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In the male reproductive tract, the epididymis is an essential organ for spermmaturation, in
which sperm cells acquire mobility and the ability to fertilize oocytes while being stored in a
protective microenvironment. Epididymal function involves a specialized luminal
microenvironment established by the epithelial cells of epididymal mucosa. Low-
calcium concentration is a unique feature of this epididymal luminal microenvironment,
its relevance and regulation are, however, incompletely understood. In the rat epididymis,
the vitamin D-related calcium-dependent TRPV6-TMEM16A channel-coupler has been
shown to be involved in fluid transport, and, in a spatially complementary manner, vitamin
K2-related γ-glutamyl carboxylase (GGCX)-dependent carboxylation of matrix Gla protein
(MGP) plays an essential role in promoting calcium-dependent protein aggregation. An
SNP in the human GGCX gene has been associated with asthenozoospermia. In addition,
bioinformatic analysis also suggests the involvement of a vitamin B6-axis in calcium-
dependent MGP-mediated protein aggregation. These findings suggest that vitamins
interact with calcium homeostasis in the epididymis to ensure proper sperm maturation
and male fertility. This review article discusses the regulation mechanisms of calcium
homeostasis in the epididymis, and the potential role of vitamin interactions on epididymal
calcium homeostasis, especially the role of matrix calcium in the epididymal lumen as a
cofactor for the carboxylated MGP-mediated scavenging function.
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GENERAL INTRODUCTION

The production of viable and functionally competent spermatozoa is a prerequisite for male
fertility. This is achieved through normal spermatogenesis in the testis and maturation of
spermatozoa in the epididymis. Spermatozoa are non-fertilising when released from the testis
but become functionally competent during epididymal transit. The fertilizing competence of
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spermatozoa is conferred by their interaction with the
epididymal luminal microenvironment, which is formed by
the epithelial cellular activities and retained behind the
blood-epididymis barrier (Dacheux and Dacheux, 2014; Dube
and Cyr, 2012; Robaire and Hinton, 2015; Zhou et al., 2018).
Spermatozoa therefore mature and are protected in a special
physiologically and immunologically privileged epididymal
microenvironment, in which they undergo a series of tightly-
controlled sequential maturational processes in the precisely
segmented luminal compartments (Cornwall, 2009; Gervasi and
Visconti, 2017; Gregory and Cyr, 2014; Hermo, 2002; Mital
et al., 2011; Pleuger et al., 2020; Robaire and Hinton, 2015;
Voisin et al., 2019; Wong P. Y. D. et al., 2002; Zhou et al., 2018).
Through these maturation processes, spermatozoa acquire the
motility to swim within the female tract and to undergo a three-
stage modification process that enables oocyte fertilization
(Aitken, 2016; Breitbart, 2002; Reid et al., 2011; Stival et al.,
2016), including capacitation and hyperactivation (Aitken and
Nixon, 2013; Gervasi and Visconti, 2016), as well as the
acrosome reaction (Brucker and Lipford, 1995) (Figure 1A).
The minimal time for spermatozoa to transit through the entire
epididymis usually takes 1–16 days, depending on the species. In
humans, the average transit time is approximately 1–2 days
(Amann and Howards, 1980), and spermatozoa can be stored
in the cauda epididymidis for several days and even months
(Robaire and Hinton, 2015). Although fertilization occurs
within the female genital tract, the functional ability for
fertilization is acquired by spermatozoa when they transit
through the highly convoluted epididymal tubule, where
spermatozoa mature but remain in a dormant stage
(Figure 1B). Hence, the epididymis plays a vital role for
sperm maturation and male reproduction.

Epididymal function relies on a highly specialized epididymal
luminal microenvironment, which is formed and maintained by
the well synchronized cellular activities of the epithelial cells
lining the epididymal mucosa. Owing to the complex functions
and compartmentalisation of the epididymis, multiple causes of
epididymal dysfunction resulting in male fertility disorders, and
even the health of offspring, are conceivable (Chen et al., 2016a;
Sharma et al., 2016; Chan et al., 2020). Defects in essential factors
in the epididymis, which may originate from the testicles (Gatti
et al., 1999; Shen et al., 2013; Kim et al., 2015; Koch et al., 2015; Zi
et al., 2015; Liu et al., 2016), including proteins (Cornwall, 2009;
Dacheux and Dacheux, 2014; Robaire and Hinton, 2015; Gervasi
and Visconti, 2017), lipids (Haidl and Opper, 1997; Ouvrier et al.,
2009; Saez et al., 2011; Bjorkgren et al., 2015), and non-coding
RNAs (Belleannee, 2015; Chen et al., 2016a; Chen et al., 2016b;
Sharma et al., 2016; Chu et al., 2017; Sharma et al., 2018), or
sperm maturation deficits, impaired motility, and production of
anti-sperm antibodies (Barak et al., 2000; Hamada et al., 2012),
can all result in epididymal dysfunction associated male fertility
deficits. Clinical practice relies on semen analysis to classify male
infertility as asthenozoospermia, oligoasthenozoospermia,
oligoteratozoospermia or the phenotypes associated with
primitive biochemical parameters (WHO, 2021). Although
male infertility is common, affecting approximately 15% of
couples of child-bearing age worldwide (Zegers-Hochschild
et al., 2009; Joffe, 2010; Esteves, 2013; Winters and Walsh,
2014; Tuttelmann et al., 2018; Agarwal et al., 2021), more than
50% of cases are idiopathic, i.e., of unknown cause, which limits
our ability for developing targeted therapies. In some clinics
before the intervention of antibiotics, epididymal deficits are
estimated to be involved in 50–80% of male infertile patients
(Silvert and Stanisic, 1980). Hence, an improved understanding of

FIGURE 1 | Epididymal epithelial cells and luminal microenvironment are important for male reproduction. (A)Graphic illustration of the generation of spermatozoa
in the testis through spermatogenesis, the maturation of spermatozoa in the epididymis, and the spermatozoa functions, including sperm hyperactivation, acrosome
reaction and sperm-egg interaction, in the female reproductive tract required for fertilization. (B) The different cell types in the various regions of epididymis, including
basal cells, clear cells, narrow cells, and principal cells, as well as immunological cells from systemic circulation. These different cell types work in a concerted
manner to form a unique luminal microenvironment that promotes maturation of sperm during its epididymal transit and ensures male fertility.
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epididymal function permitting sperm maturation holds the
promise of improved diagnosis and treatment of male infertility.

CALCIUM HOMEOSTASIS AND MALE
REPRODUCTION

While male fertility research is predominantly focused on
spermatogenesis and the biology of spermatozoa following
their release from the epididymis, accumulating evidence
points to epididymal function being critical for sperm activity
and male fertility (Silvert and Stanisic, 1980; Chen et al., 2016b;
Sharma et al., 2016; Sharma et al., 2018; Tuttelmann et al., 2018;
Conine et al., 2019; Sharma, 2019; Kiyozumi et al., 2020). One
unique feature of the epididymal luminal environment is its
acidity and low calcium (Ca2+) concentration (Levine and
Marsh, 1971; Levine and Kelly, 1978; Au and Wong, 1980;
Jenkins et al., 1980; Hong et al., 1984; Breton et al., 1996;
Clulow and Jones, 2004; Da Silva et al., 2007; Weissgerber
et al., 2011). Ca2+ homeostasis is essential for male
reproduction (Karsenty, 2011; Oury et al., 2011; Laurentino
et al., 2012; Miyata et al., 2015), and Ca2+ dysregulation is
associated with male infertility (Okunade et al., 2004; Prasad
et al., 2004; Brandenburger et al., 2011; Weissgerber et al., 2011),
although the mechanisms regulating Ca2+ homeostasis remain
largely unknown. In principle, Ca2+ homeostasis in male
reproduction organs can be regulated through inter-organ and
intra-organ mechanisms, in a manner of endocrine (Karsenty,
2011; Oury et al., 2011; Oury et al., 2013), paracrine (Gao da et al.,
2016; Ma et al., 2019), or lumicrine (Laurentino et al., 2012;
Kiyozumi et al., 2020), and so might affect epididymal function
directly or indirectly (Lewis and Aitken, 2001; Ecroyd et al.,
2004a; Miyata et al., 2015).

