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Abstract

BRAFYE confers poor prognosis and is associated with a distinct subtype of colorectal cancer (CRC). Little is known,
however, about the genetic events driving the initiation and progression of BRAFY®"E mutant CRCs. Recent genetic
analyses of CRCs indicate that BRAFY"E often coexists with alterations in the WNT- and p53 pathways, but their
cooperation remains ill-defined. Therefore, we systematically compared small and large intestinal organoids from mice
harboring conditional Braf*5%F  Tyrp53tSLRIZZH andjor Apc™™r alleles. Using these isogenic models, we observe tissue-
specific differences toward sudden BRAFY®%E expression, which can be attributed to different ERK-pathway ground states
in small and large intestinal crypts. BRAFY®%E alone causes transient proliferation and suppresses epithelial organization,
followed by organoid disintegration. Moreover, BRAFY®"F induces a fetal-like dedifferentiation transcriptional program in
colonic organoids, which resembles human BRAF'*“E.driven CRC. Co-expression of p53R!'"*H delays organoid
disintegration, confers anchorage-independent growth, and induces invasive properties. Interestingly, p53%!7*! cooperates
with BRAFY®"E to modulate the abundance of transcripts linked to carcinogenesis, in particular within colonic organoids.
Remarkably, WNT-pathway activation by Apc deletion fully protects organoids against BRAFY**E-induced disintegration
and confers growth/niche factor independence. Still, Apc-deficient BRAFY***E_mutant organoids remain sensitive toward the
MEK inhibitor trametinib, albeit p53%'7* confers partial resistance against this clinically relevant compound. In summary,
our systematic comparison of the response of small and large intestinal organoids to oncogenic alterations suggests colonic
organoids to be better suited to model the human situation. In addition, our work on BRAF-, p53-, and WNT-pathway
mutations provides new insights into their cooperation and for the design of targeted therapies.

Introduction

Colorectal cancer (CRC) represents a heterogeneous disease
with distinct disease mechanisms and prognoses [1]. This
heterogeneity is explained by a multistep carcinogenesis,
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pathway alterations. These promote tumorigenesis either
through transformation of intestinal stem cells (ISC) or
dedifferentiation of their progeny [2]. Frequent ERK-
pathway alterations comprise KRAS and BRAF mutations,
although both oncogenes trigger overlapping and distinct
processes [3]. The most common BRAF mutation, the
V600E substitution, generates a constitutively active
oncoprotein and occurs in 11% of CRCs. BRAFY®E pre-
dicts poor survival, particularly in microsatellite-stable
(MSS) tumors [4].

Most BRAFV*"E_driven CRCs arise via the so-called
serrated pathway that differs from the classical
adenoma—carcinoma sequence in which cancers are gen-
erated by early arising Wnt-pathway alterations followed
by KRAS, SMAD4, and TP53 mutations. This concept
is corroborated by the analysis of human CRC specimen
and the recapitulation of the serrated histology in mouse
models [5-9].

Moreover, BRAFY*“E.mutant CRCs predominantly
occur in the proximal colon, display mucinous histology and
a poor differentiation status [10-13]. Mechanistically,
reduced differentiation is linked to loss of CDX2, a master
transcription factor for intestinal differentiation [10, 12].
Indeed, BRAFY"E signaling suppresses CDX2 expression
and thereby differentiation, whereas BRAF inhibitors induce
epithelial re-differentiation in human CRC cell lines [10].

BRAFY*E_mutant CRCs show an early and distinct
metastasis pattern [13]. In contrast to the classical APC-
KRAS-TP53 sequence, BRAFYSE_mutant CRC is less
studied. The fact that BRAFYS"E by itself cannot trigger
metastatic disease in mice [2, 8] raises the question with
which other genetic alterations it cooperates in carcino-
genesis. BRAF-mutant CRC cell lines often carry TP53
mutations [10], suggesting their contribution to CRC pro-
gression, as observed in other entities [14]. Indeed, several
observations pinpoint to a functional relationship between
BRAFY®E and TP53 mutations in establishing metastatic
CRGC:s. First, Rad et al. [6] showed in their mouse model that
BRAFYE is more likely to induce metastatic disease in
combination with TpS53R'7M although the underlying
mechanisms were not addressed. Second, 58% of serrated
adenocarcinoma displayed strong nuclear p53 staining,
indicating mutant p53 protein [7]. A very recent analysis
showed that CRCs with co-alterations in RAS or BRAF
together with TP53 mutations were associated with worse
overall survival and metastasis [15]. In addition, BRAF-
mutant CRCs display aberrant WNT-pathway activity. For
example, increased nuclear f-catenin localization and WNT
target gene expression have been observed during tumor
progression in BRAFYS"F knock-in mice [6, 16], while
WNT signaling promoting alterations, e.g, RNF43 muta-
tions or RSPO3 fusions, have been recently detected in
BRAF"’-mutant human CRCs [17-20].
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These associations raise the question how the BRAF,
WNT, and p53 pathways collaborate in colorectal carcino-
genesis. The many (epi)genetic alterations present in human
CRC:s and their cell line derivatives, however, limit the ret-
rospective functional dissection of their individual contribu-
tion to tumor initiation and progression. Therefore, the
reconstruction of these events (and their interplay) is best
conducted in an oncogene naive system, such as organoids
from intestinal crypts of genetically engineered mice [21, 22].

Most studies using organoids for CRC-related questions,
however, induce oncogenes rather in the small intestine (SI)
than in the colon (COL) [9, 11, 23-25]. The fact that SI
carcinomas account for only 2% of gastrointestinal tumors
[26], however, raises the question whether SI organoids
represent faithful CRC models. Here, we address this
question by systematically comparing the cellular behavior
and transcriptomes of SI and COL organoids from knock-in
mice allowing the conditional expression of BRAFY*F and
p53R172H " either singly or in combination. We show that
BRAFY®E expression in both organoid types leads to
simultaneous processes such as the collapse of the WNT-
producing ISC niche and dedifferentiation. However,
restoration of WNT signaling by Apc deficiency rescues
organoids confronted with BRAFY*’E. Moreover, mutant
p53 cooperates with BRAFY®"F in inducing prerequisites
for metastasis and in recapitulating human CRC signatures.

