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A pivotal strategy to improve NK cell-mediated antitumor activity involves the upregulation of activating ligands on tumor cells.
Enhancement of NK cell-mediated recognition of multiple myeloma cells was reported by us and others showing increased surface
expression of NKG2D andDNAM-1 ligands on tumor cells following treatment with a number of chemotherapeutic agents, such as
genotoxic drugs or inhibitors of proteasome, histone deacetylases, GSK3, andHSP-90.These compounds have the capability to affect
tumor survival but also to activate specific transduction pathways associated with the upregulation of different NK cell activating
ligands on the tumor cells. Here, we will summarize and discuss the molecular pathways whereby these drugs can regulate the
expression of NK cell activating ligands in multiple myeloma cells.

1. Introduction

Natural killer (NK) cells are important effectors in immune
responses to tumors and viral infections whose effector func-
tion against target cells is generally related to their cytolytic
activity. Moreover, by the secretion of different cytokines
and chemokines, NK cells can also stimulate inflammatory
responses and exert a control on adaptive immune responses
[1, 2]. In this context, in the recent years, increased under-
standing of the mechanisms controlling NK cell activation
has led to the development of therapeutic agents that can
improve their responsiveness.

Multiple myeloma (MM) is a hematologic cancer charac-
terized by clonal expansion of malignant plasma cells (PCs)
that mainly reside in the bone marrow, able to interact
with local microenvironment and bone marrow stromal cells
(BMSCs) and these interactions are critical for survival and
resistance to therapy [3]. Treatment strategies for MM have
changed substantially in the past decade, and the use of

autologous hematopoietic stem cell transplantation (HSCT)
and the introduction of new drugs, such as bortezomib
and immunomodulatory drugs (IMiDs), have significantly
improved patients’ survival [4–7]. Moreover, as an additional
therapeutic strategy in young patients who experience early
relapse or with very high risk features at diagnosis, allo-
geneic stem cell transplantation has been also considered,
although often associated with significant transplantation-
relatedmorbidity ormortality [8]. However, despite advances
in therapeutic strategies, MM remains an incurable disease
(median survival around 4-5 years in adults) [9] and novel
targeted therapies and synergistic combinations with appro-
priate antimyeloma agents are required.

Increasing evidences have shown that NK cells can elicit
potent autologous and allogeneic responses to myeloma cells,
strongly supporting their antitumor potential in response
to immunomodulatory drugs or following stem cell trans-
plantation [10–12]. Thus, an interesting strategy to treat this
hematologic cancer could be to harness and boost NK cell
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Table 1: Drug-induced pathways and molecular targets associated with the upregulation of NKG2D and DNAM-1L expression onMM cells.

Drug Pathway/molecular target Ligands References

Genotoxic agents
Doxorubicin
Melphalan

ROS-dependent DDR MICA/B, ULPB1-3
PVR, Nectin-2

Soriani et al., 2009
[19];

Soriani et al., 2014
[29]

GSK3 inhibitors
LiCl
BIO
SB21

STAT3 inhibition MICA Fionda et al., 2013 [63]

Proteasome inhibitor
Bortezomib DDR MICA, ULBP1-3, PVR, Nectin-2

Jinushi et al., 2008
[17]

Soriani et al., 2009
[19]

Histone deacetylase inhibitor
Valproic acid ERK MICA/B

ULBP-2 Wu et al., 2012 [23]

Hsp90 inhibitors
Radicicol, 17-AAG HSR MICA/B Fionda et al., 2009

[22]
DDR: DNA damage response; ROS: reactive oxygen species.
HSR: heat shock response; ERK: extracellular signal-regulated kinase.

antitumor activity; in particular, since impaired recognition
of tumor cells represents a critical mechanism of immune
evasion, an intriguing approach could be to make myeloma
cells more susceptible to receptor-mediated recognition and
killing by NK cells. Indeed, anticancer immune responses
may contribute to the control of tumor progression after
conventional chemotherapy, and different observations have
indicated that a number of chemotherapeutic agents, or
radiotherapy, can induce immune responses that result in
immunogenic cancer cell death and/or immunostimulatory
effects [13, 14].

Several studies have shown that the engagement of
different activating receptors, such as the NKG2D (natural
killer group 2, member D) and DNAX accessory molecule-1
(DNAM-1), plays an important role in the NK cell-mediated
recognition and killing of MM cells [15–17]. Indeed, MM
cells can express the NKG2D ligands MICA/B [15, 18], differ-
ent UL16-binding proteins, the DNAM-1 ligands poliovirus
receptor (PVR/CD155), and Nectin-2 [19].

