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ARTICLE INFO ABSTRACT

Keywords: Despite the high prevalence and socioeconomic impact of chronic low back pain (cLBP), treatments for cLBP are
Chronic low back pain often unsatisfactory, and effectiveness varies widely across patients. Recent neuroimaging studies have de-
Acupuncture monstrated abnormal resting-state functional connectivity (rsFC) of the default mode, salience, central execu-

Resting-state functional connectivity
Machine learning analysis
Treatment responses

tive, and sensorimotor networks in chronic pain patients, but their role as predictors of treatment responsiveness
has not yet been explored. In this study, we used machine learning approaches to test if pre-treatment rsFC can
predict responses to both real and sham acupuncture treatments in cLBP patients. Fifty cLBP patients partici-
pated in 4 weeks of either real (N = 24, age = 39.0 = 12.6, 16 females) or sham acupuncture (N = 26,
age = 40.0 = 13.7, 15 females) treatment in a single-blinded trial, and a resting-state fMRI scan prior to
treatment was used in data analysis. Both real and sham acupuncture can produce significant pain reduction,
with those receiving real treatment experiencing greater pain relief than those receiving sham treatment. We
found that pre-treatment rsFC could predict symptom changes with up to 34% and 29% variances for real and
sham treatment, respectively, and the rsFC characteristics that were significantly predictive for real and sham
treatment differed. These results suggest a potential way to predict treatment responses and may facilitate the
development of treatment plans that optimize time, cost, and available resources.

of acupuncture remains elusive, accumulating evidence shows that it
can relieve pain by modulating brain regions and networks associated

1. Introduction

Chronic low back pain (cLBP) is a highly prevalent and disabling
disorder with unsatisfactory treatment options (Buchbinder et al., 2013;
Chou and Shekelle, 2010; Deyo et al., 2006; Vos et al., 2013). Neuroi-
maging studies have shown functional and structural alterations in the
brains of cLBP patients (Baliki et al., 2011; Kong et al., 2013b;
Tagliazucchi et al., 2010a; Tu et al., 2019; Yu et al., 2014; Zhang et al.,
2019), indicating the involvement of the central nervous system (CNS)
in the development, maintenance, and experience of cLBP (Martucci
and Mackey, 2018).

As a traditional therapeutic approach that stimulates certain points
of the body with needles, acupuncture has been recommended for
treating cLBP in the recent guideline of the American College of
Physicians (Qaseem et al., 2017). Although the underlying mechanism

with pain perception and modulation (Cao et al., 2018; Dhond et al.,
2008; Egorova et al., 2015; Fang et al., 2009; Kong et al., 2007).

A recent meta-analysis on acupuncture treatment of chronic pain
demonstrated that acupuncture is effective for cLBP, and real acu-
puncture is superior to placebo on average (Vickers et al., 2012, 2017).
In addition, studies have also suggested that non-specific factors such as
context (expectancy) may contribute to acupuncture treatment and can
significantly modulate acupuncture's treatment effect (Hashmi et al.,
2014; Kong et al., 2009a). Therefore, we also employed a context ma-
nipulation model by assigning patients into real or sham treatment
groups with augmented or limited context (Kaptchuk et al., 2008;
Lembo et al., 2009). This model enabled us to simultaneously in-
vestigate the mechanisms of acupuncture and context, as well as their
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relationship, in relieving chronic low back pain.

Although acupuncture is effective for cLBP, there are large inter-
individual differences in patients' responses to both acupuncture and
placebo acupuncture treatment (Kong et al., 2013a). This variability is
not well understood but is likely essential for elucidating the underlying
mechanisms of acupuncture and placebo treatments and developing
more effective treatments. A pertinent question is whether and to what
extent neuroimaging metrics of the brain can provide insight into in-
dividual variation and be a reliable predictor of treatment responsive-
ness in clinical settings.

