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Abstract: Compared with other materials, polyethylene terephthalate (PET) has high transparency,
excellent physical and mechanical properties in a wide temperature range and good hygiene and
safety, so it is widely used in the packaging industry, especially in the packaging of beverages and
foods. The optimization of PET bottles is mainly reflected in three aspects: material optimization,
structure optimization and process optimization, among which there is much research on material
optimization and process optimization, but there is no complete overview on structure optimization.
A summary of structural optimization is necessary. Aiming at structural optimization, the finite
element method is a useful supplement to the beverage packaging industry. By combining the
computer-aided design technology and using finite element software for finite element simulation,
researchers can replace the experimental test in the pre-research design stage, predict the effect
and save cost. This review summarizes the development of PET bottles for beverage packaging,
summarizes various optimization methods for preventing stress cracking in beverage packaging,
and especially focuses on comparing and evaluating the effects of several optimization methods for
packaging structure. Finally, the future development of all kinds of optimization based on structural
optimization in the field of beverage packaging is comprehensively discussed, including personalized
design, the combination of various methods and the introduction of actual impact factor calculation.

Keywords: polyethylene terephthalate; beverage packaging; stress cracking; materials; structure;
process flow; optimization; simulation; review

1. Introduction

In 1909, Leo Baekeland invented the first synthetic plastic: phenolic plastic. The
appearance of phenolic resin laid the foundation for the invention and production of
various plastics and heralded the arrival of the plastic era [1–6]. The plastic manufacturing
industry developed rapidly during the Second World War, benefiting from the progress of
the petrochemical industry [7–12]. Polyethylene terephthalate (PET) was invented in the
1940s. It has the characteristics of light weight, high strength, good dimensional stability
and no toxicity to the human body [13–15]. In the 1970s, Coca-Cola Company introduced
PET bottles to the market for the first time and soon gained a leading position in the
packaging field, not only replacing glass but also replacing metal cans to some extent. PET
is widely used in many fields, especially in the packaging of bottled drinks [16–21]. In 2018,
PET accounted for almost 16% of plastic consumption in the European packaging industry.
So far, it has become one of the most used beverage packagings in the world, and it is still
increasing [22].
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Due to the limitation of chemical technology and mechanical technology, the perfor-
mance of PET produced in early mass production is far from today’s level. Therefore, the
bottom is designed to be hemispherical to disperse the pressure to the greatest extent, and
is equipped with a detachable base part to keep the bottle upright [23]. However, with the
progress of science and technology, the PET bottle with hemispherical bottom has been
replaced by more personalized and diversified shapes, such as the concave pentagonal
petal bottom, the bottle bottom with radial grooves and the claw-petal bottom structure
represented by Coca-Cola Company [24–27]. These one-step blow molding designs reduce
the production cost, simplify the production steps, and are more convenient and environ-
mentally friendly. However, compared with the hemispherical base, it is easier to crack,
which is caused by the mechanical properties given by the microscopic crystallinity and
molecular orientation [28–33], and the more obvious stress concentration in the macroscopic
view [34–38].

In order to prevent cracking, researchers optimized the bottle, which was divided
into three directions: material optimization, process optimization and geometric structure
optimization (Figure 1). It is worth noting that researchers seem to be more concerned
about the consequences of the operation in the blow molding process than the influence
of the structural design of the bottle itself on the final product. Therefore, although the
finite element analysis of the PET beverage bottle itself is an effective way to enhance
its mechanical properties, which is different from industrial preparation and chemical
synthesis, there are few related research works and no summary of research progress.
For this reason, this paper will include and pay attention to the progress of structure
optimization of PET beverage bottles.
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This paper summarizes the development of PET bottles for beverage packaging and
the existing stress cracking problems (Part 1), enumerates the application of the finite
element method to prevent stress cracking in beverage packaging, and compares and
evaluates several packaging optimization methods, especially the structural optimization
methods (Part 2). Finally, the application prospects of structural optimization in this field
are summarized and discussed (Parts 3 and 4).