Results

BRAFV®%E affects the organization of Sl and COL
organoids

To study the consequences of BRAFY®F and/or p53R!7H
expression in an oncogene naive setting, we crossed
Braf®™VOE or Typs3tSERITH yyock-in mice with Villin::
CreER™ transgenic animals expressing the 4-hydroxy-
tamoxifen (4-HT)-regulated Cre recombinase under the
control of the Villin promoter [27] (Supplementary Fig. S1a).
In the absence of Cre activity, the Brafi®*V"E allele ensures
expression of wild-type BRAF [28], while Trp53-SLRI72H
contains a loxP-STOP-loxP cassette preventing p53R!172H
expression [29]. The R172H substitution confers dominant-
negative effects and corresponds to the R175H mutation
found in human tumors, incl. CRCs [14]. Supplementary Fig.
S1b demonstrates the efficient 4-HT induced Cre-mediated
recombination of the Braf and Trp53 loci in both ST and COL
organoids. BRAFYE expression and its downstream effects
on ERK-pathway activation were confirmed by western
blotting (Supplementary Fig. S1c).

Previous studies using either SI or COL organoids noted
that BRAFY® induces organoid disintegration and cell
death. However, this was not observed by others (summarized
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in Supplementary Table S1), albeit different experimental
approaches were applied, and no study has yet compared
organoids from both tissues side-by-side. Here, we show that
BRAFY*™E caused an initial rapid size expansion in both
organoid types, followed by their disintegration and cell death
(Supplementary Fig. S1d—g and Supplementary Videos S1, 2).
Interestingly, our comparison uncovered that COL organoids
disintegrated earlier than their SI counterparts, and that dis-
integration was slightly but significantly delayed in COL
organoids by co-expression of p53%!7H (Supplementary
Fig. Sle). Neither induction of p53%!7?" alone (Supplemen-
tary Fig. S2a) nor 4-HT treatment of organoids lacking floxed
alleles or CreER™ triggered disintegration (Supplementary
Fig. S2b), confirming that this phenotype is specifically
caused by BRAFYOE,

The disintegration of BRAFY®"E expressing organoids
prompted us to analyze their epithelial organization in more
detail. As described in Supplementary Fig. S2c,
BRAFY®E induced proliferation outside of morphologi-
cally defined ISC niches, irregularities in epithelial organi-
zation, impaired tight junction function, and loss of the stem
cell niches. In summary, our BRAFY*’E knock-in approach
confirms previous findings on SI organoids showing a
profound impact of transgenic BRAFY0%K or BRAFY0E
on organoid organization [9, 30] and demonstrates for the
first time that BRAFYS%E affects similar processes in COL
organoids.

BRAFV® and p53%"72 collaborate in inducing
transcriptomic changes reminiscent of human CRC

Following the analysis of BRAFV®E (and p53R!72H).
induced changes in SI and COL organoids, we assessed the
impact and functional relationship of the two oncogenic
mutations in both organoid types by RNA sequencing
(RNA-Seq). The principle component analysis (PCA) shows
that the gene expression profiles of SI and COL organoids
significantly differ in their oncogene naive ground state
(Supplementary Fig. S3a). As expected from their pheno-
types, organoids expressing BRAFY®E, either singly or in
combination with p53®172H exhibited strong changes in their
transcriptomes, while mutant p53 alone had only little
impact on gene expression. Gene set enrichment analysis
(GSEA) confirmed that p53*"7?".mutant organoids dis-
played altered expression of p53 pathway genes, indicating
successful loss of p53 wild-type function (Fig. 1a). Onco-
gene induction in BRAFY®E and BRAFYO0E/p53RI72H
organoids induced a strong p53 signature; however, dimin-
ished p53 target gene activation could still be detected
within the double-mutant organoids. Figure 1b compares the
relative fold changes of selected transcripts upon induction
of BRAF%OOE, alone or in combination with p53R172H, in SI
and COL organoids. In both organoid types, BRAFY"E

induced transcripts associated with metabolic rewiring (e.g.,
the glycolytic key enzymes HK1/2) as well as an immediate
early gene response as reflected by the FOS family tran-
scription factors (Fosll, Fos) and negative feedback reg-
ulators of the EGFR/RAS/RAF/MEK/ERK pathway, such as
Dusp4/5/6, Spry4, and Errfil. Of note, these and other
transcripts were shown to be reversely affected by BRAF
inhibitors in human CRC cell lines [10, 31], and their cross-
validation in clinical CRC samples and prognostic relevance
is presented in a literature survey in Supplementary Table
S2. Many transcripts positively associated with invasion and
metastasis were upregulated in both organoid types. Inter-
estingly, several of them displayed a more pronounced fold
change in COL than in SI organoids, or were exclusively
altered in COL organoids. Examples for this category are
Mpyof [32] and Fgfl5, whose human orthologue FGF19 has
been linked to CRC aggressiveness [33] (Fig. 1b, c¢). A
switch to pro-metastatic processes becomes further evident
by the upregulation of p-integrin subunits such as Itgh4 (Fig.
1b) and ITGBI1, which is recruited to the organoid plasma
membranes (Supplementary Fig. S3b) [34].

Likewise, BRAFY*"E_mutant organoids more abundantly
expressed transcripts associated with human CRC and, in
line with the mucinous phenotype of human BRAFY'E.
positive tumors, mucin biosynthesis (Fig. 1b). Indeed,
BRAFYS%E_expressing organoids secreted Mucin2 (Muc2)
into their lumina, while expression of this glycoprotein was
largely confined to Goblet cells in control and p53R127H.
positive organoids (Fig. 1d). The upregulation of Cathepsin
E (Ctse), a protease that is strongly associated with serrated
adenoma [35, 36], represents another parallel to human
CRCs (Fig. 1b, c; Supplementary Fig. S3c). Moreover,
genes like Cldni8 and the two cell-junction protein genes
Gjb5 and Vsigl, which all have been associated with the
serrated pathway [36, 37], were only detected in COL
organoids and especially upregulated in the double-mutant
ones (Fig. 1b). This is in line with a highly significant cor-
relation of the BRAFY*"E_expressing COL organoids with
gene expression profiles from human sessile-serrated ade-
noma (SSA) patients (Supplementary Fig. S4).

Given that BRAFY®"F has been implicated in ISC
exhaustion in SI organoids [9, 11], we were interested
whether BRAFYS"E (and p53R!"?1) would affect transcripts
associated with intestinal stemness and the Lgr5/Wnt-sig-
naling pathway. As shown in Fig. 1b, BRAFY®E sup-
pressed many transcripts, which have been linked to ISC
biology [38], in both organoid types. This includes, the ISC
niche markers Olfim4 and Smoc2, which have been linked to
Wnt signaling [39] (Fig. 1b, c¢), and supports the afore-
mentioned morphological observation that the integrity of
the ISC niche is lost (Supplementary Figs. S1d and S2f).