In this study, 50 cLBP patients underwent resting state fMRI scans
before and after 4 weeks of either real or sham acupuncture treatment
with context manipulation in a single-blinded clinical trial (Kaptchuk
et al., 2008). We explored whether pre-treatment FC could predict
symptom changes (measured by cLBP severity scores and comorbid
physical, mental, and social symptoms) following real and sham treat-
ment using cross-validated machine learning techniques. To increase
the power and efficiency, our analyses were restricted to networks
where we previously found connectivity patterns that were 1) abnormal
in cLBP patients (Tu et al., 2019) and 2) potentially modulated by
acupuncture (Chen et al., 2015).

2. Materials and methods
2.1. Participants

Seventy-nine patients diagnosed with cLBP with a duration of at
least six months were included in the study. Fourteen patients dropped
out of the study before the baseline symptom assessment and MRI
session, and 11 patients dropped out of the study after the baseline
assessment. Fifty-four patients received 4 weeks of real or sham acu-
puncture treatment with augmented or limited context (clinical trial
number NCT01595451), and of those, 4 patients did not finish all
treatment sessions. In total, 50 patients were included in the final
analysis. The details of the study design can be found in Fig. 1. Post-
treatment MRI was about one to two weeks after the last treatment
session. A previous large clinical trial suggested that the effects of
acupuncture can last for at least half a year (Cherkin et al., 2009). We
thus believe the duration between the last treatment and the MRI scan
should not influence results significantly. The inclusion and exclusion
criteria for all patients can be found in Supplementary Materials. The
Institutional Review Board (IRB) of Massachusetts General Hospital
approved the study, and all experiments were performed in accordance
with the guidelines set forth by the IRB for ethics and protection of
human subjects.

2.2. Clinical assessment and medication

The primary clinical outcome of this study is the LBP severity as-
sessment, which measures how bothersome a patient's LBP has been
during the past week on a 0-10 visual analogue scale (VAS) from “not
at all bothersome” to “extremely bothersome” (Cherkin et al., 2009;
Deyo et al., 1998).

Other secondary clinical symptoms including pain interference,
physical health, social disability, sleep disturbance, fatigue, depression,
anxiety, and pain intensity in the past week were measured using the
Patient Reported Outcomes Measurement Information System
(PROMIS) (Cella et al., 2007, 2010). In addition to PROMIS, patients'
depression symptoms were assessed with the Beck Depression Inventory
(BDD).

All participants were allowed to continue their existing medication.
Medication use per self-report was limited to non-steroidal anti-in-
flammatory drugs (e.g., ibuprofen) and acetaminophen (e.g., Tylenol).
Six out of 50 patients took opioid analgesics during the study (2 and 4
patients in real and sham treatment groups, respectively). Additional
non-pharmacological methods of self-reported pain management
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included chiropractic massages, physical therapy, and exercise.
2.3. MRI acquisition

All MRI data were acquired using a 32-channel radio-frequency
head coil in a 3T Siemens scanner at the Massachusetts General
Hospital Martinos Center for Biomedical Imaging. During the resting-
state fMRI, subjects were asked to keep their eyes open and to blink
normally while looking at a darkened screen for approximately 6 min. A
whole-brain gradient-echo echo-planar-imaging sequence was used for
functional scanning with a repetition time (TR) of 3000 ms (30 ms echo
time, 44 3.0 mm-thick slices, 2.6 X 2.6 mm in-plane resolution), and a
total of 125 volumes were collected. A high-resolution, T1-weighted
structural image (1 mm?> isotropic voxel MPRAGE) was acquired after
functional imaging.

2.4. Acupuncture treatment

Patients were randomized into one of four groups (‘augmented
context’ real acupuncture; ‘limited context’ real acupuncture; ‘aug-
mented context” sham acupuncture; ‘limited context’ sham acu-
puncture) using a permuted block randomization method with equal
probability of being assigned to each group, and they received 6
treatment sessions over 4 weeks (twice a week for 2 weeks and then
once a week for 2 weeks). All patients and study staff were blinded to
the treatment groups. Only the acupuncturists were not blinded.