Ca2+ homeostasis requires a balance of Ca2+ efflux and influx
to maintain intracellular and extracellular Ca2+ concentrations
within optimal ranges in individual compartments of biological
systems. The proteins and mechanisms underlying Ca2+

homeostasis are tightly regulated. Importantly, Ca2+ servers as
an extracellular first messenger and intracellular second
messenger in numerous physiological functions (Peng et al.,
2003; Hoenderop et al., 2005; Breitwieser, 2008; Bagur and
Hajnoczky, 2017). In the human body, Ca2+ is stored in bones
and teeth, mainly in the form of hydroxyapatite and Ca2+

phosphate. In blood plasma, circulating throughout the body,
[Ca2+] is controlled approximately 2.5 mM; whereas in the
epididymis the Ca2+ concentration ranges from approximately
1.3 mM at the initial segment down to 0.25 mM in the cauda
(Jenkins et al., 1980; Turner, 1991; Clulow et al., 1994; Turner,
2002; Carlson et al., 2003; Carlson et al., 2007; Ma et al., 2019).
Understanding the mechanisms for Ca2+ regulation in the
epididymis will provide insights into sperm physiology and
associated functions of sperm fertilization, as well as male
reproductive health.

As in other systems, Ca2+ homeostasis in the epididymis is
strictly regulated by a network of cell-cell interactions and
signaling pathways. The consequences of dysregulated Ca2+

levels and Ca2+-regulated proteins in the epididymis associated

with male infertility are considered as interrupting this network
(Okunade et al., 2004; Schuh et al., 2004; Weissgerber et al., 2011;
Correia et al., 2013). In this review, we will focus on the Ca2+

homeostatic regulation mechanisms in the epididymis and
discuss their physiological roles in regulating the luminal fluid
microenvironment for sperm maturation. Specifically, the
potential role of Ca2+ as a cofactor for matrix Gla protein
(MGP)-mediated scavenging of extracellular metabolites in the
epididymal microenvironment will be discussed, and the
potential role of vitamins in this regard will be explored.

VITAMINS AND MALE REPRODUCTION

Whereas the essential roles of vitamins in general biology are well
recognized, their specific roles in male reproductive health are
remained incompletely understood. It has been reported that
specific vitamin supplements can increase sperm quality in rats
(Dawson et al., 1992; Wong W. Y. et al., 2002; Paradiso Galatioto
et al., 2008; Blomberg Jensen et al., 2011), demonstrating that
vitamins contribute to male fertility. Functional studies have
revealed that vitamins A and B12 are involved in
spermatogenesis (Watanabe et al., 2007; Raverdeau et al., 2012;
Boucheron-Houston et al., 2013), whereas the antioxidant
properties of vitamins C and E are believed to protect sperm
DNA (Dawson et al., 1992; Greco et al., 2005). Vitamin B12
deficiency during maternal pregnancy or during growth of male
rats was found to cause irreversible damage to the development of
germ cells in embryos and affect the maturation of spermatozoa
(Watanabe et al., 2003; Watanabe et al., 2007).

It is known that vitamins interact with Ca2+ homeostasis
pathways. For example, vitamin B6 deficiency in rats was
found to alter intracellular Ca2+-homeostasis in enterocytes,
potentially via Ca2+ channel modulation without affecting net
Ca2+ transport (Lal and Dakshinamurti, 1993; Matyaszczyk et al.,
1993). Moreover, vitamin C can enhance intestinal Ca2+

absorption (Morcos et al., 1976), potentially by modulating
epithelial transcellular and/or paracellular transport pathways.
Vitamin C deficiency is related to secondary
hyperparathyroidism in renal disease (Richter et al., 2008), and
parathyroid hormone is an important endocrine signaling
pathway for Ca2+-homeostasis (Lee and Partridge, 2009;
Andrukhova et al., 2016). It is well-known that vitamin D
plays an indispensable role in Ca2+ homeostasis regulation,
possibly through the steroid sex hormone-related pathways
and calcium-sensing receptor (Blomberg Jensen et al., 2010;
Blomberg Jensen et al., 2011; Blomberg Jensen, 2014; Boisen
et al., 2021). Our research on Ca2+ reabsorption in the rat
epididymis pointed to the activity of transient receptor
potential vanilloid channel 6 (TRPV6)- and transmembrane
protein 16A (TMEM16A, also known as anoctamin-1)-
associated activities in Ca2+- and fluid-homeostasis (Gao da
et al., 2016), a pathway that has also been reported to be
regulated by vitamin D (Walters et al., 2006) and that might
be of fundamental importance for vital events (Rock et al., 2008;
Benedetto et al., 2019), in addition to male fertility (Weissgerber
et al., 2011; Weissgerber et al., 2012; Boisen et al., 2021). Vitamins
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D and E are lipid-soluble antioxidants and known to have
protective effects on sperm quality and DNA integrity in rats
challenged with oxidative stress (Greco et al., 2005; Momeni and
Eskandari, 2012). While vitamin E administration alone in men
of infertile couples did not improve sperm parameters upon
conventional sperm analysis (Matorras et al., 2020), it did so
when used in combination with selenium (Keskes-Ammar et al.,
2003). Regarding vitamin K, the endocrine function of the
vitamin K-dependent Ca2+-binding protein osteocalcin in male
reproduction has been reported (Karsenty, 2011; Oury et al.,
2011; Oury et al., 2013; Patti et al., 2013). Using a rat model of
warfarin-induced vitamin K2-deficiency, we also confirmed the
role of vitamin K-dependent MGP carboxylation in Ca2+-
homeostasis, sperm maturation and male fertility (Ma et al.,
2019). In this review, we will also discuss the potential role of
vitamin interactions on epididymal calcium homeostasis,
especially in relation to carboxylated MGP-mediated function.

EPIDIDYMAL EPITHELIAL CELLS AND
LUMINAL MICROENVIRONMENT ARE KEY
PLAYERS OF MALE REPRODUCTION
The mammalian epididymis is a single, long, and highly
convoluted tubule that connects the efferent ducts from the
testis to the vas deferens. Based on morphology and regional
gene expression, the epididymis is divided into four main regions,
namely the initial segment and the caput, corpus and cauda
epididymidis (Figure 1B). The epididymal tubule is lined with an
epithelium composed of a pseudo-stratified layer of specialized
epithelial cells, including principal cells, narrow cells, clear cells,
basal cells and immunological cells (Da Silva et al., 2011; Robaire
and Hinton, 2015; Breton et al., 2019; Rinaldi et al., 2020). These
epithelial cells have cell-to-cell contact with spermatozoa, create
and maintain the epididymal luminal microenvironment,
including secreting maturation-promoting factors and
conveying the environmental factors to the spermatozoa, as
well as removing potentially harmful metabolites from the
lumen, and thus play a critical role in regulation of male
fertility and even the health of offspring (Robaire and Hinton,
2015; Chen et al., 2016a; Chen et al., 2016b; Sharma et al., 2016;
Gervasi and Visconti, 2017; Conine et al., 2018; Sharma et al.,
2018; Sharma, 2019). Understanding the essential ingredients and
optimal composition of the epididymal microenvironment will
improve our understanding of sperm maturation and of sperm
function in the female genital tract to required to fertilize an
oocyte successfully.

Epididymal Epithelial Cells and Cell-Cell
Crosstalk
Spermatozoa depend on the proper function of various types of
epididymal epithelial cells during their transit (Battistone et al.,
2020; Breton et al., 2019; Cheung et al., 2005; Leung et al., 2004;
Ma et al., 2019; Robaire and Hinton, 2015; Wong P. Y. D. et al.,
2002). The epithelial cells form a barrier that separates the
luminal cavity from the bloodstream, and also transport

nutrients and metabolites across it. Therefore, both secretory
and resorptive epithelial machinery acts to create a special milieu
in the lumen of the epididymis that is required for sperm
maturation, while keeping them quiescent, preventing
premature activation (Carr and Acott, 1984; Robaire and
Hinton, 2015; Zhou et al., 2004). Epididymal function involves
a network of complex regulatory mechanisms that are not yet
fully understood. Using state-of-the-art tools, such as single-cell
omics and systems biology analyses, recent studies have revealed
the complexity of cell biology in epididymal function (de Lima
et al., 2021; Rinaldi et al., 2020; Shi et al., 2021). A diagram of a
basic model for the epithelial function, regulation of luminal
microenvironment, and cell-cell interactions in the epididymis is
presented in Figure 2. It has reported that the basal cells in the
epididymis participate an active role in regulating the principal
cell-mediated fluid secretion into the lumen using the
prostaglandin-E2 (PGE2) signaling axis from the basolateral
side (Leung et al., 2004; Cheung et al., 2005). In addition to
this paradigm that basal cells solely play their role in the
basolateral side, our research has also revealed that basal cells
also have an important role from the luminal side, by sending out
the antenna-like body projections to sense luminal hormonal
factors, in particular angiotensin II (Shum et al., 2008). These
basal cells express angiotensin type-2 receptor (AGTR2) and
communicate their findings using the nitric oxide (NO) and
soluble guanylyl cyclase signaling axis to the adjacent clear cells,
which express high levels of proton pump vacuolar-ATPase
(V-ATPase) and thereby modulate the luminal acidification
(Breton and Brown, 2013), an essential process for sperm
maturation and viability (Robaire and Hinton, 2015). The cell-
cell interactions between clear cells and principal cells, between
principal cells, as well as betweenmacrophages and epithelial cells
have also been described (Battistone et al., 2019; Breton et al.,
2019; Battistone et al., 2020).