Polymers 2022, 14, 3364 3 of 14

2. Material Optimization

Researchers usually add various chemicals to PET to give the bottles more func-
tions [39–41], such as high temperature resistance [42,43], gas barrier [44–46] and steriliza-
tion [47] (Table 1). This does bring more opportunities to the packaging industry, but the
increase in cost is a real problem. More importantly, a large amount of literature shows that
the extensive use of PET will bring harm to the environment and human health [48–57]. In
terms of the environment, Ajaj et al. [48] proposed that floatable plastics can affect water
quality by increasing the risk of regional flooding. Thompson et al. [49] put forward that
the use of plastics is unsustainable, considering the reduction of fossil fuel reserves and the
limited ability to treat landfill waste. Kumartasli and Avinc [50] focused on the ocean and
pointed out that plastics, as one of the most important components of marine debris, would
cause great damage to natural habitats and ecosystems.In addition, it is worth noting that
PET can leach out chemicals harmful to health, such as antimony trioxide, bisphenol A
and phthalates [54–57]. Cooper and Harrison [55] found that the temperature in closed
spaces (such as cars) in summer will promote antimony leaching from water, which will
bring along physiological discomfort, reproductive damage and potential mutagenicity
and carcinogenesis. Kehinde et al. [56] pointed out that bisphenol A precipitated from
plastics will increase the risk of pain and metabolic disorder, and especially act on women’s
health problems such as endometrial hyperplasia, recurrent abortion and infertility. Sax [57]
pointed out that phthalates in PET have great influence on human reproductive system,
especially on the growth and development stage of infants and children. Therefore, more
factors still need to be considered for the improvement of materials, and there is a long way
to go.

Table 1. Multifunctional PET by adding raw materials.

Characteristics Blend Test Index Effect Ref.

Light Blocking
CaB2O4 UV transmittance Decrease by ~88% [58]
Ca3B2O6 UV transmittance Decrease by ~67% [59]

nHAp Visible light transmission Decrease by ~80% [60]

High Temperature
Resistance

Montmorillonite (MMT)/Laponite
(LAP)/Polyvinyl alcohol (PVA)

Exothermic rate
Total exothermic peak

Decrease by 67.4%
Increase by 45.3% [61]

Gelatin-basedCarbon Dots Peak value of heat release rate
Total smoke production

Decrease by 42.66%
Decrease by 62.64% [62]

Gas Barrier

Graphite nanoplatelets (GNPs) Oxygen transmission rate Decrease by >99% [63]
Terephthalate-intercalated LDHs Oxygen transmission rate Decrease by 46.2% [64]

NK75 nanoclay Oxygen transmission rate Decrease by 38% [46]
Nanotalc nanohybrids Oxygen transmission rate Decrease by 64% [65]

Polyelectrolyte/Clay Coacervate Oxygen transmission rate
Decrease by more

than three orders of
magnitude

[66]

Sterilization Phosphorylated
chitosan/Al nanoparticles The number of Escherichia coli Decrease by ~2/3 [67]

Mechanical Property

CaB2O4 Carrying capacity Increase by ~109% [58]
Ca3B2O6 Carrying capacity Increase by ~133.66% [59]
Rubber Toughness Increase by 85% [68]

Terephthalate-intercalated LDHs Tensile strength
Young’s modulus

Increase by 29.4%
Increase by 38.9% [64]

NK75 nanoclay Young’s modulus Increase by 66% [46]

The mechanical properties of the product are considered by most researchers [68].
Demirel et al. [69] found that the addition of Mg2B2O5 to the PET matrix significantly
reduced the degradation of PET to acetaldehyde, carboxylic acid and diethylene glycol,
and increased the intrinsic viscosity of the composites. Inaner et al. [58] prevented the
photocatalytic degradation of the PET bottle by adding CaB2O4into the blend and improved
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the mechanical properties of the PET bottle, that is, the bearing capacity was about 109%
higher than that of pure PET. Inaner’s research results ensure that food is protected from
the harmful effects of light, and can prevent the deformation of PET packaging materials
due to various reasons. Similarly, Kocayavuz et al. [59] doped Ca3B2O6 synthesized
by sol-gel method into PET, which significantly improved the mechanical properties of
PET and increased the environmental stress cracking time from 0.3 min to 18 min. In
addition, the ultraviolet transmittance of PET in the visible region decreased to ~18%.
This method effectively solves the problems of packaging cracking and photocatalytic
degradation of PET food and beverage packaging during storage. In addition, graphite
nanosheets, montmorillonite, nano-hydroxyapatite and AlOx are also common mixed
materials, which can improve the ultraviolet-visible light barrier property and oxygen
barrier property [60,63,70,71]. Antibacterial PET is a new type of functionalization proposed
in response to the requirements of food and beverage products [72–76].

With the progress of science and technology, it is the research trend to integrate various
functions into one product. Mousavi et al. [77] found that the addition of acryl butadiene
styrene (ABS) to PET can lead to an increase in tensile strength, while it can lead to a
decrease in elongation at break and Young’s modulus. In addition, the addition of oak
husk and potassium sorbate to the PET/ABS blend enhanced the antimicrobial properties.
It can also significantly improve the water absorption and oxygen permeability in the
PET/ABS mixture. In a recent study, Ahmedet al. [78] used 2,2’-Bifuran-5,5’-dicarboxylic
acid (BFDCA) to modify PET, and got a more versatile new PET with a slightly higher
glass transition range, higher tensile modulus, enhanced oxygen barrier property and
excellent ultraviolet barrier property, while maintaining good transparency, which is ideal
for advanced packaging applications.