The 7 real acupoints used were Yaoyangguan (GV3), bilateral
Shenshu (BL23), bilateral Weizhong (BL40), bilateral Taixi (KI3), and
1-3 ashi points bilaterally on the lower back and legs. Each treatment
lasted 25 min and was performed by a licensed acupuncturist, with
additional stimulation applied to elicit “deqi” by twirling the needles at
10 min and again just prior to needle removal. 12 sham acupoints were
selected for the placebo acupuncture treatment using a Streitberger
placebo acupuncture needle (Supplementary Materials and Fig. S1).
The rationale for the selection of these acupoints has been published in
a previous clinical trial protocol on acupuncture treatment of low back
pain (Sherman and Cherkin, 2003).

Patients randomly assigned to the augmented context group ex-
perienced a structured interaction with the acupuncturist lasting
around 30 min using a method applied in a previous study (Kaptchuk
et al.,, 2008). The acupuncturist's interaction with the subject was
structured with respect to both content (conversations between the
acupuncturist and patient involved four primary topics of discussion)
and style (five primary behaviors). The topics of discussion included
questions concerning 1) LBP symptoms; 2) other medical symptoms; 3)
psychosocial history, Chinese medicine intake and how cLBP has af-
fected the patient's relationships and lifestyle, and 4) how the patient
understands the “cause” and “meaning” of his or her condition. The
acupuncturist incorporated four primary behaviors including: 1)
exuding a warm, friendly manner; 2) active listening (such as repeating
the patient's words, asking for clarifications); 3) empathy (such as
saying “I can understand how difficult cLBP must be for you”); 4) 20 s of
thoughtful silence while feeling the pulse or pondering the treatment
plan; and 5) communication of confidence and positive expectation (“I
have had much positive experience treating cLBP and look forward to
demonstrating that acupuncture is a valuable treatment in this trial”).
The subject also received physical contact from the acupuncturist
during the Chinese medicine intake. For the augmented context, the
acupuncturist had a checklist to ensure that all key points were covered.

In the limited context group, the acupuncturist merely read study
information to the patient and aimed to “converse with patients as little
as possible.” We used the expectations for relief scale (ERS), a 0-10
scale with 0 indicating a very negative expectation of “does not work at
all” and 10 indicating a very positive expectation of “complete pain
relief” to measure the expectation of patients for acupuncture treatment
at baseline and after Treatments 1, 4, and 6. The details of the context
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( Consent, Evaluation, and Enrollment of cLBP Patients (N=79) ]
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Fig. 1. Experimental procedures. 50 cLBP patients were included in the analysis. Patients received 4 weeks of longitudinal real or sham acupuncture treatment.
Clinical assessments and MRI scans were collected at baseline and after all treatment sessions.

manipulation can be found in the Supplementary Materials and in our
previous publication (Kaptchuk et al., 2008).

2.5. fMRI preprocessing

The fMRI data were preprocessed using SPM12 (Wellcome Trust
Centre for Neuroimaging, London, UK). The first five volumes were
discarded for signal equilibration. Images were slice-timing corrected
and realigned. The resulting images were normalized to the Montreal
Neurological Institute (MNI) space (Ashburner and Friston, 2005) and
spatially smoothed using a Gaussian kernel of 5 mm full width at half
maximum (FWHM). To minimize the effect of head motion on the es-
timation of functional connectivity, we followed a strategy suggested by
a recent benchmark study (Ciric et al., 2017) by combing the 6 motion
estimates and 2 physiological time series (white matter and cerebral
spinal fluid [CSF]) as nuisance parameters and regressing them out
from the whole-brain fMRI data for denoising. To rule out potential
association of head motion and chronic pain symptoms, we calculated
the correlation between maximal framewise displacement (FD) value
(Power et al., 2012) and cLBP severity scores. Detailed results can be
found in Supplementary Materials.