Moreover, induction of BRAFY%"E als0 decreased intest-
inal differentiation markers, in particular in COL organoids

SPRINGER NATURE
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(Fig. 1b). This agrees with our previous study showing that
BRAFY*E inhibitors induce epithelial differentiation markers
such as Claudin-15, AMACR, and carboxyesterases (Ces) in
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human CRC cell lines [10]. The latter two as well as Sis,
encoding a sucrase isomaltase downregulated by BRAFY®%E
in COL organoids, are well-known CDX2 target genes
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« Fig. 1 RNA-Seq of Braf""E/+ (VE) and Trp53%/72H+ (p53) single
and Braf"*"’E"* Trp53R172H/+ (VE,p53) double-mutant SI and COL
organoids (GSE132551). a Heatmap of the log2 fold changes
(induced vs. non-induced, color coded) of the genes listed in the
HALLMARK_P53_PATHWAY MSigDB gene set. b Heatmap of
selected differentially regulated transcripts. Color code represents the
log2 fold change (induced vs. non-induced). Asterisks marked genes
have already been found to be among the top 50 of differentially
regulated genes in human CRC cell line spheroids upon BRAFY50E
inhibition ([10]; blue = downregulated; red = upregulated). ¢ Western
blots (WB) of SI and COL organoids using the indicated antibodies.
GAPDH and HSP90 serve as loading controls. Each subpanel identi-
fied by its pERK detection reflects a distinct biological experiment.
d MUC2 IF staining of formalin-fixed paraffin-embedded (FFPE) SI
and COL organoid sections shows enhanced mucin production within
mutant organoids, with highest levels in double-mutant ones. Scale
bars: 50 um.

[40, 41]. This suggests that BRAFY’™E also counteracts
epithelial differentiation in murine oncogene naive organoids.

In summary, RNA-Seq identified profound differences
between SI and COL organoids upon oncogene expression.
Importantly, our side-by-side comparison revealed that the
BRAFY*E_mutant COL organoids more abundantly
express transcripts associated with human CRC.

Oncogene naive SI and COL crypts significantly
differ in ERK-pathway activity

The marked differences between SI and COL organoids in
response to oncoprotein expression prompted us to compare
the transcriptomes of primary intestinal crypts. As shown by
the PCA in Fig. 2a, SI and COL crypts significantly differed
in their transcriptomic ground state. Importantly, crypts
from both tissues displayed unanticipated differences in the
expression of ERK-pathway elements and target genes
(Fig. 2b—e). For example, KSR1, a potent RAF activator
and scaffolding protein for the three core kinases of the
RAF/MEK/ERK module [42, 43], was more highly
expressed at the RNA and protein level in SI organoids.
Commensurate with previous studies in other cell types (see
references [42, 43] and references therein), we demonstrate
a positive correlation between KSR1 expression and MEK/
ERK phosphorylation for intestinal tissue (Fig. 2d, e). Of
note, KSR1 expression, MEK/ERK phosphorylation, and
expression of the ERK target gene DUSP6 were highest in
proximal SI, the tissue usually used for organoid generation
[21] (Fig. 2d). In contrast, but as expected from previous
observations [44], Cdx2 expression increased along the
anterior—posterior axis. Interestingly, Spred and Sprouty
(Spry), which suppress the ERK pathway at its apex [45],
were also more abundantly expressed in COL crypts. These
observations indicate that the ERK axis is more stringently
controlled in the COL, and that higher pathway activity is
tolerated in the SI.

BRAF°°E induces a fetal signature in murine
organoids that closely resembles transcriptome
profiles of human BRAF-mutant CRCs

Interestingly, our RNA-Seq analysis revealed that
BRAFYE triggers processes linked to both ends of the
functional crypt—villus axis. On the one hand, we confirm
ISC niche exhaustion by the loss of Paneth cells in SI
organoids (Supplementary Fig. S2f) and the decrease of
transcripts associated with intestinal stemness and Lgr5/
Whnt signaling (Fig. 1b, c). On the other hand, induction of
BRAFY%E 4150 markedly reduced intestinal differentiation
markers, in particular in COL organoids (Fig. 1b, c). This is
further supported by Fig. 3a, demonstrating a strong
enrichment of the intestine data sets from Cdx1/Cdx2
double-knockout mice (GSE24633) [46] in our COL orga-
noid transcriptomes. Of note, especially the BRAFY6E/
p53R172H - double-mutant COL organoids resembled the
Cdx1/Cdx2 knockout signature. This agrees with the
stronger reduction of CDX2 target genes, like Sis and Ces
[40, 41], as well as with stronger upregulation of CldnlS8,
which has been negatively correlated with CDX2 expres-
sion and associated with poor survival in CRC patients [47]
(Fig. 1b).

In 2013, Mustata et al. identified Lgr5-independent pro-
genitors of murine fetal intestines, which give rise to poorly
differentiated spheroids displaying phenotypical character-
istics that profoundly differ from those of adult ISCs [48].
Similar to the phenotype observed in BRAFY " -expressing
organoids (Supplementary Fig. S2c, f), the fetal spheroids
presented with no Paneth cells and proliferating cells, which
were not restricted to the crypt bases. Importantly, their
transcriptome significantly differed from adult organoids
with only a very small overlap in WNT target gene
expression and a poor differentiation status. This prompted
us to compare our transcriptomic data with the genes that are
up- and downregulated in fetal spheroids, respectively
(Fig. 3b). Indeed, the GSEA demonstrates a clear positive
correlation of our organoid and the fetal spheroid tran-
scriptomes, since up- and downregulated genes in fetal
spheroids are enriched and depleted, respectively. This
indicates that BRAFY?’E and BRAFY%%E/p53R172H jnduce a
fetal spheroid-like program within intestinal organoids iso-
lated from adult mice. Interestingly, there is a higher simi-
larity between the transcriptomes of COL organoids to fetal
spheroids, although Mustata et al. [48] used embryonic SI as
an experimental model. Next, we asked whether the fetal
signature is also relevant for human CRC. First, we com-
pared 54 BRAFY®“E_mutant colorectal adenocarcinoma
(COAD) to 41 healthy colon samples listed in the TCGA
database and then calculated the correlation to the LGRS-
independent fetal signature (Fig. 3c, left GSEAs). Indeed,
we observe a highly significant correlation between the fetal