The epididymal epithelium is known to be active in secretion
and absorption via the sophisticated exocytotic and endocytotic
cellular machinery, predominantly in the principal cells and clear
cells (Leung et al., 2004; Cheung et al., 2005; Robaire and Hinton,
2015; Gao da et al., 2016; Ma et al., 2019). These are the major cell
types covering most of the epididymal luminal surface and thus
mainly responsible for the controlling luminal ion compositions,
luminal organic molecules, and liberating extracellular vesicles
(EVs), also known as epididymosomes. These membraned-
bound EVs serve as the key extracellular medium for two-way
cell-to-cell communication between the nurtured spermatozoa
and the nurturing epididymal cells (Sullivan et al., 2005; Sullivan
et al., 2007; Sharma et al., 2016; Conine et al., 2018; Sharma et al.,
2018; Leahy et al., 2020).

Other cell types including the basal cells and the immunological
cells like dendritic cells can occasionally make contact to the luminal
environment in a regional-dependent manner (Shum et al., 2008; Da
Silva et al., 2011; Shum et al., 2014). Their contribution to the luminal
environment is thought to be indirect and cell-cell interactions are
the underlying indispensable mechanisms (Shum et al., 2008; Da
Silva et al., 2011; Shum et al., 2014; Battistone et al., 2020). It is
reasonable to hypothesize that the luminal microenvironment in
epididymis critically affects sperm function, and thus male fertility
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and even transgenerational health of offspring (Chen et al., 2016a;
Chen et al., 2016b; Sharma et al., 2016; Conine et al., 2018; Sharma,
2019; Chan et al., 2020).

The Composition of Epididymal Luminal
Fluid
The epididymal luminal fluid, similar to other bodily extracellular
fluids, comprises cations and anions, with organics constituents
of proteins and other macromolecules and small molecules,
glycans and lipids (Pastor-Soler et al., 2005; Cornwall, 2009;
Shum et al., 2011; Robaire and Hinton, 2015; Tecle and
Gagneux, 2015; Gervasi and Visconti, 2017; Zhou et al., 2018;
Cornwall et al., 2019). The ionic composition together with the
organic matter determines the fluid volume, pH and osmolarity.
Before entering the epididymal tubule, immature spermatozoa in
testicular fluid enter the efferent ducts (Wong and Yeung, 1978;
Wong P. Y. D. et al., 2002), where the majority (>95%) of the fluid
is reabsorbed (Hess et al., 1997; Clulow et al., 1998; Wong P. Y. D.
et al., 2002; Turner, 2002), and replaced with epididymal
transcellular fluid, the fluid within epithelial-lined space. Upon
transit from the head down to the tail of epididymis, addition
>90% of epididymal transcellular fluid is reabsorbed (Yamamoto
et al., 1993; Wong P. Y. D. et al., 2002; Turner, 2002).

The Epididymal Luminal Fluid Is aMatrixWith Regional
Specificity
Epididymal fluid is a gel-like and viscous dynamic phase
compartment, which can be characterized as a giant
membraneless organelle (Cornwall, 2009; Shum et al., 2011;
Robaire and Hinton, 2015; Tecle and Gagneux, 2015; Gervasi
and Visconti, 2017; Zhou et al., 2018; Cornwall et al., 2019).
The intraluminal fluidic contents are compartmentalized
distinctly according to anatomical regions of the epididymal
tubule, as revealed by a glance at the region-specific patterns of
different types of epithelial cells and their absorption and
secretory machinery, as well as the changes of surface
contents on the surface of epididymal spermatozoa (Turner
et al., 2003; Ecroyd et al., 2004b; Johnston et al., 2005; Pastor-
Soler et al., 2005; Yudin et al., 2005; Finger et al., 2006; Jelinsky
et al., 2007; Turner et al., 2007; Shum et al., 2011; Tollner et al.,
2012; Shum et al., 2014; Robaire and Hinton, 2015; Zhou et al.,
2018). The mechanisms underlying the formation and
maintenance of epididymal fluid compartmentalization are
not fully understood yet. However, liquid-liquid phase
separation, a widespread mechanism for cells to handle
membraneless matrices (Hyman et al., 2014; Shin and
Brangwynne, 2017) suggest that this process could play a
role in regulation of epididymal luminal microenvironment.

FIGURE 2 | Schematic drawing showing the intercellular communication model regulating the luminal microenvironment in the epididymis. The model includes
several physiological processes: 1) anion secretion (e.g., HCO3

−) via apically located CFTR (and/or other anion channels, such as TMEM16A) provides an ionic gradient
which drives fluid transport through water channels, e.g., aquaporin 9 (AQP9); 2) proton-pump V-ATPase acidifies the luminal content and promotes HCO3

− hydrolysis
for water and CO2 absorption, an essential acidification process required for maintaining sperm in a quiescent state and to prevent premature activation. The
acidification process is mediated by either constitutively by recycling of the V-ATPases which are abundantly expressed in clear cells, or by the stimulation of luminal
factors, such as ATP generated by principal cells or nitric oxide (NO) from the basal cells upon stimulation by the angiotensin receptor type 2 (AGTR2); and 3) Ca2+

reabsorption through either the epithelial Ca2+ channel TRPV6 and Ca2+-dependent Cl−-channel TMEM16A electrical coupler or via a process facilitated by GGCX-
mediated carboxylation-dependent activation of MGP for Ca2+ chelation and simultaneous protein aggregation, such as lipocalin 2 (LCN2).
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Water and Acid-Base Balance
The concentrations of all the epididymal fluid components reflect
their dilution in water, whose volume in turn is adjusted as a
function of the bathed ion concentrations; thus water transport is
important for the optimal microenvironment in each
compartment of the male excurrent duct, ensuring sperm
maturation. And thus, water transport also influences Ca2+

homeostasis in the epididymal lumen, despite the regulation
mechanism and the physiological implications still largely
remain to explore. Proteins known to be relevant for water
transport and electrolyte balance in epididymis, including
cystic fibrosis transmembrane conductance regulator (CFTR)
(Wong, 1998; Ruan et al., 2012), aquaporins (Stevens et al.,
2000; Pastor-Soler et al., 2001; Cheung et al., 2003; Pastor-
Soler et al., 2005; Da Silva et al., 2006), and the Na+-K+-pump
and associated transporters (Breton et al., 1998; Bagnis et al.,
2001; Wong P. Y. D. et al., 2002; Kujala et al., 2007; Zuo et al.,
2011), have important role in maintaining epididymal function
and male fertility (Wagenfeld et al., 2002; Xu et al., 2003; Yeung
et al., 2004; Pruneda et al., 2007; Krausz and Riera-Escamilla,
2018; Xu et al., 2018).

Water is the medium of numerous hydrolysis processes in
biological systems and carbon dioxide and its hydrolyzed
derivative bicarbonate are not only the metabolic products but
also an acid-base balancers in the body. In epididymis,
bicarbonate-related acid-base balance is an essential process
for acidification of luminal fluid, which is critical for
maintaining spermatozoa in a quiescent state (Au and Wong,
1980; Carr and Acott, 1984; Breton et al., 1996; Newcombe et al.,
2000; Pastor-Soler et al., 2005; Shum et al., 2011; Zuo et al., 2011).
Hence, multitude of proteins must act in concert to establish and
maintain optimal epididymal volume, electrolyte balance, and
pH. The orchestration of these multiple proteins and their
functions involves a complex network of cell-cell crosstalk

involving autocrine, paracrine and lumicrine signaling (Kim
et al., 2015; Robaire and Hinton, 2015; Gao da et al., 2016;
Battistone et al., 2019; Ma et al., 2019; Kiyozumi et al., 2020).
Figure 2 shows a basic model for the epithelial cell functions
involved in epididymal fluid regulation, including water and ion
transport, acid-base balance, and calcium homeostasis.