A cogent example of the functional connection between
chemotherapy and therapeutical immunomodulation is the
finding that several genotoxic agents or drugs, such as
inhibitors of proteasome, histone deacetylases, or the HSP-
90 molecular chaperone, can increase the expression of
NKG2D or DNAM-1 ligands, thus facilitating the activation
of NKG2D/DNAM-1-expressing lymphocytes (e.g., NK cells,
NKT cells, and CTLs) against tumor cells, including MM
[17, 19–23].

Combinatorial therapies, in which NK cells represent
one important mediator, may become a pivotal instrument
for the development of future immunochemotherapeutical
strategies.

Here, we provide a description of the molecular pathways
activated by different pharmacological treatments used in the
therapy ofMM, aimed at enhancing NK cell-mediated tumor
killing (Table 1).

2. DNA Damage Response Pathways

The DDR is a complex network of signal transduction
pathways that has the ability to sense DNA damage leading to
the arrest of the cell cycle, either transiently or permanently,
through the activation of cell cycle checkpoints, and of
specific DNA repair pathways. However, if the DNA damage
is irreparable, cells can undergo apoptosis in order to prevent
any damaged DNA progressing to deleterious mutations that
would be passed down to its progeny [24, 25].

Tumor cells often display a defect in the DDR, associated
with mutated or nonfunctional proteins involved in these
pathways. In particular, MMmalignant plasma cells are char-
acterized by marked genomic abnormalities during tumor
progression and have aberrant DNA repair pathways [26].
In this regard, monoclonal gammopathy of undetermined
significance (MGUS) or MM patients exhibit a deregulated
expression of cyclin D genes leading to a defect in the cell
cycle check points [27]. Other genetic alterations can involve
p53, ARF, NF-𝜅B, MYC, and KRAS genes, the gene products
of which are critical in DNA repair pathways [27]. Several
drugs used in MM therapy, such as melphalan, even at low
doses, can induce DDR activation [28, 29]; in this context,
we have recently contributed to delineating a link between
the activation of DDR induced by chemotherapeutics and the
transcriptional regulation of NKG2D and DNAM-1 ligands
in MM. In particular, we observed the upregulation, at both
protein and mRNA levels, of NKG2D and DNAM-1 ligand
expression on MM cells (cell lines and primary malignant
PCs) upon treatment with sublethal doses of commonly used
genotoxic drugs such as melphalan and doxorubicin. In this
context, the sublethal doses we used to treat the different
MM cell lines corresponded to IC50 values 10 times lower,
as previously described [19].

This effect was associated with the establishment of a
chemotherapy-induced senescent phenotype characterized
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by permanent cell cycle arrest at the G
2
/M phase, flat-

tened cell morphology, and positive senescence-associated
𝛽-galactosidase staining. Moreover, drug-induced ligand
upregulation was dependent on the activity of the DDR
protein kinases ATM/ATR and Chk-1/2 and on the E2F-1
transcription factor [19, 29]. Indeed, DDR activation leads
to an ATM-dependent E2F1 accumulation, and a site for
ATM/ATR phosphorylation in the amino terminus of E2F1
important for its stabilization has been identified [30].
Notably, at variance from our results showing that p53 is not
involved in drug-induced ligand upregulation on malignant
PCs, p53 involvement in ULBP1/2 upregulation on different
human cancer cell lines was observed [31, 32], suggesting
that p53 activity can exert opposite effects depending on the
overall context of its activation.

We have also defined an important role for changes
in the cellular redox state induced by sublethal doses of
chemotherapy (melphalan, doxorubicin), in the control of
DDR-dependent upregulation of ligand surface expression
and gene transcriptional activity. Our observations, in accor-
dance with much evidence indicating that DDR and oxida-
tive stress are major determinants of cellular senescence,
demonstrate that redox-dependent DDR activation plays a
critical role forMM cell entry in premature senescence and is
required for the preferential ligand upregulation on senescent
cells [19, 29].

DDR is a tightly organized mechanism, governed by
regulated protein-protein interactions and controlled also
by a number of posttranslational modifications, including
ubiquitination and sumoylation [33–36]. In this context,
the disassembly, removal, and/or degradation of chromatin-
associated DDR proteins represent an essential step in the
double strand brakes (DSB) repair and postrepair processes
and it is mostly coordinated by the ubiquitin-proteasome
system (UPS) [37].

