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While most circulating angiotensinogen (AGT) is synthesized in the liver, the kidneys also produce AGT. Recently, we reported
that urinary AGT is mainly originated from AGT. Using newly developed human AGT ELISA, we measured urinary AGT levels
in chronic glomerulonephritis (GN) patients and patients with type 1 diabetes in childhood. Urinary AGT level was positively
correlated with diastolic blood pressure, urinary albumin, urinary protein levels, and urinary occult blood in chronic GN patients.
Furthermore, urinary AGT level was significantly increased in chronic GN patients not treated with renin-angiotensin system
(RAS) blockers compared with control subjects. Importantly, patients treated with RAS blockers had a marked attenuation of this
increase. Also, urinary AGT level was significantly higher in patients with diabetic nephropathy in the premicroalbuminuric phase
than in control subjects. These results suggest that urinary AGT reflects intrarenal RAS status in chronic GN and may be an early
marker of diabetic nephropathy.

1. Introduction

The renin-angiotensin system (RAS) plays a critical role in
arterial pressure and sodium homeostasis [1]. Angiotensin
II (Ang II) is the most powerful biologically active product
of the RAS [2]. Recently, the focus of interest in the RAS
has shifted toward the role of the local/tissue RAS in specific
tissues [2]. Angiotensinogen (AGT) is the only known
substrate for renin that is a rate-limiting enzyme of the RAS.
Because the level of AGT is close to the Michaelis-Menten
constant for renin, not only renin levels but also AGT levels
can control RAS activity, and AGT upregulation may lead
to elevated angiotensin peptide levels and increased blood
pressure [3]. Recent studies of experimental animal models
and transgenic mice have documented AGT involvement in
the activation of the RAS and development of hypertension
[4, 5]. Genetic manipulations that lead to AGT overexpres-
sion have consistently been shown to cause hypertension [6,
7]. In human genetic studies, a linkage has been established
between the AGT gene and hypertension [8]. Enhanced
intrarenal AGT mRNA and/or protein levels have also been

observed in multiple experimental models of hypertension
including Ang II-dependent hypertensive rats [9–12], Dahl
salt-sensitive hypertensive rats [13, 14], and spontaneously
hypertensive rats [15], as well as in kidney diseases including
diabetic nephropathy [16–20], IgA nephropathy [21, 22], and
radiation nephropathy [23]. Thus, AGT plays an important
role in the development and progression of hypertension and
kidney disease [2, 24]. Recent studies showed that urinary
excretion rates of AGT provided a specific index of intrarenal
RAS status [2, 25, 26]. This paper explores recent findings
concerning the use of urinary AGT as a potential biomarker
of intrarenal RAS status in childhood nephropathy.

2. Intrarenal RAS

The role of RAS in blood pressure regulation and sodium
and fluid homeostasis is well recognized [2]. The biologically
active peptides that are formed from AGT include Ang II and
Ang 1–7. The balance between the vasoconstricting actions
of Ang II, mediated by the AT1 receptor, is countered by the
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Figure 1: Single regression analyses for urinary AGT-creatinine ratio with diastolic blood pressure (a), urinary albumin-creatinine ratio
(b), urinary protein-creatinine ratio (c), and urinary occult blood index (d), respectively, in chronic glomerulonephritis (CGN) patients
with/without renin-angiotensin system blockade (RASB) and in control subjects. Cited from Am J Nephrol 2010; 31: 318–325 by Urushihara
et al. [47].

vasodilating actions of Ang II, mediated by the AT2 recep-
tor [27], and Ang 1–7 acting on the G protein-coupled re-
ceptor Mas [28]. Formation of Ang II is dependent upon the
substrate availability of AGT and Ang I and the activities of
renin, ACE, ACE2, and ACE-independent enzymatic path-
ways including serine proteases, tonin, cathepsin G, trypsin,
and kallikrein. The actions of Ang II are determined by sig-
naling via AT1 and AT2 receptors and the putative Ang 1–7
receptor Mas [29].