2.6. Definition of seeds and functional connectivity construction

To examine whether baseline FC could predict symptom changes
following acupuncture treatment, we selected 30 brain regions, which
were defined using group independent component analysis in our pre-
vious study (Tu et al., 2019), from four key resting-state networks.
Specifically, these networks included the default mode network (DMN),
sensorimotor network (SMN), salience network (SN), and central

executive network (CEN). The brain of the cLBP patient is continuously
processing spontaneous background pain by integrating information
between these networks that are related to sensory, cognitive, and
emotional functions (Baliki et al., 2008; Borsook et al., 2013; Kong
et al., 2013b; Kucyi and Davis, 2015), and the FC between these regions
have shown close association with cLBP clinical symptoms and may
capture the characteristics of cLBP pathophysiology (Tu et al., 2019).
Thus, we used these brain regions as seeds to contruct FC matrices for
prediction analyses. The details of the spatial map and peak coordinates
of each brain region are provided in Fig. S2-S5 and Table S1.

The FC matrix was constructed based on the time courses of seeds by
calculating pairwise Pearson's correlations among time courses and z-
transforming. Since the FC matrix was symmetric, in total we had 435
(=30 x 29/2) connectivity patterns across four networks for further
investigation.

2.7. Predict treatment response from baseline fMRI

We used the pre-treatment multivariate FCs as features to predict
treatment responses (changes in pain severity after 4 weeks) for both
real and sham treatment groups. One aim of this study was to in-
vestigate the role of context in acupuncture treatment. Unfortunately,
we failed to modulate patients' expectations and treatment responses in
the present study (see Results and Discussion for details). Thus, we
pooled augmented and limited context groups and focused our pre-
diction analyses on real (N = 24) and sham (N = 26) groups.

Previous studies have suggested that different mechanisms may
underlie real and sham acupuncture (Egorova et al., 2015; Harris et al.,
2009; Kong et al., 2009a). We therefore built multivariate linear re-
gression models with changes of pain severity as dependent variables
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(responses) and multivariate FCs (N = 435) as independent variables
(predictors) for real and sham treatment, respectively. Such models
have been widely used in fMRI studies to identify brain patterns related
to behavior and disease (Hu and Iannetti, 2016; Lindquist et al., 2017;
Tu et al., 2016a, 2016b, 2018a; Wager et al., 2011). We decoded the
models using support vector regression (SVR, implemented by LIBSVM)
(Chang and Lin, 2011), resulting in a pattern of prediction weights
across all FCs, and the significance of each FC in prediction was as-
sessed using bootstrap testing (see Statistical Analysis for details).

The prediction was based on 5-fold cross-validation to ensure se-
paration between training and testing samples. Specifically, we parti-
tioned all subjects into five groups and used four groups for training and
one group for testing. This procedure was repeated 5 times to ensure
that each subject was used as the test sample once and that the model
did not include information from the test samples. We used an SVR with
a radial basis function (RBF) kernel. Two parameters, cost value and
gamma in RBF kernel, were optimized using a grid search via inner
cross-validation. The predicted treatment responses were calculated by
taking the dot product of the prediction weights (obtained from training
samples) and FC values from subjects in test samples.

To assess prediction performance, we calculated the squared pre-
diction-outcome correlation (R?) (Wager et al., 2013), which was de-
fined as the squared correlation between the actual and predicted
treatment responses, as well as the mean absolute error (MAE), which
was defined as the mean discrepancy between actual and predicted
treatment responses (Huang et al., 2013; Tu et al., 2018b). The sig-
nificance of the prediction performance was measured by permutation
testing (see Statistical analysis for details).

To obtain reliable performance and reduce the potential bias from
cross-validation (e.g., there might have been systematic difference
across the randomly partitioned folds, yielding biased results when
concatenating across folds), we ran 5-fold cross-validation 100 times
and reported the mean and standard deviation of the performance
measure.