Inorganic Ions in the Epididymis
Table 1 summarises the concentrations of most inorganic ions
contained in epididymal fluid, based on data published in the
literature (Levine and Marsh, 1971, 1975; Levine and Kelly, 1978;
Hinton and Setchell, 1980; Jenkins et al., 1980; Turner et al., 1984;
Caflisch and DuBose, 1990; Hinton, 1990; Caflisch, 1992; Cooper
et al., 1992; Clulow et al., 1994; Stoltenberg et al., 1996; Clulow
et al., 1998; Sorensen et al., 1999; Newcombe et al., 2000). The
high K+ ion concentration, up to approximately 55 mM in the
distal cauda region (approximately ten-fold higher than in
serum), and the low concentration of Ca2+ (down to 0.25 mM
in the cauda region, approximately ten-fold lower than in serum)
are notable. These special properties indicate that the
microenvironment for sperm maturation is uniquely formed
and maintained as spermatozoa transit the epididymal tubule.

CALCIUM HOMEOSTASIS IN THE
EPIDIDYMAL LUMINAL MATRIX
The Epididymis Maintains a Low Luminal
Ca2+ Microenvironment
After spermatozoa are released from the testis, they migrate
passively towards the excurrent duct and enter the epididymal
tubule where they mature along a spatio-temporally changing
milieu. As mentioned earlier, >90% of the initial epididymal fluid
is reabsorbed by the epididymal epithelium during its transit

TABLE 1 | Concentrations of inorganic elements (mM) and pH in blood plasma and intraluminal fluids from the excurrent duct of rats.

Blood Seminiferous
tubule (SNT)

Rete
testis

Efferent
duct

Initial
segment

Caput Corpus Cauda Vas
deferens

Na+ 138.65~147.2a,b,c 109.5~135.44a,b 130.8~141.84b,c,d 144.2c 136.8c 101.8~112.1a,b,d 57.9~93.8a,b 20.6~37.17a,b,d 23.3a

K+ 4.9~5.83b,c 39.77~46.2a,b 12.4~16.1b,c,d 5.7c 11.6c 16.0~27.6a,b,d 37.3~38.3a,b 39.98~55.1a,b,d 51.9a

Ca2+ 0.52~2.4b,c 0.44b 0.81~0.9b,c 2.2c 1.3c 0.85b 0.51b 0.25b ?
Mg2+ 0.37~3.3b,c 1.19b 0.39~1.5b,c 2.7c 1.7c 1.97b 2.61b 0.9b ?
Cl− 98.0~122.14a,b,c 118.0~143.37a,b 129.7~135.76b,c 112.8c 116.7c 24.25~31.0a,b 24.4~39.09a,b 23.6~27.04a,b 19.3a

Total Pe 2.25~3.5b,c 9.22b 1.2~1.72b,c 3.2c 4.5c 59.22~82.5b,f 80.8~93.76b,f 79.4~88.7b,f 73.3f

HCO3
− 23.0~30.1a,g,h 10.6~19a,g 22.9h 45.2h 8.7~20.4g,h 2.7~4.8a,g ? 6.7a 6.7a

pH 7.39~7.5a,g,h,i 6.93~7.31a,g,i,j 7.34h 7.66h 6.79~7.26g,h,j 6.48~6.64a,g,i,j 7.10~7.18g,i 6.85~6.88a,g,i 6.85a

Osmolarityk 299.4~311a,c 338a 306.6c 303.1c 300.5c 315a 340a 329a 339a

aData included from Levine and Marsh (1971).
bData included from Jenkins et al. (1980).
cData included from Clulow et al. (1994).
dData included from Turner (1984).
fData included from Hinton and Setchell (1980).
gData included from Caflisch (1992).
hData included from Newcombe et al. (2000).
iData included from Caflisch and DuBose (1990).
jData included from Levine and Kelly (1978).
eTotal P represents measuremetns including inorganic phosphorus, glycerophosphocholine and phosphocholine.
kOsmolarity unit: mOsm/kg.
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toward the cauda. Therefore, it is suggestive that the low
concentration of Ca2+ in the cauda depend on active Ca2+

reabsorption machinery in the epididymis. Consistent with the
critical role of a low Ca2+ concentration in the epididymal fluid,
dysregulation of epididymal Ca2+ homeostasis is one cause of
male infertility (Prasad et al., 2004; Schuh et al., 2004;
Brandenburger et al., 2011; Karsenty, 2011; Oury et al., 2011;
Weissgerber et al., 2011; Laurentino et al., 2012; Oury et al., 2013;
Miyata et al., 2015).

In general, epithelial absorption can occur through two main
pathways for ion transport across epithelial cells: one is the
paracellular pathway, in which electrochemical gradients
passively drive ions through tight junctions and the
paracellular space; the other is the transcellular pathway,
which involves several steps including active apical absorption
and intracellular trafficking as well as basolateral secretion
(Hoenderop et al., 2005; Frizzell and Hanrahan, 2012; Garcia-
Castillo et al., 2017). Because the transepithelial Ca2+ gradient
does not support passive Ca2+ absorption through the
paracellular pathway, transcellular Ca2+ absorption is expected
the main pathway of Ca2+ absorption in the epididymis.

The transcellular transport of Ca2+ across epithelia is a
multistep process (Hoenderop et al., 2005), beginning with
passive entry of Ca2+ through the Ca2+ channels in the apical
membranes followed by diffusion through cytosol facilitated by
binding to intracellular Ca2+-binding proteins, e.g. calbindin-
D28k in the kidney and calbindin-D9K in the intestine
(Hoenderop et al., 2005), and eventually extrusion across the
basolateral membranes by energy-requiring Na+/Ca2+

exchangers, plasma membrane Ca2+-ATPases (PMCAs), which
operate against the electrochemical gradient for Ca2+ (Okunade
et al., 2004; Hoenderop et al., 2005; Brandenburger et al., 2011;
Patel et al., 2012). From a stoichiometric point of view, initial step
of passive entry through apical Ca2+ channels is believed to be
likely the rate-limiting step of the transepithelial Ca2+ (Nijenhuis
et al., 2005). In epithelial tissues, only two highly Ca2+-selective
ion channels act as apical channels for Ca2+ (re)absorption: Ca2+-
selective ion channels TRPV5 and TRPV6 (Peng et al., 1999; Peng
et al., 2000). Our previous study found that only TRPV6 was
expressed in the apical pole of the rat epididymal epithelium of
rats in a regional-dependent manner (Shum et al., 2006). Studies
from other research groups using genetic deletion or mutant
mouse models of the epithelial calcium channel TRPV6 have
confirmed that apical Ca2+ influx through TRPV6 is important
for the prevention of abnormal Ca2+ accumulation in the
epididymis (Weissgerber et al., 2011; Weissgerber et al., 2012).
In these studies, it was shown that after the ablation of TRPV6
channel function, the Ca2+ concentration in the distal cauda
epididymidis was increased nearly ten-fold, sperm motility
decreased, and fertilizing ability in mice was reduced. These
studies showed that the epididymal Ca2+ homeostasis is
critical for male fertility and sperm maturation.

Other mechanisms of epididymal Ca2+ homeostasis are also
critical for male fertility and post-epididymal sperm functions.
For example, in the plasma membrane Ca2+-pump 4 (PMCA4)
knockout mice, sperm lacked motility and could not move
forward in the female reproductive tract, resulting in male

infertility (Okunade et al., 2004; Brandenburger et al., 2011).
PMCA4a protein may be transported via epididymosomes from
the epithelial cells to the sperm tail in the epididymis
(Brandenburger et al., 2011), a process regulated by luminal
constituents. Another observation pointing to the importance
of Ca2+ homeostasis for male fertility is that loss of the Ca2+-
dependent phosphatase calcineurin leads to infertility in male
mice, owing to decreased sperm motility caused by an inflexible
midpiece of spermatozoa (Miyata et al., 2015). Moreover, the
functionality for sperm capacitation, which is triggered by Ca2+

influx in spermatozoa with subsequent activation of the cAMP-
PKA signaling pathway and protein tyrosine phosphorylation, is
formed in the epididymis and sensitive to extracellular Ca2+

(Luconi et al., 1996; Lewis and Aitken, 2001; Ecroyd et al.,
2005; Gervasi and Visconti, 2016; Puga Molina et al., 2017;
Takei et al., 2021). Another Ca2+-binding protein regucalcin, is
abundant in epididymal luminal fluid, but any role in Ca2+

homeostasis remains to be demonstrated (Laurentino et al.,
2012; Correia et al., 2013). Taken together, these findings
point to the complexity and importance of Ca2+ homeostasis
in the lumen of epididymis.