Bortezomib is a boronic acid 26S proteasome inhibitor
which was approved by the Food and Drug Administration
for the treatment of relapsed/refractory, relapsed, and newly
diagnosed MM [38–40]. Interestingly, Jinushi and coworkers
have demonstrated that bortezomib-mediated upregulation
of MICA in myeloma cells required the activation of DDR,
since shRNA silencing of ATM or Chk-2 blocked ligand
induction [17]. Moreover, also DNAM-1 ligands expression
is increased in response to bortezomib treatment both in
primary malignant PCs and in MM cell lines [19].

Altogether, these data demonstrate a major role for the
DDR pathways induced by genotoxic drugs or bortezomib,
in the upregulation of NKG2D and DNAM-1 ligand on MM
cells.

3. Hsp90 Inhibitors and Activation of HSF1

Hsp90 is a molecular chaperone able to directly bind, stabi-
lize, and regulate the function of numerous client proteins,
including many mediators of signal transduction and cell
cycle progression [41]. Increased synthesis of Hsps is gen-
erally associated with stressful conditions which can cause
protein denaturation/misfolding, but it is also a peculiarity of
cancer cells whose proliferation depends on their capability

to react to endogenous and exogenous stresses. In particular,
Hsp90 is often overexpressed in different solid tumors and
haematologic malignancies, such as MM, and can contribute
to tumor cell survival by stabilizing many oncogenes and
by interfering with apoptosis [42–44]. In MM, Hsp90 inhi-
bition has been shown to affect multiple client proteins
involved in pathways critical to tumor development and
progression, angiogenesis, and osteoclastogenesis, such as
IGF1 and IL-6 receptors, and PI3K/Akt, STAT3, and MAPK
signaling pathways; moreover, upregulation of Hsp90 has
been observed in MM cells interacting with BMSCs [45–
47]. Accordingly, Hsp90 inhibitors have demonstrated potent
antitumor activity in preclinical studies and several clinical
trials of MM [46, 48, 49].

We found that treatment of MM cell lines with Hsp90
inhibitors [radicicol or 17-allylaminogeldanamycin (17AAG)]
results in a significant upregulation of MICA and MICB
expression, rendering these cells more efficient to activate
NK cell degranulation [22]. To identify possible mecha-
nisms underlying NKG2DL upregulation, we focused our
attention on two different cellular responses induced by
Hsp90 inhibitors: the “heat shock response” (HSR) and the
“unfolded protein response” (UPR). In this regard, Hsp90 is
considered a key factor in the regulation of HSF1, a tran-
scription factor involved in the induction of the HSR. Under
nonstress conditions, Hsp90 together with other components
of the Hsp90 chaperone machinery interacts with HSF1 and
represses its transcriptional activity [50]. Moreover, HSF1
is a known regulator of chaperone genes and its activation
induces increased expression of Hsp90, thus providing an
autoregulatory mechanism for its own inhibition. However,
acute stress-inducedHSF1 controls the expression of different
target genes. In this regard, this transcription factor has been
shown to mediate MICA and MICB promoter activation by
heat shock [51]. Exposure of MM cells to Hsp90 inhibitors,
able to block the HSF1/Hsp90 autoregulatory loop, induces
the release, nuclear translocation, and binding of HSF1 to a
heat shock response element (HSRE) on MICA/MICB pro-
moters; moreover, knockdown of HSF1 using small hairpin
RNA interference blocks these effects, indicating that HSF1
activation is essential for MICA and MICB upregulation by
Radicicol and 17AAG [22]. The UPR consists in the accu-
mulation of misfolded proteins and the induction of the ER
stress, leading to the activation of complex signaling and tran-
scriptional pathways [52, 53]. However, UPR activation, as
revealed by XBP1 and CHOP presence, is weakly induced or
inhibited by Hsp90 inhibitors in a time- and dose-dependent
manner in MM cells [48]; moreover, treatment of MM cells
with two classical ER stress inducers, such as tunicamycin or
thapsigargin, failed to modulate MICA or MICB expression,
suggesting that UPR activation, per se, is not sufficient to
enhance levels of these ligands and that it is not involved in
their regulation by drugs targeting Hsp90 [22].