3. Process Optimization

Environmental factors in the production process have great influence on the final mold-
ing, among which the biggest influencing factors are temperature and air pressure [79–81].
Although the study of environmental factors has taken practicality into consideration and
provided guidance for industrial production to a certain extent, due to the fact that different
machine models and stretching methods in real life have an influence on the presentation
of the final sample, more comprehensive studies of factors are needed [82–85].

3.1. Temperature

McEvoy et al. [86] considered the influence of temperature on material creep, analyzed
the creep constitutive model by ABAQUS finite element method, and predicted the thick-
ness, strain and blow molding pressure of the bottle sidewall according to the temperature
change between 90–110 ◦C in the production process. The results obtained were consistent
with those obtained by commercial process conditions. Cosson et al. [87], who also consider
the creep of materials at temperature, analyzed the high viscosity and strain hardening
effect of materials at temperature range t > tg, and determined a simple viscoplastic model
according to the results of uniaxial and biaxial tensile tests. On the relationship between
thickness and initial temperature distribution, Hong et al. [88] thought that the initial
temperature distribution of bottle blank is the most important factor affecting the precision
of container blow molding. Therefore, all the heat transfer processes in the injection-blow
molding process are considered by finite element analysis, and the factors affecting the
thickness of finished products are predicted. Michels et al. [89] developed a comprehensive
simulation concept to describe the elastic modulus as a function of process parameters such
as local stretching and die temperature, and developed a new algorithm to identify the
degree and direction of local stretching by using the results of process simulation.

3.2. Air Pressure

Kim and Seol [90] focused on the study of the influence of air pressure on the thickness
of bottle wall during blow molding, and carried out finite element simulation with ANSYS
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Polyflow to measure the influence of air pressure on the wall thickness. In fact, if the pre-
form parameters and all environmental factors can be comprehensively considered, more
accurate production process parameters can be determined in industrial manufacturing.
Tan et al. [91] developed a two-dimensional isothermal finite element simulation of the
ISBM process for PET containers by commercial finite element software ABAQUS/Standard.
The results show that the simulated constant mass flow method with constant mass flow
rate as input is more suitable for simulating the blow molding stage in the ISBM process.
Bagherzadeh et al. [92] used the finite element method to numerically model stretch blow
molding (SBM) of the PET bottle and applied the superelastic constitutive model to different
high temperatures and strain rates, and obtained the relationship between heat transfer
coefficient, initial pre-blown air inlet time delay and bottle thickness.

3.3. Others

The thickness of the side wall is the main parameter of the bottle body, and it is
also the focus of researchers’ attention in the production process. Atigkaphan and Thus-
neyapan [93] comprehensively considered temperature and air pressure, applied finite
element analysis to the simulation of the production process, and predicted the thickness
of four sides of a square cross-section bottle. Compared with the experiment, the predicted
thickness deviation was within 3.573%. Chung [94] used ABAQUS to simulate the stretch
blow molding process of the PET bottle by the finite element method. According to the
movement of the plunger and the change of gas pressure, it was found that using a plunger
significantly contributed to the uniform distribution of bottle sidewall thickness. Haddad
et al. [95] studied the finite element simulation of the ISBM process through B-SIM simula-
tion software and thought that a PET bottle produced by injection blow molding process
could produce more uniform thickness distribution, improve the quality of PET bottle and
shorten the production time.

4. Structural Optimization

The structural parameters of preform have great influence on the final product [96,97].
It is worth mentioning that most of these optimization analyses use the symmetry hypothe-
sis, that is, divide the regular 360◦ cross section of the bottle in the vertical direction into
five equal parts of 72◦ (or equal parts of other angles), and only analyze a certain small
part, which is applicable in almost all PET process or structure improvement studies, and
saves calculation resources and reduces calculation time. Figure 2 shows the application of
the symmetry hypothesis.
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4.1. Single Optimization

Lontos and Gregoriou [98] considered three different preform lengths in order to
explore the influence of preform length on the wall thickness distribution of the final
product and found that the bottom area of the bottle made of the longer preform length was
thicker, which enhanced the overall stability. In order to minimize the wall thickness and
reduce the use of PET, Tan et al. [99] used ANSYS Polyflow to evaluate the wall thickness
distribution of PET bottles with different diameters of initial bottle blanks and determined
that the allowable wall thickness of preforms with at least 6 mm diameter can be 1.3 mm.
Sidorov et al. [100] established the relationship between the diameter, wall thickness and
the length of forming zone of billet and product, and believed that the most acceptable
diameter of billet should be within 30% of the diameter of the finished product.