Regulation of Low Ca2+ Concentrations in
the Epididymis and Its Molecular
Mechanisms and Physiological Implications
It has been shown that defects in transepithelial Ca2+ absorption,
including by defects of the apically located TRPV6 Ca2+ channels
or the basolateral PMCA4 Ca2+ exclusion pump, result in Ca2+

accumulation in the luminal compartment of the distal
epididymal tubule. This in turn impairs epididymal-dependent
spermatozoa fertilization activities and impaired fertility without
affecting spermatogenesis (Okunade et al., 2004; Schuh et al.,
2004;Weissgerber et al., 2011;Weissgerber et al., 2012; Patel et al.,
2013).

Regulating Epididymal Ca2+ Homeostasis by the
TRPV6-TMEM16A Coupler
In further characterization of the mechanisms regulating Ca2+

absorption in the epididymis, our research has demonstrated that
the TRPV6-associated extracellular pH-sensitive Ca2+

conductance functions in an electrically coupled manner with
the intracellular Ca2+-sensitive chloride channel TMEM16A in
isolated single principal cells of the distal part of the rat
epididymis (Gao da et al., 2016) (see Figure 2). The interplay
between TRPV6 and TMEM16A does not only regulate Ca2+

resorption but also Ca2+-dependent anionic current, a driving
force of fluid secretion (Wong P. Y. D. et al., 2002). Our research
also found that TRPV6-like Ca2+ conductivity is regulated by
negative membrane potential and is sensitive to extracellular pH
and divalent ions (Ca2+ and Mg2+), all of these physiological
features are uniquely formed and maintained in the epididymis.
Therefore, the coupling of TRPV6 with TMEM16A makes this
coupler a key player of epididymal secretion. TMEM16A has been
described to mediate epithelial mucin secretion, including in
response to inflammation (Huang et al., 2012; Lin et al., 2015;
Zhang et al., 2015; Benedetto et al., 2019). Our research has shown
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that TRPV6 co-localizes with TMEM16A in the apical membrane
of the rat epididymal epithelium, as well as in some
epididymosomes of the very proximal and the very distal rat
epididymis (Gao da et al., 2016). These findings raise the
possibility of TRPV6-TMEM16A contributing to the secretion
of epididymosomes from the epididymal cells, an epididymal cell-
to-cell communication mechanism that is essential for sperm
maturation as well as transgenerational paternal epigenetic
information transfer (Sullivan et al., 2005; Lotvall et al., 2014;
Belleannee, 2015; Chen et al., 2016a; Chen et al., 2016b; Sharma
et al., 2016; Tkach and Thery, 2016; Sharma, 2019; Chan et al.,
2020).

Another CalciumReabsorptionMechanism in Addition
to TRPV6-TMEM16A Coupler in the Epididymis
It is known that the epididymal luminal fluid is acidic and under
resting physiological conditions, it maintains a pH range of about
6.4–6.8 in the corpus and cauda epididymidis of rodents (see
Table 1). Our research has shown that in single cauda epithelial
cells isolated from rat epididymis, the TRPV6-related
conductance is inhibited at acidic pH (for example, pH 6.4)
and activated at alkaline pH (for example, 7.4) (Gao da et al.,
2016). In addition, the TRPV6 activity is also sensitive to the
resting membrane potential, and its conductance is inwardly
rectifying at negative membrane potentials and is negligible at
positive potentials (Bodding, 2005; Hoenderop et al., 2005).
Whereas the resting membrane potential of epididymal
epithelial cells has been determined to range between –6 mV
and –39 mV, with an average value of approximately –22 mV
(Cheung et al., 1976; Gao da et al., 2016). Our research has shown
that in these resting potential ranges, the Ca2+-permeable current
in single cauda epithelial cells at extracellular pH 6.4, or even at
pH 7.4 is indeed undetectable or negligible, respectively (Gao da
et al., 2016). We speculate that under physiological conditions of
acidic epididymal lumen, Ca2+ influx through TRPV6 channel
alone is silent or at least negligible, while the electrical coupling
between TRPV6 and TMEM16A promotes Ca2+ cation influx by
accompanying Cl− anion influx. However, the restricted
localization of the extracellular pH- and Ca2+-dependent
TRPV6-TMEM16A electrical coupler in the proximal and
distal ends of the epididymis as well as in the epididymosomes
not associated with extensive Ca2+ reabsorption could imply the
presence of another calcium reabsorption mechanism or that
TRPV6 and its coupler TMEM16A have a function other than
Ca2+ reabsorption. Consistent with our speculation, a study of
roosters found that those with epididymal stones had raised
epididymal expression of TRPV6, although the connection
between the two observations is still unclear (Oliveira et al., 2012).

Vitamin K2-Dependent Matrix Gla Protein-Mediated
Ca2+-Homeostatic Regulation and Its Role in
Epididymal Luminal Microenvironment and Male
Fertility
To address whether in epididymidal regions where TRPV6-
TMEM16A is absent, another Ca2+ reabsorption mechanism is
active, our research has found vitamin K-dependent γ-glutamyl
carboxylase (γ-carboxylase or GGCX)-mediated carboxylation of

the substrate MGP to play a role in Ca2+ homeostasis in the
epididymis (Ma et al., 2019). Consistent with our hypothesis, we
found that GGCX-MGP expression was enriched in the
epididymal regions with minimal TRPV6-TMEM16A coupler
expression. Using a rat model of warfarin-induced vitamin K2
deficiency, we found that vitamin K2-dependent GGCX and its γ-
carboxylation substrate MGP were essential for epididymal Ca2+

homeostasis, sperm maturation and thereby male fertility.
Warfarin-induced vitamin K2-deficiency in rats leads to
disruption of GGCX-mediated carboxylation of MGP, which
leads to accumulation of stress granules and Ca2+ in the
epididymal epithelium and lumen, and ultimately reduces
male fertility (Ma et al., 2019).

Insights Into the Role of Carboxylation-Dependent
Calcium Homeostasis in the Epididymis on Male
Reproduction and Offspring Health
Vitamin K is a known key modulator of Ca2+ homeostasis. By
facilitating GGCX-mediated γ-carboxylation of matrix proteins,
including MGP, it maintains bone health and prevents vascular
ectopic calcification (Weber, 2001; Wallin et al., 2008; Boraldi
et al., 2013). MGP is a 14-kDa (103 amino acids) secretory protein
containing five Ca2+-binding γ-carboxyglutamic acid (Gla)
residues. It was first described as an extrahepatic matrix
protein in the extracellular matrix of bone and cartilage and
later detected in a wide variety of other tissues such as lung, heart,
kidney and arterial vessel walls (Price et al., 1983; Fraser and
Price, 1988; Hale et al., 1988). MGP is synthesized locally, at least
in the vascular tissues, where it counterbalances ectopic mineral
deposition (Murshed et al., 2004). The essential role of MGP has
been revealed in mice lacking MGP, which die within 6–8 weeks
of birth from large blood vessels ruptures, owing to massive
vascular calcification (Luo et al., 1997). Humans with mutations
in both alleles of the MGP gene develop Keutel syndrome, an
autosomal recessive disorder characterized by abnormal
calcification of soft tissues and female miscarriages (Munroe
et al., 1999; Khosroshahi et al., 2014). The vitamin K
antagonist, warfarin through inhibition of the vitamin K
epoxide reductase complex 1 (VKORC1) to prevent
carboxylation and activation of MGP. The treatment of
normal mice with warfarin has been associated with a rapid
calcification of elastic lamellae in arteries and heart valves that is
reminiscent of the MGP-null phenotype in mice (Price et al.,
1998). The importance of vitamin K status for MGP has also been
confirmed in healthy people and in patients with long-term
warfarin treatment (Rennenberg et al., 2010; Cranenburg et al.,
2012). Importantly, the understanding of vitamin K-dependent
mechanisms for local calcification regulation may also provide
information about luminal calcium homeostasis in the
epididymis.