SPRINGER NATURE
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Fig. 2 Primary small and large intestine exhibit differences in
basal ERK-signaling activity (GSE132546). a PCA of RNA-Seq of
freshly isolated small intestinal (SI, circles) and colonic (COL,
triangles) crypts from two female (no. 1, 4) and two male (no. 2, 3)
donor mice. SI and COL show a clear separation according to PC1.
b Heatmap of transcripts encoding ERK-pathway components
shows differential expression between SI and COL crypts freshly
isolated from the four donor mice described in a. Color code
represents the row-wise scaled (Z score) RNA intensity. ¢ Simpli-
fied cartoon visualizing ERK-pathway components of particular
interest. d WB of SI and COL crypts with the indicated antibodies.
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E-cadherin serves as loading a control. Of note, RNA-Seq revealed
that other loading controls, such as GAPDH or beta-actin were
differentially expressed between SI and COL crypts. Only E-
cadherin displayed a negligible log2 fold change of 0.004.
e Quantification of WB analyses of pERK and DUSP6. ERK
phosphorylation was normalized to total ERK expression, and
DUSP6 was normalized to internal loading control. Green/brown
colors indicate whole-tissue lysates, while blue colors indicate
isolated crypt lysates. Each color depicts one donor mouse. Data are
presented as mean + SD. **P < (0.01 (paired ¢ test, n 2 3 donor mice).
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sets distinguishing BRAF wild-type and mutant samples
identified by Popovici et al. (Fig. 3c, right GSEAs (Popovici
et al. [49])). Thus, two independent approaches support the
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« Fig. 3 BRAFV*E jnduces a fetal signature in COL organoids. a
Gene set enrichment analysis (GSEA) of our transcriptomic data with
genes that are up- (left) and downregulated (right), respectively, in
Cdx1/Cdx2 double-knockout (DKO) mice (GSE24633). b GSEA of
our transcriptomic data against genes that are up- (left) and down-
regulated (right), respectively, in mouse fetal intestinal spheroids.
¢ GSEAs showing the comparison of the LGRS5-independent fetal
signature to human data sets. The left panel shows the enrichment of
the fetal spheroids signature in TCGA BRAFY®E mutant vs. healthy
colon. The right panel shows the enrichment of the Popovici signature,
i.e., 314 differentially expressed probe sets between WT and BRAFm
samples, in fetal spheroids. Note, a positive fold change of the
“Popovici genes” indicates higher expression in WT vs BRAFm,
which results in an inverse correlation to the fetal signature. NES
normalized enrichment score, PV P-value.

operation of a BRAF'*"E.induced fetal dedifferentiation

program in human CRC, which is recapitulated by our
murine organoids.

3R1 72H FV600E

p5 confers invasive properties to BRA
expressing COL organoids

Our above-described RNA-Seq analysis of BRAFY*E and/or
p33R17 M mutant COL organoids revealed that 72 out of the
129 selected BRAFY*E_responsive transcripts, outside of the
ERK target gene category, were more strongly modulated
when p53R172H was present (Fig. 1b). Interestingly, several of
them are linked to tumor progression. Validation of the RNA-
Seq analysis revealed that co-expression of p53R!72H further
suppressed protein expression of NR2E3, which emerged as a
potential tumor suppressor in breast and liver cancer [50, 51]
(Supplementary Fig. S3d). Conversely, Ephrin type-A
receptor 2 (EPHA2), a transcriptional RAS/RAF target [52],
which is overexpressed in several human cancers, including
CRC [53, 54], was more strongly upregulated at the protein
level when p53R!"7?H was present (Supplementary Fig. S3d).
Similarly, co-expression of p53%72H increased expression of
CTSE (Fig. lc; Supplementary Fig. S3c, e) and Caveolin-1
(CAV1) (Fig. 1c; Supplementary Fig. S3e). Although its role
in metastasis formation is controversially discussed [55], there
is evidence that CAV1 is decreased in early stages of carci-
nogenesis [56, 57], but is found to be elevated at later stages
[58], including in CRC [59]. Moreover, increased CAV1
expression in T4-stage CRCs was associated with increased
invasiveness [60], and depletion of CAV1 reduced the inva-
sive properties of human CRC cell lines [61].

All these observations already support the collaboration
between BRAFY™E and p53R"7H, To further investigate the
functional relationship of the two oncogenic mutations, we
introduced the delta log2 fold change between the double-mutant
and BRAFY*E_only organoids and subjected it to GSEA. Of
note, we observed decreased activation of p53-related gene
signatures (Fig. 4a) and the downregulation of mutated p53
target genes (STAMBOLSKY_TARGETS_OF MUTATED
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_TP53) only within the COL organoids (Fig. 4b). This further
highlights tissue-specific reactions toward oncogenic stress.
Furthermore, the top 50 significantly regulated Molecular Sig-
natures Database (MSigDB) gene sets revealed the activation of
several mitochondria, cellular respiration, and cell cycle sig-
natures, indicating enhanced proliferation and metabolic activity
upon co-expression of p53%'*H (Supplementary Fig. S5).
Interestingly, the double-mutant organoids show an increased
expression of genes associated with invasive grade 3 breast
cancer [62] (SOTIRIOU_BREAST CANCER_GRADE 1_
VS_3_UP), as well as of genes that are part of the embryonic
stem cell signature (WONG_EMBRYONIC_STEM_CELL _
CORE), which is activated in epithelial tumors that are likely
to progress to metastasis [63] (Fig. 4b). Furthermore, COL
organoids also exhibited decreased expression of genes, which
are downregulated in invasive mammary ductal carcinoma
(SCHUETZ_BREAST_CANCER_DUCTAL_INVASIVE_D-
N) (Supplementary Fig. S5b). The activation of these invasion-
associated signatures by the addition of p353R!7?H, especially
within the COL organoids, ties in with the higher expression of
selected “metastasis & invasion” associated genes (Fig. 1b). It
should be noted, however, that, although some genes from the
EMT hallmark classifier were more strongly induced in orga-
noids co-expressing BRAFY*™F and p53%17 (Supplementary
Fig. S6), we did not observe a ‘classical” epithelial-to-
mesenchymal transition (EMT), as defined by the loss of E-
cadherin or the induction of transcription factors like ZEB1/2,
SNAIL, SLUG, or TWIST in organoids.