Local/tissue RAS in specific tissues has become the focus
of much recent interest [30]. Emerging evidence has demon-
strated the importance of tissue-specific RAS in the brain
[31], heart [32], adrenal glands [33], and vasculature
[34, 35] as well as the kidneys [24]. In particular, renal
RAS is unique because all of the components necessary to
generate intrarenal Ang II are present along the nephron in
both interstitial and intratubular compartments [2, 29]. The
presence of AGT gene transcription in the proximal tubules
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Figure 2: Urinary AGT-creatinine ratio in chronic glomeru-
lonephritis patients (CGN) with/without renin-angiotensin system
blockade (RASB) and in control subjects. Cited from Am J Nephrol
2010; 31: 318-325 by Urushihara et al. [47].

has been shown using in situ hybridization [36]. AGT
mRNA is expressed primarily in the proximal convoluted tu-
bules and proximal straight tubules, with small amounts in
glomeruli, vasa recta, and renal vasculature [37]. Renal AGT
protein is abundant in the proximal convoluted tubules [38].
Strong positive immunostaining for AGT protein has been
reported in proximal convoluted tubules and proximal
straight tubules, and weak positive staining in glomeruli and
vasa recta; however, distal tubules and collecting ducts are
negative [9]. The AGT synthesized in the kidney is secret-
ed into the lumen leading to Ang I generation. Low but
measurable renin concentrations have been detected in prox-
imal tubule fluid in rats [2].

Renin mRNA and renin-like activity have been demon-
strated in cultured proximal tubular cells [39]. The brush
border membrane of proximal human kidney tubules ex-
presses abundant levels of ACE mRNA [40] and protein [41].
ACE has also been measured in proximal and distal tubular
fluid but is greater in proximal tubule fluid [42]. Therefore,
all the major components required to generate Ang II are
expressed within the kidneys [2, 24].

3. Urinary AGT as a New Biomarker of
Intrarenal RAS Status

Recently, urinary AGT excretion rates were reported to
provide a specific index of intrarenal RAS status in Ang II-
dependent hypertensive rats [9, 11, 12]. Moreover, urinary
AGT levels were reported to reflect intrarenal Ang II activity
associated with increased risk of renal function deterioration
in chronic kidney disease patients [25]. A direct quantitative
method to measure urinary AGT using human AGT enzyme-
linked immunosorbent assays (ELISA) was developed [43],
which indicated significantly increased urinary AGT levels
in hypertensive patients not treated with RAS blockers
compared with normotensive subjects. Importantly, patients
treated with RAS blockers exhibited a marked attenuation of
this AGT increase [26]. These data prompted us to measure
urinary AGT in chronic GN patients and patients with type
1 diabetes in childhood.

4. Urinary AGT Reflects Intrarenal RAS Status
in Chronic Glomerulonephritis

Chronic glomerulonephritis (GN) resulting in substantial
renal damage is frequently characterized by relentless pro-
gression to end-stage renal disease. Renal Ang II, production
of which is enhanced in chronic GN, can elevate the intrag-
lomerular pressure, increase glomerular cell hypertrophy,
and augment extracellular matrix accumulation [44]. ACEi
and/or ARB are often administered to patients with protein-
uric nephropathies [45, 46]. This may reflect the relatively
short-term nature and small sample size of these studies but
may also be an indication that factors other than Ang II play
an important role in progression of renal disease.

Previously, we examined glomerular AGT expression and
its correlation with expression of other RAS components
and levels of glomerular injury in samples from patients
with IgA nephropathy and minor glomerular abnormalities
[22]. Immunohistochemistry showed that AGT was highly
expressed in nephritic glomeruli affected by IgA nephrop-
athy compared with glomeruli affected by minor glomerular
abnormalities. Levels of glomerular AGT protein were well
correlated with levels of glomerular Ang II, transforming
growth factor-β (TGF-β), α-smooth-muscle actin, glomeru-
lar cell number, and glomerulosclerosis score. These data
suggest that activated glomerular AGT expression is likely
involved in elevated local Ang II production and, thereby,
may contribute to increased TGF-β production and devel-
opment of glomerular injury in IgA nephropathy.