4. GSK3 Inhibitors and STAT3

The serine/threonine kinase GSK3, for years considered
only for its role in glycogen metabolism, now is a known
component of diverse cellular signaling pathways involved in
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the regulation of protein synthesis, cell motility, proliferation,
and survival [54–57]. Moreover, GSK3 has been shown to
have a positive role in cancer and its pharmacological inhi-
bition holds promise for therapeutic intervention in several
solid and hematologic tumors [58]. Interestingly, this protein
kinase has emerged as a critical molecule in the pathogenesis
of MM [59–61]. Studies on the expression and function of
GSK3 in MM cells have reported an abundant expression
of the two GSK3 subunits, 𝛼 and 𝛽, and identified GSK3𝛼
as the prevailing active isoform. Indeed, GSK3 inhibitors
can induce growth arrest or apoptosis in MM cell lines and
can enhance the anti-MM cytotoxic effect of bortezomib, by
modulating critical signaling pathways in these cells such
as the forkhead transcription factors FHRL1 and FKHR, 𝛽-
catenin, and extracellular signal-regulated kinase- (ERK-)
1/2 kinases. Moreover, GSK3-mediated phosphorylation can
stimulate the activity of different transcription factors sus-
taining MM cell growth, such as NF-𝜅B and Maf [62]. In
this regard, administration of the GSK3 inhibitor [(2Z,3E)-
6-bromoindirubin-3-oxime] (BIO) in models of myeloma
bone disease has been shown to ameliorate bone destruction
associated withMMprogression, enhancing the osteogenesis
in mesenchymal stem cells and, in parallel, inducing regres-
sion of the tumor [61].

We found that different drugs targeting the GSK3 kinase
[e.g., lithium chloride (LiCl), SB216763 (SB21), or BIO]
can upregulate both MICA protein surface and mRNA
expression in MM cells, with little or no effects on MICB
and PVR expression [63]; moreover, exposure to GSK3
inhibitors renders myeloma cells more susceptible to NK
cell-mediated cytotoxicity. Intriguingly, we also showed that
STAT3 repression plays a critical role in the upregulation of
MICA expression induced by GSK3 inhibitors [63]. Similarly,
a previous study had demonstrated that STAT3 is a negative
regulator of MICA transcription in different cancer cell
lines [64]; moreover, GSK3 activity has been shown to
positively influence the tyrosine705 (Tyr705) phosphorylation
and DNA-binding activity of STAT3 in response to different
cytokines, and inhibition of this kinase could significantly
modulate the expression of STAT3-regulated genes [65]. In
this context, we showed that treatment of MM cells with the
STAT3 inhibitor STA-21 or with the JAK2-specific inhibitor
AG490 can increase MICA expression, thus confirming the
repressive action of STAT3 on this gene also in this type
of cancer cells. Indeed, our data showed that treatment
of MM cells with drugs targeting GSK3 led to a marked
reduction of the constitutive STAT3 phosphorylation in
Tyr705 and its binding to the promoter fragment encompass-
ing a repressive MICA/STAT3 response element. Moreover,
overexpression of a constitutively active mutant form of
STAT3 significantly inhibited MICA upregulation by GSK3
inhibitors, indicating that one of the mechanisms involved
in GSK3-mediated regulation of mica gene expression could
be related to the transcriptional activity of its promoter,
where basal repression mediated by active STAT3 can be
released by GSK3 inhibition. The mechanisms underlying
MICA repression by STAT3 remain to be explored. STAT3
has been shown to inhibit certain tumor suppressor genes

via epigenetic modifications, such as CpG island methylation
[66, 67]. In this regard, NKG2D ligand expression by histone
deacetylase (HDAC) or DNA methylation inhibitors was
described in different cancer cells, suggesting that chromatin
modifications can control the basal expression of these
ligands on tumor cells [21, 68–71]. These findings suggest
that epigenetic modifications likely can contribute to STAT3-
dependent repression of mica promoter activity; however,
additional experiments are needed to better analyze this
hypothesis.

5. Histone Deacetylase Inhibitors (HDACi)

Histone deacetylase inhibitors (HDACi) are a novel class of
anticancer agents undergoing evaluation in clinical trials for
the potential treatment of patients with different cancers,
including hematopoietic malignancies and MM. Indeed,
HDACi are able to induce increased acetylation of DNA-
associated histone proteins, leading to cell cycle arrest, differ-
entiation, and/or apoptosis in a wide range of malignant cells
[21, 72, 73]. A large body of evidence shows that treatment
of different type of tumor cells with HDACi leads to the
upregulation of NKG2D ligand surface expression resulting
in a significant increase of NK cell-mediated lysis of tumor
cells [21, 68–70]. In line with these results, a recent study
performed on human MM cells demonstrates that valproic
acid (VPA), a molecule originally described as an antiepilep-
tic and then demonstrated to inhibit HDACs inducing
antineoplastic activity), is able to enhance the expression of
the NKG2D ligands MICA/B and ULBP-2 with a mechanism
dependent on the activation of constitutively phosphorylated
ERK [23]. Interestingly, treatment of MM cells with VPA
increased the expression of pERK-1 and reduced pERK-2
levels; in this regard, although the reason for the preferential
phosphorylation of ERK-1 in VPA-treated myeloma cells
was not investigated, the underlying mechanism might be
explained by loss of competition between ERKs for their
binding/activation bymitogen-activated protein kinases [23].