As RNA-Seq further revealed that BRAFY00E/p53R172H_
expressing COL organoids display a transcriptional
signature reflecting processes contributing to tumor pro-
gression and metastasis, we set up three experimental assays
that reflect key prerequisites for tumor cell dissemination.
First, we addressed the colony growth capacity after dis-
ruption into single cells (Fig. 4c, d). Interestingly,
BRAFVE/p53R172H double-mutants formed larger colo-
nies than those expressing either BRAFYVE or p53R172H,
Anchorage-independent growth represents a stringent key
characteristic of transformed epithelial cells and prerequisite
for metastasis. Therefore, cells derived from COL organoids
were plated on culture dishes coated with poly(2-hydro-
xyethyl methacrylate) (PolyHEMA), a polymer preventing
vessel adhesion. As expected, cells from control and
p53R172H_mutant organoids did not thrive under these con-
ditions, and cells expressing BRAFV*’E showed only little
growth. The BRAFY®E/p53RI7ZH qouble-mutants, how-
ever, displayed increased anchorage-independent growth
(Fig. 4e, f) and, furthermore, presented with invasive
behavior in a diluted Matrigel matrix (Fig. 4g, h; Supple-
mentary Fig. S7) [25]. These observations are in line with
the reported function of p53 as inducer of anoikis, a pro-
grammed cell death upon anchorage-independent condi-
tions, which needs to be overcome by cancer cells during
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mutants (Fig. 1b, c; Supplementary Fig. S3e), which is in

cancer progression and metastatic colonization [64, 65].
Indeed, BRAFY®%E/p53RI72H qoyble-mutant organoids dis-

line with its reported role in mediating anoikis resistance in

several cancer entities [66—68]. Collectively, these data

played higher CAV1 expression than the BRAF V%% single-
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Fig. 4 Trp53®72H supports proliferative and invasive character-
istics of BrafV 600E mutant organoids. a, b GSEA of the delta log2
fold changes of double-mutant vs. BRAFY**E.only organoids was
performed. Shown are enrichment heatmaps for p53-related gene sets
(a) and for the top ten significantly (P < 0.05) regulated chemical and
genetic perturbations (CGP) (b). On both heatmaps, color code and
circle size represent NES. ¢ Representative bright-field (BF) images of
three independent experiments show colony growth capacity of COL
organoids. Quantification is shown in (d), d Quantification of colony
growth capacity, normalized to the corresponding non-induced control.
The longest straight lines of the crypts were measured. e Control or 4-
HT-induced COL crypts were disaggregated, and grown on
PolyHEMA-coated culture dishes for 6 days before BF images were
taken and the diameters of the formed cell clusters were measured.
Representative BF pictures of >3 independent experiments that are
quantified in (f), are shown. f Quantification of anchorage-independent
growth. The longest straight lines of the cell clusters were measured.
Note that neither non-induced controls nor p53%!7?".mutant organoids
were able to form cell clusters on PolyHEMA. g Control or 4-HT-
induced COL organoids were grown in diluted (50%) Matrigel. BF
images were taken at day 7, and organoids attached to the plastic
surface were counted (highlighted by dashed lines). Representative
pictures of >3 independent experiments are shown, which are quanti-
fied in (h). Higher-magnification BF images of “invaded” organoids
are shown in Supplementary Fig. S7. h Quantification of “invaded”
organoids. In (c, e, g), scale bars: 50 um. In (d, f, h), symbol colors
refer to donor mice, symbol shapes refer to independent experiments.
Data are presented as mean+SD, and statistical significance was
determined by one-way ANOVA (corrected for multiple comparison
by Bonferroni). *P <0.05; **P <0.01; ***P <0.001; ****P <0.0001.

support the metastasis-associated transcriptomic signatures
and further imply that p53%'"7*" promotes the fitness and
invasive properties of BRAFY*"E_expressing organoids,
which supports the assumption that 7P53 mutations are
important for the transition from adenoma to carcinoma
[69, 70].

Apc inactivation allows BRAF'®°°F expressing cells to
establish long-term surviving organoids

Given that Wnt target genes are strongly reduced in
BRAFYE expressing COL organoids, and that survival of
SI organoids is augmented by pharmacological or ligand-
induced WNT-pathway activation [9, 11], we tested whe-
ther this phenomenon is also applicable to COL organoids.
Indeed, the GSK3 inhibitor CHIR-99021 improved the
survival of BRAFY®"E expressing COL organoids (Sup-
plementary Fig. S8a). In addition to promoting p-catenin
degradation and thereby suppressing canonical Wnt sig-
naling, GSK3 is involved in many other cellular processes
[71], and hence this pharmacological approach by itself
does not provide enough mechanistic support for a protec-
tion against BRAFY®E.induced organoid disintegration
by Wnt signaling. Therefore, we asked whether genetic
WNT-pathway activation would increase the fitness of
BRAFY®E expressing COL organoids. To this end, we
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crossed Bmfﬁ”"vm(m : Villin::CreER™ mice (with or without
the Trp53-SL—RIH allele) with animals harboring the
conditional Apc-knockout allele [72] and the Rosa26::
mTOM/mGFP Cre reporter [73]. Cre-mediated recombina-
tion occurred very efficiently as reflected by the recombi-
nation of the Apc locus and the switch to mGFP expression
(Supplementary Fig. S8b, c). APC loss successfully induced
WNT-pathway activation, as indicated by OLFM4 pre-
servation within Braf'%% '+ Apc*® COL organoids (Sup-
plementary Fig. S8d). Interestingly, genetic Wnt-pathway
activation overcame the need for an intact ISC niche as the
organoids continued to proliferate without any disintegra-
tion (Fig. 5a; Supplementary Video S3), although APC
deficiency neither affected ERK phosphorylation (Supple-
mentary Fig. S8d) nor restored tight junction function
(Supplementary Fig. S8e). Next, we aimed at defining the
growth/niche factor requirements of our COL organoid
series (Fig. 5b). While APC loss alone could not prevent
organoid death in the absence of the growth factors (GF)
EGF, R-Spondin, Noggin, and Wnt3a, its combination with
BRAFVSE or BRAFY6®E/p53RI72H conferred strong GF
independence. This prompted us to define whether
BRAFYE_derived signals were still required in the context
of APC inactivation. Therefore, we incubated these APC-
deficient BRAFYS%E expressing organoids with increasing
doses of trametinib, a highly selective MEK inhibitor
clinically applied in BRAF-mutant CRC [74]. Interestingly,
trametinib impaired growth of the double- and triple-mutant
COL organoids, while APC-deficient ones already died at
the lowest trametinib concentration, indicating that the
BRAF/MEK axis still acts as the driver of proliferation
(Fig. 5c¢, d). Surprisingly, the triple-mutant COL organoids
continued to grow at the highest concentration (Fig. 5c, d),
indicating increased resistance toward trametinib treatment.
Therefore, we investigated whether ERK-pathway activity
remains upregulated in these organoids by assessing the
phosphorylation status of ERK1/2, the ERK-mediated
phosphorylation of the immediate early gene products
FOS and FRA1 (FOSL1), as well as total FOS expression
and the expression level of the ERK target gene product
DUSP6 [75]. The phosphorylation status of FOS and
FRAT1 serves as an excellent readout for long-term persis-
tence effects of ERK-pathway activity [76, 77]. As shown
in Supplementary Fig. S9, however, none of these read-outs
were significantly elevated by p53%7?" in trametinib-treated
organoids, indicating that mutant p53 cannot counteract
acute drug-induced ERK-pathway inhibition. Nevertheless,
we observed a strong trend for higher phosphorylation of
ERK and FOS and, although to a lesser extent, increased
FOS and DUSP6 expression in the triple-mutant organoids
under steady-state conditions (Supplementary Fig. S9). This
raises the possibility that p53%17?H could induce ERK-
mediated processes that pre-adapt triple-mutant organoids