Based on these findings, a newly developed human AGT
ELISA was used to elucidate urinary AGT levels in chronic
GN patients [43]. To demonstrate that urinary AGT reflects
intrarenal RAS status in chronic GN patients during child-
hood, 100 urine samples from 70 patients with chronic GN
and 30 normal control subjects were recruited [47]. All
patients had normal kidney function, and their background
renal diseases were IgA nephropathy (n = 26), purpura
nephritis (n = 24), lupus nephritis (n = 8), focal segmental
glomerulosclerosis (n = 7), and non-IgA mesangial pro-
liferative GN (n = 5). Urinary AGT-creatinine ratios did
not correlate with sex, age, height, body weight, body mass
index, systolic blood pressure, serum sodium levels, serum
potassium levels, serum creatinine levels, estimated glomeru-
lar filtration rate (eGFR), urinary fractional excretion of
sodium, or plasma AGT levels. However, urinary AGT-
creatinine ratios significantly positively correlated with dias-
tolic blood pressure (Figure 1(a); r = 0.2218, P = 0.0326),
urinary albumin-creatinine ratios (Figure 1(b); r = 0.4089,
P < 0.0001), urinary protein-creatinine ratios (Figure 1(c);
r = 0.6788, P < 0.0001), and urinary occult blood
(Figure 1(d); r = 0.2584, P = 0.0094).

Increased intrarenal AGT immunoreactivity was previ-
ously reported in IgA nephropathy patients and found to be
significantly positively correlated with urinary protein-creat-
inine ratio [21]. Increases in protein-creatinine ratio gener-
ally reflect the severity of renal disease [48]. Therefore, taken
together, these data suggest that urinary AGT levels may be
a marker of the severity of chronic GN. This perspective
is supported by recent clinical studies [25, 49]. As shown
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Figure 3: Urinary albumin-creatinine ratio (a) and urinary protein-creatinine ratio (b) were not increased in patients with type 1 diabetes
(T1DM) compared to control subjects, suggesting that these patients were in the pre-microalbuminuric phase of diabetic nephropathy.
However, urinary AGT-creatinine ratio was significantly increased in these patients compared to control subjects (c). Importantly, the AGT
increase was not observed in plasma (d). Cited from Am J Med Sci 2009; 338: 478–480 by Saito et al. [56].

in Figure 2, urinary AGT-creatinine ratios were significantly
increased in chronic GN patients not treated with RAS
blockers (19.79 ± 3.70μg/g) compared with control subjects
(6.22 ± 0.98, P < 0.0001) [47]. Importantly, the use of RAS
blockers attenuated this increase (10.58± 1.23, P = 0.0021).
These data suggest that urinary AGT can be used to assess the
efficacy of RAS blockade in reducing intrarenal RAS activity.

Although most circulating AGT is produced and secreted
by the liver, the kidneys also produce AGT [2]. Intrarenal
AGT mRNA and protein have been localized to proximal
tubule cells, indicating that intratubular Ang II could be
derived from locally produced and secreted AGT [36, 38].
The AGT produced in proximal tubule cells appears to be
secreted directly into the tubular lumen, in addition to pro-
ducing its metabolites intracellularly and secreting these
into the tubular lumen [50]. Proximal tubular AGT concen-

trations in anesthetized rats have been reported in the range
of 300–600 nM, which greatly exceeds the free Ang I and
Ang II concentrations in tubular fluid [24]. Plasma AGT
seems unlikely to filter across the glomerular membrane at
high levels due to its molecular size (50–60 kDa), further
supporting the concept that proximal tubular cells secrete
AGT directly into the tubules [51].

To determine if circulating AGT is a source of urinary
AGT, human AGT was infused into hypertensive and nor-
motensive rats [14]. However, human AGT was detectable
in plasma but not detectable in the urine of rats, indicat-
ing limited glomerular permeability and/or tubular degra-
dation. These findings support the hypothesis that urinary
AGT is derived from the AGT produced and secreted by
the proximal tubules and not from plasma. In agreement
with this concept, plasma AGT levels were not correlated
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with urinary AGT-creatinine ratios in this study. Moreover,
plasma AGT levels were unchanged across the three groups
even though urinary AGT-creatinine ratios demonstrated
significant differences. Therefore, AGT in urine seems highly
likely to originate from AGT in the kidney, not from AGT in
plasma. These data suggest that urinary AGT is a potential
novel biomarker of the intrarenal RAS status in chronic GN.
The efficacy of RAS blockade to reduce the intrarenal RAS
activity can, thus, be confirmed by measurements of urinary
AGT excretion rates.

