) Liu, T.; Lin, B. Q.; Fu, X. H.; Gao, Y.; Kong, J.; Zhao, Y.; Song, H. Experimental study on gas diffusion dynamics in fractured coal: a better understanding of gas migration in in-situ coal seam. *Energy* **2020**, *195*, 117005.

(38) Zhang, Z. M.; Liang, W. G. Experimental study on the influence of adsorbed gas on coal permeability. *J. Taiyuan Univ. Technol.* **2013**, 44, 356–360.