BRAF/S%% drives dedifferentiation in small intestinal and colonic organoids. .. 6063

A Day 2 Day 6

B rafVGOOE/+’ Trp5. 3R171ﬂ/+

BrafV600Er Apct,
Trp53R172H+

BrafV600E+,
Apcia,
Trp53R172H/+

o
®
E'a
g
8

B ,afveaas/+’ A pcA/A

DMSO

25 nM
trametinib

B rafVBnﬂEh’ Trp5. 3»172H/+’ A pcA/A

50 nM
trametinib

2
D - sE
* < 3
120+ — = gt
1004

80+

% living colonies
=2}
(=]
T

to trametinib treatment und other stressors. Indeed, the  matrigel (Fig. 6¢, d). In summary, the improved stress
triple-mutant organoids displayed increased fitness as  resistance of the triple-mutant organoids is probably best
reflected by enhanced colony-forming capacity after single-  explained by the pleiotropic effects of mutant p53 on stress
cell disruption (Fig. 6a, b) and invasive growth in diluted  and cell death pathways [78]. The identification of the

SPRINGER NATURE



6064

N. Reischmann et al.

Fig. 5 Loss of APC rescues the BRAFY"E_driven disintegrative
phenotype and confers growth factor independence. a COL orga-
noids with the indicted genotypes were treated with 3 uM 4-HT for
24 h. Representative microscopy pictures at days 2 and 6 (see also
Supplementary Video 3) and MTT staining at day 7 are shown. b COL
organoids with the indicated genotypes were induced with 3 uM 4-HT
and cultured without the growth factors (GFs) EGF, R-Spondin,
Noggin, and Wnt3a. BF images and MTT staining at day 9 are shown.
¢ COL organoids with the indicated genotypes were treated with
DMSO or indicated trametinib concentrations 1 day after induction
with 3 uM 4-HT. Representative MTT staining at day 9 after 4-HT
induction is shown. Note that the dark-blue colonies indicate metabolic
activity. d Quantification of trametinib treatment shown in (c¢) of two
(for ApcA/A) and three (for Brafv GO0ES *,ApcA/ A and Brafv 6O0E” *,ApcA/ A
Trp53R] 72H7%) independent experiments. Colony count was normalized
to corresponding DMSO control, and statistical significance was
determined by two-way ANOVA (corrected for multiple comparison
by Bonferroni). *P <0.05; **P <0.01. In (a, b), scale bars: 50 um.

precise mechanisms by which p53%!"2! confers trametinib

resistance represents an area for future studies.

In summary, the profound effect of APC deficiency on
organoid survival highlights the importance of an intact
stem cell niche for nascent tumor cells and support our
hypothesis that BRAFY®E and p53R!72! cooperate in col-
orectal carcinogenesis by conferring survival signals, MEK
inhibitor resistance, and invasive properties.

Discussion

In this study, we have systematically compared the effects
of BRAFV®E and p53R1"2H either singly or in combina-
tion, on oncogene naive organoids from the small and large
intestine of knock-in mice. Our conditional, isogenic
approach demonstrates that BRAFY6"F expressing SI and
COL organoids undergo an initial burst of proliferation and
rapidly disintegrate with the majority of cells dying. Pre-
vious work on SI organoids revealed that pharmacological
inhibition of the BRAF-MEK-ERK axis prevents disin-
tegration, indicating that this process is driven by aberrant
ERK activity [9, 30]. Of note, we demonstrate that COL
organoids disintegrate faster than SI-derived ones, sug-
gesting important differences between both organoid types.
Indeed, our RNA-Seq analysis shows that the tran-
scriptomes of SI and COL primary crypts strongly differ in
their oncogene naive ground state. In particular, we
uncovered that ERK-pathway activity is significantly higher
in SI than in COL crypts. This suggests that the latter are
less adapted to high ERK levels and consequently less
equipped to a rise in pathway activity. Importantly, sig-
nificant differences in the transcriptional profiles between SI
and COL organoids were also observed upon oncogene
induction, which emphasizes the tissue-specific reaction
toward sudden oncogene expression and represents impor-
tant information for the design of experiments.
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As shown in Supplementary Table S1, several groups
reported with similar but not identical approaches con-
tradictory effects of BRAFY"E on the viability and
integrity of intestinal organoids. We and others
[9, 11, 30, 79] demonstrate that BRAFY60E impairs the
integrity of intestinal organoids by the exhaustion of ISCs,
which provide critical niche factors (Fig. 7). This is
thought to induce sudden ‘“default” differentiation of
immature cells and might reflect a defense mechanism
against malignant transformation [9, 11]. At the same
time, however, we observe the induction of a gene
expression pattern similar to that of CdxI/Cdx2 double-
knockout mice [46], indicating dedifferentiation. This is
in line with our previous study on human CRC cell lines
showing that BRAFY%"E depletion or inhibition leads to
differentiation, in part through increasing CDX2 levels
[10]. This ties in with recent studies identifying Cdx2 as
an important suppressor of BRAFY®E_driven CRC
transformation [7, 11].