2.8. Predict changes of different symptoms for cLBP

To explore the prediction of different clinical domains and comorbid
symptoms, the multivariate linear regression model was also used to
predict changes in PROMIS sub-scores, including pain intensity, pain
interference, anxiety, depression, fatigue, sleep disturbance, and social
disability in the past week. To avoid collinearity between PROMIS sub-
scores, we trained the multivariate prediction model separately for
different symptoms and used the square of prediction-outcome corre-
lation (R?) as the measure for capturing behavioral variance across
subjects.
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2.9. Statistical analysis

2.9.1. Clinical outcome

We used a two-way analysis of covariance (ANCOVA) with treat-
ment (real vs. sham) and context (augmented vs. limited) as factors to
investigate the difference in treatment responses between groups with
age, gender, and duration of pain included as covariates of no interest.

Based on recent meta-analysis results showing real acupuncture's
superior performance to sham acupuncture (Vickers et al., 2012, 2017)
and results from a previous study on context effect (Kaptchuk et al.,
2008), we only wanted to test (1) whether real acupuncture can pro-
duce greater pain reduction than sham acupuncture (i.e., real > sham);
and (2) whether the augmented context groups can produce greater
pain reduction than the limited context groups (i.e., augmented >
limited). Thus, a one-tailed hypothesis t-test was applied to assess the
above hypothesis.

2.9.2. Permutation testing

In permutation testing, we randomly permuted the labels of the data
(treatment response) prior to training. Cross-validation was then per-
formed on the permuted dataset, and the procedure was repeated 1000
times. If the model trained on real data labels had a prediction-outcome
correlation (z-scored) and an MAE that exceeded the 95% confidence
interval generated from the results of the models trained on randomly
relabeled data labels, the prediction model was considered to be per-
forming well.

2.9.3. Bootstrap testing

To threshold and select the most predictive features, we constructed
1000 bootstrap samples (with replacement) consisting of paired FC
features and treatment responses and ran SVR analysis on each. A one
sample t-test was performed for each feature based on the proportion of
weights below or above zero.

3. Results
3.1. Treatment effects on cLBP patients

No significant difference between the four treatment groups was
found for age (F3 46 = 0.77, p = 0.52), gender (& = 0.59, p = 0.90) or
duration of back pain (F3 46 = 0.22, p = 0.88). Patients' pain severity
scores after all treatments were reduced significantly in all four groups
(‘Augmented real> —2.4 + 1.5; ‘Augmented sham” —1.6 * 2.4;
‘Limited real> —3.2 = 2.5; ‘Limited sham’ —1.8 + 2.3; Table 1).
ANCOVA results showed no significant main effect for treatment, con-
text, and their interaction. A one-tail t-test showed real acupuncture

Table 1

Clinical outcome changes after acupuncture treatments (Post-Pre).
Treatment mode N Age Duration (years) Pain Severity Change P
Augmented real 12 (4 males) 43.0 + 11.1 6.0 = 4.1 —-24 = 1.5 < 0.001
Augmented sham 13 (5 males) 40.0 = 13.5 7.2 = 3.8 -1.6 = 2.4 0.03
Limited real 12 (4 males) 35.0 £ 13.2 59 =59 -3.2 £ 25 < 0.001
Limited sham 13 (6 males) 40.0 + 14.4 6.5 + 5.4 —-1.8 + 2.3 0.01
ANCOVA Sum of squares df F P
Main effect
Treatment 15.4 1 3.06 0.09
Context 3.8 1 0.75 0.39
Treatment X Context 1.2 1 0.24 0.63
Covariates
Age 0.1 1 0.02 0.88
Gender 0.01 1 0.003 0.96
Duration 2.7 1 0.54 0.47
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Fig. 2. Predicting the treatment effect of real acupuncture using baseline functional connectivity. Panel A shows the FCs with significantly predictive information
(obtained from bootstrap testing), and the size of a node denotes its importance (number of connections) for prediction. Panel B shows an example of the performance
of predicting symptom changes following real acupuncture. Different colors of dots come from different folds. The red solid line represents the relationship between
the predicted and actual pain severity change, and the blue dashed lines indicate the 95% confidence interval. The prediction errors are indicated by the distance
between dots and the diagonal line. Panel C shows the correlation between the strength of five identified mPFC FCs and changes in pain severity. mPFC: medial
prefrontal cortex; AG_R: right angular gyrus; AG_L: left angular gyrus. (For interpretation of the references to color in this figure legend, the reader is referred to the

web version of this article.)