6. Possible Cross Talk between Drug-Activated
Pathways Inducing NKG2D and
DNAM-1 Ligand Expression in MM Cells

Integration of different pathways regulating the expression
of NKG2D and DNAM-1 ligand in MM cells could be
beneficial to enhance NK cell recognition of tumor target
cells. Moreover, treatment of MM implies the simultaneous
administration of different pharmacologic agents, so it would
be helpful to understand how and if multiple signaling events
triggered by different drugs could affect surface levels of NK
cell activating ligands; however, very few data are available
about the potential effects of combined therapies on the
expression of these molecules on MM cells.

Several studies have described synergistic antimyeloma
effect of different pharmacologic agents including GSK3
or Hsp90 inhibitors with bortezomib [60, 74, 75] or with
melphalan and doxorubicin [76, 77].
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Figure 1: Drug-activated pathways regulating NK cell activating ligand expression. Hsp90 inhibitors regulate MICA/B expression via HSF1
activation. Drugs targeting GSK-3 repress STAT3 leading to MICA upregulation. Genotoxic drugs induce the expression of NKG2D or
DNAM-1 ligands following the activation of DDR-dependent E2F1 transcription factor. Proteasome inhibitors induce MICA expression via
ATMandChk-2 activation.HDAC inhibitors increaseMICA/B andULBP2 levels with amechanismdependent on ERK activation.Molecules
or pathways not involved in the regulation of these ligands are indicated in grey color and with dotted raw.

In this regard, we have recently investigated the possibility
of cross talk between pathways induced by chemotherapeutic
agents. The cooperation between GSK3 inhibition and geno-
toxic agents in the induction of MICA expression has been
investigated in MM cells. We observed that GSK3 inhibition
can cooperate with drug-activated DDR to increase MICA
expression, since treatment with melphalan increased the
expression of MICA and this upregulation was further
enhanced in the presence of LiCl. This cooperation may be
due to different and independent cellular events triggered
by two drugs; alternatively, treatment with GSK3 inhibitors
may facilitate the action of melphalan and/or vice versa.
Interestingly, STAT3 constitutive activation was shown to
prevent the induction of MICA following genotoxic stress
[64]. These observations suggest that constitutive activation
of this transcription factor in MM cells may interfere with
pathways triggered by DDR, increasing the threshold for
optimal activation; it could be speculated that GSK3 inhibi-
tionmay favorMICAupregulation aftermelphalan treatment
by reducing the repressive activity of STAT3. In addition,
GSK3 has been shown to regulate E2F1 activity by means of
direct and indirect mechanisms. In particular, independently
by its kinase activity, GSK3 has been found to physically
interact with the transactivation domain of E2F1 and to
inhibit its transcriptional activity [78, 79].These observations
can suggest E2F1 activation as a possible point of convergence
between DDR and GSK/STAT3, resulting in further increase
of activating ligand expression.

Despite the lack of data about the combined use of other
drugs andNK cell ligand expression inMMcells, the fact that
a growing number of studies described synergic antimyeloma
effects of these pharmacologic agents strongly suggests that
this aspect should be better investigated (Figure 1).