Our transcriptomic analyses indicate that both at first
sight contrasting mechanisms, namely the loss of Lgr5/Wnt
target gene expression in combination with the induction of
dedifferentiation patterns, operate simultaneously upon
BRAFY®"E expression. Surprisingly, this resembles the
transcriptional profile of fetal intestine spheroids [48],
which we found to be recapitulated in human BRAFY®E.
mutant CRC samples. Recently deposited work implicated
the YAP/TAZ pathway in the induction of the fetal sig-
nature of organoids expressing an RSPO3 fusion oncopro-
tein along with KRAS®'?P and loss of p53 [17].
Interestingly, we also observed a marked upregulation of
several members of the Hippo target gene signature [80] in
COL organoids, even by BRAFYE alone (Supplementary
Fig. $10). In summary, we suggest that sudden BRAF""F
expression in organoids causes an imbalance of the stem-to-
differentiation homeostasis and a poorly differentiated
phenotype.

The genetic complexity of BRA -mutant CRC not
only aggravates their treatment but also their reconstruction
in carcinogenesis models. As outlined above, BRAFY6E
itself is insufficient to trigger transformation and needs to
cooperate with other (epi)genetic alterations. Inspired by the
genotypes of commonly used BRAFY***E-mutant CRC cell
lines [10], which carry p53 and/or WNT-pathway mutations
and represent prime examples for complete niche auton-
omy, we asked whether these alterations would rescue
BRAFYV*"E_induced organoid disintegration. Here, we
report the first analysis of the cooperation between
BRAFYE and p53R172H in ST as well as COL organoid
models. As mutant p53 contributes to escape from cell
death, senescence, or genomic stress [14, 81], we speculated
that p53R!7?! helps to overcome the oncogenic stress of
organoids with BRAFY"E expression. Indeed, p53R!'"*H

FV600E
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Fig. 6 Trp53%172H supports proliferative and invasive character-
istics of BrafV GO0EY +,ApcA/A mutant organoids. a Representative BF
images of COL organoid colony growth capacity of >3 independent
experiments are shown, which are quantified in (b). b Quantification of
colony growth assay, normalized to corresponding non-induced con-
trol. The longest straight lines of the crypts were measured. ¢ COL
organoids with the indicated genotypes were grown in diluted (50%)
Matrigel. BF images were taken at day 7, and organoids attached to the
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plastic surface were counted (highlighted by dashed lines). Repre-
sentative pictures of three independent experiments are shown, and are
quantified in (d). d Quantification of “invaded” organoids. In (a, c),
scale bars: 50 um. In (b, d), symbol colors refer to donor mice, symbol
shapes refer to independent experiments. Data are presented as mean +
SD, and statistical significance was determined by one-way ANOVA
(corrected for multiple comparison by Bonferroni). *P < 0.05.
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Fig. 7 Graphical illustration summarizing the model of the mul-
tistep colorectal carcinogenesis investigated in this study. From left
to right: Expression of oncogenic BRAFY®"E induces a fetal gene
signature in adult wildtype colonic organoids, but also leads to rapid
disintegration and subsequent cell death. Co-expression of p53R!72H
extends organoid survival and conveys proliferative and invasive

slightly extended survival of BRAFY®E expressing orga-
noids and conveyed several key properties of metastatic
cells, such as increased fitness, invasive behavior and
anoikis resistance (Fig. 7). This might explain the associa-
tion and collaboration between BRAF and TP53 mutations

BRAFVGODE,p53R172H
 Disturbed AJs & TJs
+ Collapse of ISC niche

BRAFVG%E,p53R"2H,APCNA
« Disturbed AJs & TJs
 Survival

» Fetal gene signature  Increased proliferation

» Prolonged survival « Invasive properties

* Increased proliferation * Growth factor independence
* Invasive properties « MEK:i resistance

properties. Additional loss of APC prevents the collapse of the
intestinal stem cell (ISC) niche, thereby promoting the survival of the
mutant organoids. Importantly, additional APC loss confers growth
factor independence and modulates the sensitivity to MEK inhibitor
(MEKi) treatment. AJ adherens junctions, TJ tight junctions.

in metastatic CRC. Despite these advantages, however,
p53R172H could not prevent organoid disintegration.

In contrast, Wnt-pathway activation by bi-allelic Apc
deficiency alone prevented the disintegrative phenotype and
conferred growth/niche factor independence to BRAFYSE
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expressing COL organoids (Fig. 7). Of note, most human
BRAFV*"E_mutant CRCs frequently display aberrant
WNT-pathway activity due to the expression of R-Spondin
fusion proteins or the loss of its negative regulators [17-
20, 82, 83]. These alterations represent alternative
mechanisms to APC truncations, which were originally
thought to be less common in BRAFY*%E mytant CRC [3].
While our paper was under revision, however, Fennell et al.
reported an extremely aggressive subset (20.8%) of
BRAFV*"E_mutant CRCs that is characterized by co-
existing APC truncations [83]. Poor survival was recapitu-
lated in Apc™™* mice, in which BRAFY®E accelerated
disease progression by promoting massive polyp load. The
underlying mechanisms and the behavior of Braf**"t/Apc
double-mutant tumor cells were not investigated by Fennell
et al., but our organoid data support their concept that
BRAFY®E and APC truncations induce an overt pro-
liferative phenotype [83]. Despite the critical contribution of
Apc deficiency to the fitness of BRAFY*“*_expressing
organoids, we observed that their growth and survival were
still dependent on MEK activity. Remarkably, p53%!72H
added a clear survival benefit to Apc-deficient BRAFYSE
expressing organoids exposed to the relatively high trame-
tinib concentration of 100 nM. This indicates that p53%!172H
confers drug resistance in this setting and represents
important information for the design of rational combina-
tion therapies. The elucidation of the underlying mechan-
isms represents an area for further investigation.

In summary, our multistep reconstruction of CRC carci-
nogenesis (Fig. 7) provides new insights into frequently co-
existing mutations of BRAFY*™E in human CRC and offers
the opportunity to obtain mechanistic insights into emerging
biomarkers and prognostic signatures. Furthermore, this
genetically well-defined cross-species approach could help to
identify metastasis and drug-resistance promoters. This could
generate novel therapeutic concepts for an aggressive CRC
subtype that poorly responds to chemo- and immunotherapy
and requires the rational combination of various targeted
therapy compounds for disease stabilization.