Like other Gla proteins, MGP is activated by GGCX, which is
the only gamma-carboxylation enzyme in the cell and which has
no relevant homology to any known enzyme families (Tie et al.,
2016). The Ca2+ binding function of MGP requires two post-
translational modifications: γ-glutamate carboxylation and serine
phosphorylation (Schurgers et al., 2007; Schurgers et al., 2013;
Houben et al., 2016). The exact mechanism through which serine
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phosphorylation in MGP facilitates Ca2+ binding is unclear, and
may involve indirect mechanisms such as promoting extracellular
secretion of MGP (Wajih et al., 2004). In contrast, γ-glutamyl
carboxylation is precisely related to increased Ca2+ binding
affinity of MGP (Hackeng et al., 2001; Schurgers et al., 2005).

Our research has showed that MGP expression is high in the
epididymis when compared with other organs containing
epithelial-lining such as kidney and liver (Ma et al., 2019). In
addition, GGCX andMGP co-localized in the vesicular structures
on the luminal surface of epithelial and sperm membranes,
potentially indicating that carboxylation takes place in the
epididymal luminal microenvironment. These results may
dicates that the vitamin K-dependent carboxylation and the
MGP-associated prevention of Ca2+-deposition can
reciprocally regulate epididymal luminal secretions. Since the
expression of GGCX and MGP and their co-localization on
vesicular granules, sperm surface, and in the cytoplasmic
droplets progressively increases from the proximal epididymis
distally, our study suggests that both proteins likely arose from
the epididymosomes derived from epididymal epithelial cells. In
view of the important role of epididymosomes in the male
reproduction and the health of offspring (Sullivan et al., 2005;
Chen et al., 2016a; Chen et al., 2016b; Sharma et al., 2016; Conine

et al., 2018, 2019; Sharma et al., 2018), whereas GGCX-dependent
carboxylation of MGP plays a vital role in life events (e.g., early
embryo development) (Schurgers et al., 2013; Khosroshahi et al.,
2014), the understanding the role of carboxylated-MGP
dependent luminal calcium homeostasis in epididymis may
provide insights into male reproduction and the health of
offspring.

Ca2+ Behaves as a Cofactor of the Matrix
Gla Protein-Promoted Scavenging Function
of Ca2+-Precipitable Aggregates
Biphasic Ca2+-Dependent Chelation Properties of
Matrix Gla Protein
In one of our previous studies (Ma et al., 2019), western blotting
with anti-MGP antibody on rat epididymis and kidney always
detected a major band at approximately 32-kDa that did not
correspond to the expected ~12-kDa molecular weight of MGP
(Figure 3). Other publications also noted this band and
interpreted it as a non-specific band due to the excessive
protein lysis sample (Lomashvili et al., 2011). However, the
intensity of this ~32-kDa band was strikingly decreased when
the tissue protein extracts were preincubated with the MGP

FIGURE 3 | Vitamin K-dependent MGP-mediated calcium-promoted aggregation of a protein complex with a prominent band of ~32-kDa. (A) Western blot
detection of anti-MGP in total homogenates of kidney (kid.) and epididymis (epi.) fromWT adult rats. A band at ~12-KDa (arrow) corresponding to the expectedmolecular
size of MGP, and another major band at around ~32-kDa (double arrow) were detected. Both bands were almost abolished by the preincubation with a ten-fold excess
of the MGP immunizing peptide (+MGP peptide). (B) The intensity of ~32-kDa bands (double arrow) were significantly enriched in the low-Ca2+ condition by
addition of 250 mM EDTA to the protein lysates, whereas the ~12-kDa bands remained unchanged (arrow). Some bands at higher molecular sizes became obvious
under the low-Ca2+ condition. (C) The same anti-MGP antibody was used to detect the intensity changes of ~32-kDa band in DC2 cell protein lysates under various Ca2+

concentrations and the bar graph on the right shows the intensity of the band normalized to control (no additional Ca2+). This suggests that MGP-mediated protein-
aggregation is dependent on sub-millimolar amount of Ca2+, whereas excessive Ca2+ (>0.25 mM) inhibits protein-aggregation. (Originally published in iScience (Ma et al.,
2019), with permission to reproduce from iScience).
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FIGURE 4 | Calcium-dependent chelation property of MGP with or without carboxylation. MGP is a protein composed of 103 amino acids and can be post-
translationally modified by carboxylation and phosphorylation. Uncarboxylated MGP (ucMGP) is an inactive form with an isoelectric point of around 9 (8.8 for rat and 9.6
for human MGP), which means that in an acidic environment, the ucMGP has a net positive charge of five, despite its five γ-glutamate residues, and thus it is hydrophilic.
When the five γ-glutamate residues are carboxylated to γ-carboxylglutamates by GGCX enzymatic activity, the carboxylated MGP (cMGP) becomes active but is
electrically neutral and thus hydrophobic. Intriguingly, the five carboxylated γ-glutamate residues of cMGP bear five negative charges, which favors the chelation of five
Ca2+ ions and form a highly hydrophilic ten-positively-charged cMGP-Ca2+ compound, facilitating chelation of negative-moiety-bearing molecules under normal
physiological conditions, particularly aggregation of organic or inorganic phosphates, or the membrane-embedded phosphatidylserine such as membranes of
extracellular vesicles. Dysregulation of the Ca2+-binding property of cMGP results in ectopic Ca2+ precipitation and abnormal Ca2+ content, which causes cMGP to bind
with hydroxylapatites and thereby precipitation nucleation, a precursor status of promoting matrix calcification and related pathological conditions.
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FIGURE 5 | A mechanistic model for the association of the GGCX arginine325 to glutamine325 (R325Q) SNP with asthenozoospermia infertility risk in men. (A)
Vitamin K cycle: during vitamin K dependent (VKD) carboxylation, the carboxylase GGCX mediates the pH-dependent conversion of glutamate (Glu) residues to Ca2+-
binding gamma-carboxyglutamate (Gla) residues of the vitamin K-dependent substrates (e.g., MGP) or their pro-peptides, with CO2, O2 and reduced vitamin K as the co-
substrates. The carboxylation reaction also oxidises the reduced vitamin K-H2 to vitamin K epoxide (VKO), which is then reduced back to vitamin K-H2 by vitamin K
epoxide reductase (VKOR). The cycle involves redox- and pH-sensitive carboxylation and oxygenation processes (Rishavy and Berkner, 2012). (B)GGCX is amembrane
protein with a size of ~87.5 kDa, which has two intracellular loops and two luminal loops of amino acid sequences, in addition to its cytoplasmic N-terminus and a long

(Continued )
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peptide (Figure 3A). In addition, the intensity of the 32-kDa band
and a few weaker bands at higher molecular weight became
intensified when the divalent ion chelator EDTA was added to
the protein extracts (Figure 3B), suggesting that these bands may
represent Ca2+-dependent protein aggregates. Supporting this
hypothesis, the 32-kDa band intensity from an epididymal
cells line changed in a biphasic Ca2+-dependent manner.
When the Ca2+ was added to the protein extract at sub-
millimolar concentrations, the intensity of the Ca2+-bound
MGP-positive protein complex increased. Maximum intensity
of the MGP-positive protein complex was observed after addition
of 0.1 mM Ca2+, suggesting that at this concentration protein
aggregation is favored. When the Ca2+-concentration was further
increased to the millimolar range, the band intensity was reduced,
presumably because millimolar Ca2+ does not favor formation of
MGP-containing protein aggregates (Figure 3C). This Ca2+-
dependent, biphasic protein aggregation matches the Ca2+

levels that have been reported for the epididymal luminal
microenvironment and range from ~0.25 to ~0.9 mM (Jenkins
et al., 1980; Turner, 1991; Clulow et al., 1994; Turner, 2002).
These results suggest that MGP-containing protein aggregates
form in the presence of sub-millimolar Ca2+, but not at millimolar
Ca2+ concentrations.