5. Urinary AGT as a New Biomarker of
Intrarenal RAS Status in Type 1 Diabetes

Microalbuminuria is the most commonly used early marker
of diabetic nephropathy [52], and diabetic nephropathy is
thought to be a unidirectional process from microalbuminu-
ria to end-stage renal failure [53]. However, recent studies in
type 1 diabetic patients demonstrate that a large proportion
of diabetic nephropathy patients revert to normoalbumin-
uria and that one-third of these patients exhibit reduced
renal function even in the microalbuminuria stage [54].
Urinary inflammatory markers are thought to be high in mi-
croalbuminuric type 1 diabetic patients with diminished re-
nal function but not in those with stable renal function.
However, no single marker has been sufficient to represent
the whole panel [55]. Therefore, a more sensitive and more
specific marker for diabetic nephropathy would be highly ad-
vantageous.

To demonstrate whether urinary AGT levels can be disso-
ciated from urinary albumin or protein exertion rates in type
1 diabetic juveniles, early-phase studies were performed in
type 1 diabetic juveniles (n = 34) and sex- and age-matched
control subjects (n = 21) [56]. Since the primary focus of
the study was comparing the characteristics of normoalbu-
minuric patients with type 1 diabetes with those of control
subjects, 6 microalbuminuric patients with type 1 diabetes
(urinary albumin-creatinine ratio >30 mg/g) were excluded.
Consequently, urine and plasma samples from 28 diabetic
patients were analyzed (n = 49 total juveniles). No patients
received treatment with RAS blockers. Neither urinary albu-
min-creatinine ratios nor urinary protein-creatinine ratios
were significantly increased in these type 1 diabetic patients
compared to control subjects (urinary albumin-creatinine
ratio: 8.8 ± 0.7 mg/g versus 8.5 ± 1.1 mg/g, P = 0.8450;
urinary protein-creatinine ratio: 0.060 ± 0.010 g/g versus
0.070 ± 0.010 g/g, P = 0.3231), suggesting that these pa-
tients were in the premicroalbuminuric phase of diabetic
nephropathy (Figures 3(a) and 3(b)). However, urinary
AGT-creatinine ratios were significantly increased in these
patients compared to control subjects (12.1± 3.2μg/g versus
4.2 ± 0.7μg/g, P = 0.0454) (Figure 3(c)). Importantly,
AGT was not increased in plasma (26.3 ± 1.3μg/ml versus
29.5 ± 3.3μg/ml, P = 0.3148) (Figure 3(d)). These data
indicate that urinary AGT levels are increased in type 1
diabetic subjects and that increased urinary AGT levels
precede increased urinary albumin levels. Thus, urinary AGT
levels may serve as a very sensitive early marker of intrarenal

RAS activation and may be one of the earliest predictors of
diabetic nephropathy in diabetic patients [56].

6. Conclusion and Future Prospects

Recent findings indicate that urinary AGT is increased in
chronic GN patients, and treatment with RAS blockers sup-
presses urinary AGT. The efficacy of RAS blockade in reduc-
ing intrarenal RAS activity can be confirmed by measure-
ment of urinary AGT in chronic GN patients. Although the
relatively small sample size is a potential limitation, this study
demonstrated a statistically significant relationship between
urinary AGT and diastolic blood pressure, urinary albu-
min/protein levels, and occult blood in patients with chronic
GN. We recognized that a larger multicenter, randomized
control study is required to extend the clinical applicability
of these observations. A prospective study to determine
the relationship between the effect of RAS blockade on
urinary AGT and urinary albumin/protein would be helpful
in assessing the clinical significance of the decrease in
urinary AGT associated with RAS blockade. These research
projects will establish a novel diagnostic test to identify
those chronic GN patients most likely to respond to a RAS
blockade, which could provide useful information to allow
a mechanistic rationale for a more educated selection of an
optimized approach to treatment of chronic GN patients.
Increased urinary AGT levels are also observed in patients
with type 1 diabetes, and this increase precedes an increase
in urinary albumin levels, suggesting that urinary AGT
may function as an early marker of diabetic nephropathy.
Randomized clinical trials have been projected to establish
novel diagnostic tests to identify those patients most likely
to respond to RAS blockade. These trials could provide
information useful to developing a mechanistic rationale for
improved selection of optimized treatments in patients with
chronic GN or type 1 diabetes in childhood.
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