7. Chemotherapy and NKG2D Ligand
Shedding: A Double Edge Sword?

The release of soluble NKG2D ligands has been suggested to
be a major mechanism of tumor cell evasion from NKG2D-
mediated immunosurveillance. As a matter of fact, soluble
forms of NKG2D ligands are present in the serum of MM
patients [17, 80] and other types of malignancies; in this
regard, their levels correlate with tumor stage and metas-
tasis and with reduced expression of NKG2D on NK cells
and other cytotoxic lymphocytes [81, 82]. Soluble NKG2D
ligands can be released through metalloproteinase-mediated
cleavage, exosome secretion, or alternative splicing; however,
little is known about the effect of different chemotherapeutic
drugs on NKG2D ligands shedding. Although Kohga and
coworkers have shown that epirubicin can reduce the shed-
ding of MICA in epatocarcinoma cell lines [83], a large body
of evidence denotes that conditions causing cellular stress,
including chemotherapeutic agents and ROS, can lead to
increased metalloproteinase-mediated release of cell surface
molecules, including NKG2D ligands [84–87]. Interestingly,
Huang and coworkers have shown that combination of
valproate, known to upregulate cell surface MICA/B, and
metalloproteinase inhibitors was found to significantly sta-
bilize cell surface MICA/B on ovarian carcinoma cells and
to enhance in vivo the efficacy of immune cell therapy [88].
Moreover, in osteosarcoma cells, valproate treatment can
downregulate MMP9 expression and thereby upregulate cell
surface MICA/B expression, inhibiting the release of soluble
forms of these ligands [89].

Thus, metalloproteinases implicated in NKG2D ligands
shedding could be targeted in novel therapeutic schemes to
regulate the escape of malignant cells from stress-elicited
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immune responses. In this regard, additional studies will
be needed to better analyze NKG2D ligands shedding and
the pathways involved in its regulation by chemotherapeutic
agents in MM.

8. The Other Side of the Coin:
How Pharmacologic Treatments
Can Impact NK Cells

The setting of therapeutic approaches, based on chemo-
therapy-induced sensitization of tumor cells to NK cell-
mediated cytotoxicity, should always consider the possible
drug-induced effects when chemotherapy and the activity of
NK cell-mediated actions are needed together. In this regard,
standard and high dose chemotherapeutic regimens for
malignancies can inhibit the activity of the immune system
and also significantly decrease NK cell-mediated killing [90].
However, the effects of their immunomodulatory potential
could be changed and improved by using different doses and
schedules. In this context, we observed that treatment of NK
cells, with sublethal concentrations of doxorubicin, does not
affect the ability of NK cells to degranulate in response toMM
cells, as well as the expression of NKG2D and DNAM-1 and
ability to produce IFN-𝛾 [29]. On the contrary, the activity of
GSK3 kinase has been shown to modulate specific functions
of NK cells; inhibition of its activity can increase cytokine
secretion and cytotoxicity, possibly due to nuclear translo-
cation of functional 𝛽-catenin [91]. Similarly, in different in
vivomodels of hematologic cancer, loss of STAT3 in NK cells
enhances tumor surveillance by increasing their cytolytic
activity [92].Thus, the observations summarized above about
the interplayGSK3/STAT3 andMICA expression inMMcells
would be supported also by the additional information that
inhibition of this kinase could directly enhance the activity
of NK cells against the tumor.

Hsp90 is critical for regulation of phenotype and func-
tional activity of NK cells. How, after Hsp90 inhibition,
NK cells display decreased activating receptor expression
which correlate with a downregulation of their cytolytic
activity against tumor cells has been described [93]. Likewise,
NK cell effector functions can be compromised following
treatment with HDACi or bortezomib. Indeed, HDACi (e.g.,
vorinostat, trichostatin A, valproic acid, and apicidin) exert
their suppressive effect on both resting and activated NK
cells and at doses not affecting NK cell vitality, with reduced
levels of the activating receptors NKG2D and NCRs [94, 95].
Moreover, these drugs can also downregulate ligands for
NK cells-activating receptors, such as B7-H6 (a ligand for
NKp30), and impair tumor cell recognition by NK cells [96].

Cytotoxic effects of bortezomib on immune-competent
cells have also been observed. In this regard, bortezomib can
trigger apoptosis and disrupt NKp46-dependent cytotoxicity
in primary human NK cells [97]. Moreover, bortezomib can
inhibit surface expression of TRAIL in activated human NK
cells [98].

The development of combined cytoprotective strategies
to prevent the adverse effects of bortezomib on NK cells,
together with the use of adoptively transferred NK cells, will

be needed to enable amore efficient use of this important class
of drugs in MM patients.

9. Concluding Remarks

A number of experimental studies have shown that NK cells
have the ability to eliminate cancer cells; in this context, the
activity of NK cells can be exploited in therapeutic strategies
against different cancers. As discussed above, a number of
chemotherapy-induced molecular pathways can upregulate
NKG2D and DNAM-1 activating ligands, able to increase
activation and cytotoxic responses of NK cells toward MM.
Future preclinical research and the standardization of com-
bined therapeutic protocols using anticancer agents and NK
cells should be encouraged to promote effective therapeutic
immune responses to MM.
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