In fact, in the optimization of PET bottle structure, compared with the bottle body
with uniform structure, the bottle bottom has become the most studied object because of its
diverse shapes and complex structures. Another reason is that the liquid leakage caused
by rupture mostly occurs at the bottom of the bottle. The following will list and analyze
different ways of bottle bottom structure optimization.

4.1.1. Single Manual Optimization

Manual adjustment of the inherent parameters one by one is the earliest method
used [101]. Common adjustable parameters include bottle bottom inner diameter, valley
bottom inclination, valley bottom deepest, outer diameter and claw number (Figure 3).
Although this method is effective, it still has the following obvious disadvantages:
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1© It takes energy to adjust one by one, and the manually set values must be discontin-
uous. The values between the two adjustments have not been applied and discussed.

2© Because it is impossible to directly compare the influence of one parameter change
on other parameters, conflicts among variables may arise.

Song et al. [102] found that the maximum principal stress decreased with the increase
of the opening angle of the groove side wall, the arc diameter of the groove bottom and the
number of claw petals in the claw-petal PET bottle bottom through the single factor test. It
is indirectly confirmed by an all-factor experiment that the diameter of the circular arc at
the bottom of the groove, the number of grooves and the depth of grooves have a significant
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influence on the maximum principal stress at the bottom of the bottle. Lyu et al. [103] have
thought that the cracking phenomenon of the PET bottle is not only caused by insufficient
tensile strength but also caused by rough design. However, at first, they only explored
the change of the maximum principal stress of bottles with three different thicknesses,
and there was no clear structural optimization. Later, they conducted further research on
the structural design [104,105] and manually adjusted the three design factors: clearance,
length and valley width, which were found to dominate the cracking of the bottle bottom in
the cracking test, so that the maximum principal stress decreased by 21%. Yuan et al. [106]
used ANSYS software to analyze the strain of PET beer bottles by finite element method
under two loads of different thicknesses and bottle diameters and explored the influence of
thickness and bottle diameter on the mechanical properties of PET beer bottles. Demirel
and Daver [107,108] used numerical simulation and finite element analysis techniques to
redesign the foot length, valley width and gap of the PET bottle bottom, which reduced the
maximum principal stress of the optimized bottle bottom surface by 10.8% and improved
the stress cracking resistance by 88% in the accelerated stress cracking test.

4.1.2. Single Automatic Optimization

With the development of computer technology, in order to realize the synergistic effect
among parameters, automatic optimization that can get rid of changing data values one
by one came into being [109]. Please note that the automatic optimization here refers to
the mixed calculation of multiple factors, rather than the operation of continuous parame-
ter changes of the same variable. Compared with manual optimization, the accuracy of
automatic shape optimization has been greatly improved [110]. After a certain variable un-
dergoes a slight change, several groups of functions will immediately calculate the change
of the overall stress, and guide other variables to adjust through function or exhaustive
method, forming a feedback mechanism. In fact, there are some disadvantages:

1© Multiple optimization iterations will consume a lot of computing resources, with a
large amount of computation and a long computation time.

2© In order to ensure that the overall shape of the bottle is unchanged and easy to
place and hold, shape optimization is required to be fine-tuned only in a small range. For
macroscopic parameters, especially the inclination of the valley bottom, it is difficult to
complete the overall change through automatic optimization.

When Huang et al. [111] designed the milk bottle, they discussed the influence of the
thickness of the bottle body and the thickness of the bottom on the critical load and weight
of the HDPE bottle. The weight of the redesigned bottle was reduced by 21.4% under the
same top load. It should be pointed out that, although only thickness changes are involved,
the thickness divided into several independent parts (bottle body, bottle bottom, bottle
handle, joint, etc.) can be regarded as the mixed calculation of multiple factors. Comsol is a
common optimization software, and its general optimization steps are shown in Figure 4.
In the latest research [112], through numerical simulation and finite element analysis, we
first analyzed four typical bottle bottom models and determined a better structure. Then,
the automatic optimization method is used for fine-tuning. On the premise of the same
material quality, the surface maximum principal stress, the overall maximum principal
stress and the total elastic strain energy of the bottle bottom are reduced by 46.39–71.81%,
38.16–71.50% and 38.56–61.38%, respectively, and the deformation displacement is also
reduced by 0.63–3.43 mm.
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4.2. Manual-Automatic Double Optimization