had a significantly stronger effect than sham acupuncture (p = 0.043),
but no significant difference was observed between the augmented and
limited context groups (p = 0.21).

A two-sample t-test showed no significant differences in expectation
(measured by ERS between the augmented context and limited context
groups after treatment sessions 1, 4, and 6 (Fig. S6 and Table S2).

Regression analysis showed that baseline pain severity was not
significantly correlated with treatment responses (real: r = —0.19,
p = 0.38; sham: r = —0.28, p = 0.16). In addition, treatment responses
were not correlated with patients' pain intensity, disease duration, or
BDI (p > 0.05 for all correlations).

3.2. Predict treatment responses

Fig. 2 shows the results of predicting the treatment responses of real
acupuncture. We found that mPFC FC (mPFC-insula, mPFC-putamen,
mPFC-caudate, mPFC-angular gyrus) significantly contributed to pre-
diction, and other connectivities (posterior cingulate cortex [PCC]-
middle inferior frontal gyrus [MiFG], insula-inferior frontal gyrus
[IFG], insula-superior parietal lobe [SPL], and caudate-angular gyrus)
between the four networks also provided significant predictive in-
formation (Fig. 2A). Fig. 2B shows an example of 5-fold cross-valida-
tion. Different colors of dots represent samples from different folds. The
red solid line shows the relationship between actual and predicted pain
severity change, and prediction error is represented by the distance

between the dots and the diagonal line (the diagonal line indicates
perfect prediction: predicted values equal to actual values).

Across 100 times of 5-fold cross-validation, the prediction model
obtained a squared correlation of R® = 34.3 = 5.5% (p = 0.033) be-
tween actual and predicted treatment responses and an MAE of
1.67 = 0.02 (p = 0.023) for real acupuncture. Greater decreases in
pain severity correlated significantly with stronger pre-treatment
mPFC-SN FC (mPFC-insula: r = —0.50, p = 0.02; mPFC-putamen:
r = —0.58, p = 0.004; mPFC-caudate: r = —0.50, p = 0.02; Fig. 2C)
and weaker pre-treatment mPFC-angular gyrus FC (r = 0.49, p = 0.02
and r = 0.33, p = 0.12 for right and left angular gyrus, respectively).

For sham acupuncture (Fig. 3A), we also found that mPFC FC
(mPFC-dACC, mPFC-SPL, mPFC-paracentral lobe [ParaCL]) and other
connections across four networks (superior frontal gyrus [SFG]-pre-
central gyrus [PreCG], SFG-MiFG, and anterior cingulate cortex [ACC]-
ParaCL) provided significant information for prediction. Fig. 3B shows
an example of 5-fold cross-validation. Across 100 times of cross-vali-
dation, we obtained a squared correlation of R?=29.3 * 5.3%
(p = 0.037) between actual and predicted treatment responses and an
MAE of 1.52 + 0.04 (p = 0.020) for sham acupuncture. The variances
explained by the machine learning models for real and sham treatment
did not differ significantly (p = 0.52, two sample t-test). Among the
three aforementioned mPFC FC showing significantly predictive in-
formation, we only found that the strength of mPFC-dACC FC was
significantly correlated with changes in pain severity.
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mPFC: medial prefrontal cortex; dACC: dorsal anterior cingulate cortex.