Unique Properties of Matrix Gla Protein for Ca2+

Chelation Facilitate Its Scavenging Function in the
Epididymal Lumen
The formation of the MGP-binding protein complex can be
interpreted from the biochemical nature of the MGP protein
itself (Figure 4). The inactive form of uncarboxylated MGP
(ucMGP) protein has an isoelectric point of about 8.8, so that
in the epididymal microenvironment of around pH 6.4–6.8
(Levine and Marsh, 1971; Da Silva et al., 2007), the five γ-
glutamate Glu residues of ucMGP endow the protein with five
positive charges and thus hydrophilic. When these Glu sites are
carboxylated by GGCX, the protein becomes its active Gla form of
carboxylated MGP (cMGP), in which the positive charges are
neutralized, so cMPG is electrically neutral and hydrophobic.
However, the carboxylated sites have strong Ca2+ binding ability,
which permit cMGP to bind five Ca2+ ions (Hackeng et al., 2001;
Huang et al., 2003; Schurgers et al., 2005; Boraldi et al., 2013), and
thus carrying ten positive charges, greatly enhancing its solubility.
Therefore, in the acidic epididymal lumen, inactive ucMGP is
soluble but lacks Ca2+ binding ability, whereas the active cMGP is
insoluble but highly adherent to Ca2+, which confers the
aggregating ability. In other words, Ca2+ ions could promote
Ca2+-MGP scavenging function. Ca2+-MGP chelator function
could be a perfect scavenger for the aggregation of either

organic or inorganic extracellular matter or both, and
regulated by the changing luminal microenvironment,
including nutrients supply, acid-base balance and luminal Ca2+

levels, as well as other constituents in epididymal fluid.
The epididymal luminal microenvironment has a complex

composition and contains components that can interact with
MGP other than Ca2+, such as Mg2+ and phosphorus-
containing electrolytes (see Table 1). EDTA chelates divalent
cations and its affinity for Mg2+ is higher than for Ca2+. The
increased intensity of the MGP-positive protein aggregate bands
after the addition of exogeneous EDTA to protein lysates (see
Figure 3B) can be explained by preferential chelation of Mg2+-
ions and promotion of MGP interaction with Ca2+ and
subsequent protein aggregate formation (Ma et al., 2019).
This hypothesis is consistent with the finding that Mg2+ and
Ca2+ competitively bind to MGP (Roy and Nishimoto, 2002).
This also indicates that under the low Ca2+ concentrations of the
epididymal lumen, activated MGP preferentially binds to Ca2+

and other organic matter, as illustrated in Figure 4. In the
presence of high Ca2+, MGP has an affinity for inorganic
phosphorous compounds (Roy and Nishimoto, 2002), but
this would not occur in the epididymal lumen–the
microenvironment for the maturation of spermatozoa whose
membrane surfaces are enriched with phosphorates in lipids
and proteins (Hamamah and Gatti, 1998; Jenkins et al., 1980).
Under conditions with abnormally high Ca2+ (see Figure 4),
such as impaired GGCX activity after warfarin treatment, Ca2+

precipitated granules result (Ma et al., 2019) and other
pathological conditions may occur (Tan et al., 2012). A
related phenomenon may be the clinical observations that
patients undergoing continuous hemodialysis have a higher
incidence of epididymal stones (Guvel et al., 2004; Bozzini
et al., 2013), although the correlation and mechanism
between these two phenomena are still unknown.

Insights Into the Mechanism Linking the GGCX
arginine325 to glutamine325 (R325Q) rs699664
Polymorphism With the Increased Infertility Risk
in Men
As illustrated in Figure 5A, GGCX requires the reduced vitamin
KH2 (VKH2) as an obligatory cofactor and its carboxylating
activity. Vitamin K generally undergoes a pathway called the
vitamin K cycle, in which vitamin K is reduced to VKH2 by
vitamin K epoxide reductase (VKOR or VKORC1); VKH2 is then
re-oxidized during γ-glutamyl carboxylation by GGCX to
vitamin K epoxide (VKO), which is subsequently converted to
VKH2 by VKORC1 to complete the VK cycle (Stafford, 2005;
Rishavy and Berkner, 2012; Tie and Stafford, 2016).

FIGURE 5 | luminal C-terminus. The binding sites for glutamate and pro-peptide are located on the long C-terminal tail, which can form a disulfide bond with the first
luminal loop of amino acids. It has been hypothesized that all five Glu residues of MGP are carboxylated in one round in sequential order by GGCX, presumably due to
MGP stabilisation by the singly positively charged arginine325 of GGCX (Rishavy and Berkner, 2012). In our proposed model, the rs699664 SNP-mediated change of
arginine325 to a neutral glutamine325 moiety in theGGCX leads to the loss of GGCX binding stability to MGP for carboxylation, thus resulting in decreased carboxylation of
VKD proteins, and thereby to increased calcium mineralization and Ca2+-mediated proliferation of stress granules, and eventually in a disordered epididymal luminal
microenvironment, causing impaired sperm maturation and male infertility. Graphic illustration is adapted from (Tie et al., 2016) with modifications. For more details, see
the main text.
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FIGURE 6 | Bioinformatic analysis reveals potential involvement of vitamin B6 pathways in regulating epididymal Ca2+ homeostasis and Ca2+-dependent MGP-
aggregation. (A) Chemical structures of the key members of various fat-soluble and water-soluble vitamins. (B) Bioinformatic analysis reveals a potential involvement of
vitamin B6 in epididymal Ca2+ homeostasis. Presented data were originally published in iScience (Ma et al., 2019) and reanalyzed. Briefly, proteomic analysis the in-gel
digested MGP-positive 32-kDa band was performed with LC-MS/MS analysis (n = 3 rats). The MGP-positive 32-kDa band in whole epididymis protein lysates
underwent proteomic analysis followed by GO and KEGG-based bioinformatic analysis and identified 301 genes present in all 3 lysates. 2-oxocarboxylic acid
metabolism is one of the primary enriched gene clusters, consistent with MGP carboxylation. Other key enriched clusters include phagosome and its downstream

(Continued )
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GGCX is a membrane protein with a size of approximately
87.5 kDa and has five transmembrane domains, with its
N-terminus facing the cytoplasmic side and the C-terminus
facing the luminal side, in addition to two intracellular loops
and two luminal loops, as illustrated in Figure 5B (Tie et al., 2000;
Tie et al., 2003; Rishavy and Berkner, 2012; Tie and Stafford,
2016). It is believed that the second intracellular loop contains the
binding sequence for the inactive form of MGP (Pudota et al.,
2001). On the luminal side, a disulfide bond is formed at position
of Cys-99 and Cys-450, which is the essential site for the
epoxidation and carboxylation of GGCX (Pudota et al., 2000).
This disulfide bond is on the same side as the sequence residues
for vitamin K deprotonation (Rishavy et al., 2006) and as the
glutamate and pro-peptide binding sites (Mutucumarana et al.,
2000; Mutucumarana et al., 2003). On the basis of the nature of
this redox-sensitive binding, as well as the epoxidation and
deprotonation nature of GGCX, the carboxylation and the
other reactions in the vitamin-K cycle are all affected by redox
status and acid-base balance (Rishavy and Berkner, 2012). Both of
these two physiological factors are known to be essential for
sperm maturation and male fertility (Au and Wong, 1980; Carr
and Acott, 1984; Breton et al., 1996; Newcombe et al., 2000;
Vernet et al., 2004; Pastor-Soler et al., 2005; Aitken and Curry,
2011; Shum et al., 2011; Robaire and Hinton, 2015; Aitken, 2016).
It is suspected that the GGCX activity and redox- and pH-
sensitive processes in the epididymis reciprocally influence
each other.

In our previous study, we identified a single nucleotide
polymorphism (SNP), rs699664, in the GGCX gene of infertile
men with asthenozoospermia (Ma et al., 2019). This SNP replaces
an arginine325 with glutamine325 (Arg325Gln) in the GGCX
protein (Kinoshita et al., 2007; Rieder et al., 2007). The same
SNP (Arg325Gln) has been reported to be associated with bone
mineral density in aged females, and increased GGCX activity for
MGP and bonematrix protein osteocalcin (Kinoshita et al., 2007).
The SNP is located in the same second intracellular loop of
GGCX, in close proximity to where the binding site of vitamin
K-dependent proteins (i.e., MGP) is, as illustrated in Figure 5B. It
has been reported that all the five Glu residues of MGP are
converted into active Gla in one round of stepwise action of
GGCX (Rishavy and Berkner, 2012). This process enables MGP
to bind Ca2+ ions, Ca2+ crystals and bone morphogenetic proteins
(Nadeem et al., 2004; Schurgers et al., 2013).

While further investigation is required, we speculate that the
positively charged arginine325 residue of GGCX is responsible for
stabilizing the negatively charged Glu residue of MGP during the
stepwise carboxylation process, which is promoted in the acidic
conditions of the epididymal lumen. Such charge-charge
interaction stability is lost as a result of the SNP, in which the

charged arginine325 residue is replaced with the neutral
glutamine325, thereby changing the binding preference of
MGP. Accordingly, the charge-charge interaction stability in
the wild-type protein ensures sufficient time for complete
carboxylation of each residue in the substrates and avoids
their incomplete activation (Rishavy and Berkner, 2012).
Supporting this interpretation is the finding that the rs699664
SNP in GGCX results in higher carboxylase enzymatic activity in
aged females, and was associated with osteoporosis (Kinoshita
et al., 2007). We speculate that the rs699664 SNP has similar
effects in the epididymis of asthenozoospermic infertile males,
i.e., increases early release of incompletely carboxylated substrate,
resulting in under-carboxylated MGP, impaired Ca2+-binding,
disturbed Ca2+-homeostasis, and ultimately to impaired sperm
maturation and to male infertility.