Materials and methods
Animals and organoid isolation

Villin::CreER™ transgenic animals [27] were intercrossed
with mice carrying conditional Braf’**V%E’* [28] and/or
Trp53BSLRIZZH (Qlive et al. [29]) knock-in alleles. The
conditional APC™* allele [72] was kindly provided by
Andreas Hecht (IMMZ). All lines were maintained on a
C57B1/6N background. Mice were kept under specific
pathogen-free (SPF) conditions in the animal facility of the
University Medical Center Freiburg according to
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institutional guidelines. Animals received standard diet and
water ad libitum. Tissue was isolated from sacrificed mice
in accordance with the German law for animal protection,
and was approved by the government commission for ani-
mal protection and the local ethics committee (X-15/09H;
X-18/06C; X-19/05C). Organoids were generated and pro-
pagated as described previously with minor modifications
[21, 22]. A detailed description of this is provided in Sup-
plementary Methods. CHIR-99021 and trametinib
(GSK1120212) were purchased from Cayman Chemical
and Selleck chemicals, respectively, and dissolved
in DMSO.

Colony-forming assay

COL organoids were disrupted into single cells by Accutase
treatment for 10 min at 37 °C. Single cells were seeded in
50 ul Matrigel supplemented with 10 uM Y27632 onto a
pre-warmed 24-well culture dish, and oncogene expression
was subsequently induced with 3 uM 4-HT. After 4 days,
bright-field images were taken, and the formed crypts
measured.

Anchorage-independent growth assay

Oncogene expression in COL organoids was induced with
3 um 4-HT for 24 h. After 2 days, organoids were disrupted
into single cells by Accutase for 10 min at 37 °C and put on
PolyHEMA (5 mg/ml)-coated culture dishes. They were
cultured for 6 days, while fresh crypt culture medium sup-
plemented with growth factors was added on day 2 and 5,
before bright-field images were taken and formed cell
clusters measured.

Invasion assay

Invasion assay was performed as described before with
minor modifications [25]. COL organoids were disrupted
into single cells by Accutase treatment for 10 min at 37 °C.
Afterwards, single cells were seeded in 50 pl diluted (50%)
Matrigel supplemented with 10 uM Y27632 onto a pre-
cooled 24-well culture dish, and left at room temperature for
10 min. Subsequently, oncogene expression was induced
with 3 uM 4-HT for 24 h. At day 7 bright-field images were
taken, and organoids attached to the plastic surface were
counted.

Western blot analyses

Organoids were released from Matrigel by incubation with
Cell Recovery Solution (BD Biosciences) at 4 °C for 30 min
to 1h, washed with PBS and pelleted, before they were
lysed with RIPA lysis buffer. Protein concentration was
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determined using the BCA Protein Assay Kit (Thermo
Fisher Scientific), and equal amounts were loaded on 10%
SDS-PAGE. Standard western blot analysis was performed
using the following primary antibodies against: AMACR
(2A10) (1:1000, #3207, Cell Signaling), BRAF F7 (1:1000,
sc-5284, Santa Cruz), BRAFYS®E (VEI) (1:100, kindly
provided by Prof. A. v. Deimling and 1:750, ab228461,
Abcam), CAV1 (D46G3) (1:1000, #3267, Cell Signaling),
cleaved Caspase-3 (1:1000, #9661, Cell Signaling), CTSE
(1:1000, ab36996, Abcam), DUSP6 (1:1000, LS-B5975,
LifeSpan BioSciences), ECAD (1:1000, 610181, BD
Biosciences), EPHA2 (1:1000, #6997, Cell Signaling), c-
Fos (K-25) (1:1000, sc-253, Santa Cruz), GAPDH (1:2000,
ab9489, Abcam), HSP90 (1:1000, #4874, Cell Signaling),
MEKI1/2 (1:1000, #9122, Cell Signaling), MYOF (D-11)
(1:1000, sc-376879, Santa Cruz), NR2E3 (1:1000, sc-
374513, Santa Cruz), OLFM4 (D6Y5A) (1:1000, #39141,
Cell Signaling), Phospho-c-Fos (Ser32) (D82C12) (1:1000,
#5348, Cell Signaling), Phospho-FRA1 (Ser265) (D22B1)
(1:1000, #5841, Cell Signaling), Phospho-MEK1/2 (pS217/
221) (1:1000, #9121, Cell Signaling), Phospho-P44/42
MAPK (Erk1/2) (Thr202/Tyr204) (1:2000, #9101, Cell
Signaling), P44/42 MAPK (Erk1/2) (1:2000, #9102, Cell
Signaling), 14-3-3 (1:1000, sc-1657, Santa Cruz), Vinculin
(1:1000, #4650, Cell Signaling). HRP-conjugated anti-
mouse or -rabbit secondary antibodies (800 pug/ml, Thermo
Fisher Scientific) were used. Signals were detected using a
Fusion Solo chemiluminescence reader, and quantified
using the FusionCapt Advanced Software (VILBER
LOURMAT).

Immunofluorescence of FFPE sections

Organoids were fixed in-well with 4% paraformaldehyde
(PFA) for 30 min and incubated with 70% ethanol for 1 h at
room temperature. Afterwards, crypts were embedded into
2% agarose, dehydrated via a graded ethanol series,
embedded into paraffin and sectioned at 5 um. The sections
were processed and stained using standard methods with the
following primary antibodies against:

CTSE (1:100, ab36996, Abcam), ECAD (1:200, 610181,
BD Biosciences), ITGB1 (1:150, 610467, BD Bios-
ceiences), KI-67 (1:400, #9129, Cell Signaling), LYSC
(1:50, sc-27958, Santa Cruz), PKCC (1:300, sc-216, Santa
Cruz), MUC2 (1:50, sc-15334, Santa Cruz). Secondary
antibodies were: Alexa Fluor® 488/546 goat anti-rabbit/
mouse, Alexa Fluor® 488 donkey anti-goat, Cy3® goat anti-
mouse (all 1:200, Invitrogen). Finally, sections were
mounted with ProLong™ Gold Antifade with DAPI. Ima-
ges were taken with the Zeiss AxioObserver Z1 plus Apo-
Tome 2 with an AxioCam MR.

Quantification and statistical analysis

Quantified data are presented as means + SD. Statistical
significance was analyzed using two-tailed paired or
unpaired 7 test, as well as one-way ANOVA (corrected for
multiple comparison by Bonferroni) as stated in the figure
legends. Differences of *P <0.05, **P <0.01, ***P <0.001
were considered as statistically significant.
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