In order to solve the shortcomings of the above single manual/automatic optimization,
Ge-Zhang et al. [101] used a brand-new manual-automatic double optimization, that is,
first manually control variables for preliminary comparison and optimization, and then
automatically optimize on the premise of keeping the quality of consumable materials
unchanged. The total maximum principal stress and total elastic strain energy of the
bottle bottom decreased by 69.4% and 40.0%, respectively, and the displacement caused by
deformation decreased by 74.1%. The proposal of manual-automatic double optimization
not only inherits the high precision of automatic optimization but also saves computing
resources by manually preprocessing macro-adjustment parameters, thus avoiding the
disadvantages of too long a time and only micro-adjustment of automatic optimization. It
can be seen from the alarming decline that this is a promising new method.

It can be seen from the comparison in Table 2 that the reduction ratio of maximum
principal stress of manual-automatic double optimization and single automatic optimiza-
tion is much better than that of single manual optimization. The number of iterations
indicates that manual-automatic double optimization can achieve convergence with less
computation, which also means that optimizing the same bottle will cost less time [101].
In fact, we think that when the goal is to design a new type of bottle, the advantages
of manual-automatic double optimization can be more reflected: manually testing and
optimizing the macro appearance, and automatically optimizing the details.

Table 2. Comparison of optimized data of claw-petal PET bottle.

Structural Optimization Method
Surface Maximum

Principal Stress
Reduction Ratio

Iterations Ref.

Single manual optimization 8.10–~52% [101,102,105,107]
Single automatic optimization 66.90% 20 [101,112]

Manual-automatic double
optimization 67.86% 17 [101]

5. Summary

This review summarizes the development of PET bottles for beverage packaging and
compares and evaluates the effects of several packaging optimization methods. Finally, the
development prospect and challenges of PET optimization in the field of beverage bottle
packaging are discussed. The optimization methods of the PET bottle summarized in this
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paper are mainly in three aspects: material optimization, process optimization and structure
optimization. Among them, material optimization can improve the mechanical properties
of PET bottles from the characteristics of the bottles themselves, while the introduction of
substances enhances the multifunctional development of the bottles, such as enhancing the
oxygen resistance and antibacterial properties. In terms of process flow, this paper mainly
summarizes the optimization of PET bottle performance from the aspects of temperature,
air pressure, etc. Generally speaking, changing the initial temperature distribution of bottle
blank is the most important factor affecting the container blow molding accuracy. As
the key part of structural optimization, the manual optimization method based on finite
element is an early optimization method with low accuracy. The automatic optimization
method based on finite element is the mainstream nowadays, which has high accuracy
but takes a long time. The manual-automatic double optimization method based on finite
element combines the advantages of the two methods and achieves high accuracy on the
premise of moderate calculation, which may become the frontier method of finite element
optimization of the bottle model (Figure 2). However, it is undeniable that no matter
what structural optimization method is adopted, structural optimization cannot replace
the influence of material composition and environment on the cracking degree of finished
products. To make the best bottle, it is necessary to combine material selection, bottle
design, engineering optimization and other fields, which also means greater workload.

6. Outlook

The optimization design of PET beverage bottles can be divided into three aspects: ma-
terial optimization, process optimization and physical structure optimization, among which
the research on material optimization and process optimization is rich. Chemical-based
material optimization provides versatility, which is in line with the development trend of
new packaging. Process optimization shows and improves the process from laboratory
to factory; Physical-based structural optimization is mainly aimed at the improvement
of mechanical properties. When we design a new bottle or improve the old bottle, the
best way is to integrate the three optimizations, but we have to admit that the engineering
quantity is also increasing. For the future optimization design, the main challenges are
as follows:

(1) Multifunctional or even all-round beverage bottle design is the future trend, which
can be accomplished through material optimization. However, as mentioned before, it
is important to pay attention to the cost of the material (the price of silver ions used
for antibacterial) and whether it is harmless to the human body (requiring long medical
research). Similarly, the feed inlet of the production machine may also need to be improved.

(2) The current process optimization is based on the existing process improvement,
and many actual production devices can’t meet the rigorous design requirements assumed
in the research. The process flow is applied to reality, so the feasibility of the design should
be considered. Perhaps it is easier for manufacturers to accept the parameters in a general
range or improve the machinery.

(3) Although structural optimization can reduce the maximum principal stress and
stress deformation of the bottle, the change of physical shape obviously can’t replace the
multi-functional trend brought by material optimization. The above two methods should
be combined to change the parameters of new materials according to the materials used,
and whether the actual production equipment can meet the requirements of the model
should be considered.
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