A Potential Interplay Between Vitamins in
Ca2+ Homeostasis in the Epididymis
An interplay of multiple vitamins may be required for optimal
Ca2+ homeostasis, including fat- or water-soluble vitamins, as
illustrated in Figure 6A. Vitamins B and C are water soluble,
whereas other vitamins including vitamins A, D, E and K are all
fat-soluble compounds. It has been reported that the systemic
action of vitamin D in Ca2+ homeostasis can be antagonized by
vitamin A, resulting in higher incidents of osteoporosis in man
(Johansson and Melhus, 2001). A synergistic interaction between
vitamins D and K in bone and cardiovascular health has been
proposed, in which vitamin D promotes the production of
vitamin K-dependent proteins, including osteocalcin and MGP
(Oury et al., 2013; van Ballegooijen et al., 2017). Consistent with
this notion, our studies showed that both the vitamin D-related
TRPV6-TMEP16A and the vitamin K-dependent GGCX-
mediated carboxylation of MGP pathways participate in
epididymal Ca2+ homeostasis in a spatial complementary
manner (Gao da et al., 2016; Ma et al., 2019). To elucidate
further the role of vitamin K-dependent Ca2+-bound
carboxylation-dependent MGP in the epididymal Ca2+, we
performed a bioinformatic analysis on our published proteome
results (Ma et al., 2019), and we found that the vitamin B6-related
signaling was also involved in vitamin K-related Ca2+-dependent
MGP-aggregation, as demonstrated in Figure 6B. These results
suggest an interplay of multiple vitamin pathways in regulating
epididymal Ca2+ homeostasis.

On the basis of the pathway network analysis in Figure 6B,
we found that 2-oxocarboxylic acid metabolism as one of the
primary enriched gene clusters, consistent with the association
of a carboxylation-dependent function of Ca2+-bound MGP.
In addition, we found that phagosome and antigen processing

FIGURE 6 | pathway of antigen processing and presentation, proximal tubule bicarbonate reclamation, and metabolic pathways. The cluster of metabolic pathways
mainly contains sub-clusters for catabolic pathways, including glycolysis and gluconeogenesis, TCA cycle and pyruvate metabolism, in addition to a vitamin-B6
metabolic pathway, suggesting the involvement of vitamin-B6 in the metabolism of Ca2+-MGP aggregates. The end products of most of these pathways are substrates
for oxidative phosphorylation and fatty acid elongation. These enriched pathways are in consistent with the notion of that chelation activity of carboxylated Ca2+-bound
MGP contributes to the scavenging of extracellular metabolites, and Ca2+ serves as a cofactor in this process. Circle size indicates enrichment degree of each pathway,
and border width represents the value of statistical significance of the enriched gene clusters [-Log (False Discovery Rate, FDR)].
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and presentation as the other key enriched pathways, which
were separated from the main primary cluster of metabolic
pathways. This may suggest that bound MGP-dependent Ca2+-
chelation participates in immunological function in the
epididymis, which is essential for sperm function (Stammler
et al., 2015; Fijak et al., 2018; Voisin et al., 2019). The

downstream of metabolic pathways identified in the
network analysis are mainly the catabolic pathways,
including glycolysis and gluconeogenesis, TCA cycle and
pyruvate metabolism. Interestingly, a vitamin B6 metabolic
pathway is also one of the identified downstream metabolic
pathways, suggesting the involvement of B6 in the metabolism

FIGURE 7 | Potential involvement of multiple vitamin pathways in regulation of epididymal Ca2+ homeostasis. (A) Schematic illustration for the regional expression
patterns of the key players regulating Ca2+ homeostasis in the rat epididymis, including epithelial Ca2+ channel TRPV6, Ca2+-dependent chloride channel TMEM16A, γ-
carboxylase GGCX and its substrate MGP. IS: initial segment; caput, corpus and cauda indicate head, body and tail region of the epididymis. Spermatozoa mainly
mature in the IS and caput epididymidis regions and are stored in the whereas cauda epididymidal region in a dormant stage. (B) Schematic diagram of the
hypothetical model of Ca2+ homeostatic regulation in the epididymal luminal microenvironment during sperm maturation. It involves vitamin D-associated electrical
coupling of TRPV6 and TMEM16A channels and vitamin K2-dependent GGCX carboxylation of MGP for luminal Ca2+ modulation and protein aggregation. The TRPV6-
TMEM16A electrical coupler is involved in fluid transport in a manner of sensitive to extracellular Ca2+ and pH. The GGCX-dependent MGP carboxylation plays a role in a
spatially complementary manner in the epididymis to promote Ca2+-facilitated protein aggregation, thereby maintaining Ca2+-homeostasis and pathological
calcifications. The potential role of vitamin-B6 in regulating the epididymal luminal microenvironment is also depicted in the proposed model. Ca2+-bound MGP-
containing protein aggregates in the epididymal lumen act as scavengers in which Ca2+ is an essential cofactor for the chelation of Ca2+-precipitable metabolites in the
extracellular matrix, such as epididymal secretory proteins and shedded remnants from spermatozoa.
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of Ca2+-MGP aggregates. The metabolite products of the
identified pathways are substrates for oxidative
phosphorylation and fatty acid elongation. These results
suggested that Ca2+-bound MGP aggregates are involved in
lipid generation, together with the carbohydrate-related
catabolism. In view of the maturing spermatozoa in the
epididymal lumen, and the various vitamin-dependent
pathways in Ca2+-homeostatic regulation, we hypothesized
that there is an interplay of different vitamins in the
regulation of Ca2+ homeostasis in the epididymis, and that
the biphasic chelation activity of carboxylated MGP
contributes to scavenging of extracellular metabolites,
whereas Ca2+ serves as the cofactor in this process.

It is known that vitamin K is a key modulator of Ca2+

homeostasis in maintaining bone health and for preventing
vascular ectopic calcification (Weber, 2001; Wallin et al., 2008;
Schurgers et al., 2013), which may also influence male fertility
systemically (Karsenty, 2011; Oury et al., 2011; Oury et al.,
2013). Since the epididymis is indispensable for sperm
maturation, and sperm maturation requires precise
regulation Ca2+ signaling (Turner, 2002; Weissgerber et al.,
2011; Weissgerber et al., 2012; Dacheux and Dacheux, 2014;
Robaire and Hinton, 2015), the elucidation of Ca2+

homeostasis mechanisms in the epididymis should provide
insights into the causes of epididymal-dependent sperm
dysfunction and male infertility.

While further investigations are required for a full picture of
the interplay between the vitamin signaling pathways, all
pathways are connected to Ca2+ homeostasis, particularly
extracellular Ca2+ homeostasis in epididymal fluid.
Therefore, low Ca2+ is a key factor in regulation of sperm
maturation and in male reproductive health. Taken together,
the evidence presented here indicates that dysregulated Ca2+

homeostasis due to defective expression of Ca2+-binding
proteins, abnormal Ca2+ signaling, or different kinds of
vitamin deficiency in the male genital tract may negatively
affect male reproductive health.

FUTURE PERSPECTIVES AND
CONCLUSION

Accumulating evidence has indicated the important role of
epididymal function in male fertility outcomes, and this
function depends to a large degree on the congenial luminal
microenvironment established by the epithelial cells lining within
the excurrent duct. Important aspects of the luminal
microenvironment include Ca2+homeostasis of acidity, both of
which are strictly regulated by a network of cell-cell interactions
and signaling pathways, as depicted in Figure 7. We have
provided evidence for the potential role of luminal Ca2+ in
functioning as a cofactor for the GGCX-dependent
carboxylation of MGP, which in turn acts as a scavenger for
extracellular metabolites. In addition, we discussed potential
interactions of vitamins in these pathways, which are essential
for sperm maturation and male reproductive health. This raises
the possibility that these multi-vitamin-dependent Ca2+

homeostatic-dependent pathways could be leveraged for novel
interventions aimed at treating and preventing sperm
dysfunctions and male reproductive defecits.
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