In addition, we included the pre-treatment cLBP pain severity scores
into the prediction model and found similar prediction results (real:
R? = 32% without vs. R?> = 34% with; sham: R®> = 29% without vs.
R? = 29% with), indicating that prediction of acupuncture treatment
response may be achieved by neuroimaging measures but not by initial
severity.

As an exploratory analysis, we investigated the relationship between
changes of pain severity and changes (post-treatment vs. pre-treatment)
of FC showing predictive information at baseline, and we found that
changes of FC between the mPFC and insula/left angular gyrus were
significantly correlated with changes in pain severity after real treat-
ment, while changes of FC between the mPFC and ParaCL/SPL were
significantly correlated with changes in pain severity after sham
treatment (Fig. S7).

Finally, we tested whether the treatment responses of real and sham
intervention could be predicted through the same model. By combining
neuroimaging features and symptom changes from all patients, we
obtained a correlation of R*> = 4% (p = 0.21) between actual and pre-
dicted treatment responses and an MAE of 2.11 (p = 0.34). This result
suggests that different mechanisms may underlie real and sham

acupuncture.

3.3. Predict changes of other symptoms

Real and sham acupuncture significantly reduced PROMIS sub-
scores in pain intensity, physical disability and pain interference, and
increased social scores (Fig. 4). We did not observe significant changes
in fatigue, sleep, depression, or anxiety.

The prediction models for real treatment could significantly explain
the variance of change for pain intensity (R*> = 31.4 % 6.0%), pain

interference (R% = 26.5 * 6.5%), and social scores
(R%2=24.2 + 6.8%), but not for physical function
(R? = 19.7 + 8.1%), and the models for sham treatment could account
for the variance of improvements in pain intensity

(R? = 28.3 + 6.0%), pain interference (R* = 26.1 + 6.3%), and so-
cial scores (R?=23.6 + 7.0%), but not for physical function
(R* =18.2 + 8.0%).
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Fig. 4. Pre- and post-treatment clinical subscores of cLBP patients. Real and sham acupuncture significantly improved symptoms in physical function, pain intensity,

pain interference, and social scores.

4. Discussion

In this study, we used multivariate resting-state FC within and
across four networks (DMN, SN, CEN, and SMN) as features to predict
changes in pain severity for both real and sham acupuncture treatment
in cLBP patients. We found that real acupuncture produced stronger
treatment effects than sham acupuncture, while context manipulation
(augmented vs. limited) did not significantly modulate treatment ef-
fects. The FCs between the mPFC and the insula, putamen, caudate, and
angular gyrus were significantly predictive of real acupuncture treat-
ment responses, while the FCs between the mPFC and dACC, SPL and
ParaCL were predictive of sham acupuncture treatment responses. The
prediction model accounted for the variability of symptom changes in
pain intensity, pain interference, and social scores but was not related
to other general symptoms (e.g., depression, anxiety). These results
imply that different mechanisms may underlie real and sham acu-
puncture. Taken together with our recent findings (Tu et al., 2019), the
FC between the mPFC and other brain regions in the DMN, SN, CEN,
and SMN not only capture the pathophysiology of cLBP, but also have
the potential to predict treatment responsiveness.

Neuroimaging studies have shown that cLBP alters brain dynamics
beyond the perception of pain (Baliki et al., 2008, 2011). Spontaneous
cLBP has a brain representation unique from that of acute pain (Baliki
et al., 2011; Tagliazucchi et al., 2010b). Particularly, the mPFC is the
primary hub underlying spontaneous pain processing in cLBP (Baliki
et al., 2011; Zhang et al., 2019), and mPFC connectivity with the limbic
system (e.g., the amygdala and hippocampus) is indicative of pain
chronification (Baliki et al.,, 2012; Hashmi et al., 2013; Vachon-
Presseau et al., 2016). In our recent study (Tu et al., 2019), we found
abnormal mPFC FC in cLBP patients and investigated its associations
with clinical symptoms. Specifically, the baseline FC between the mPFC
and the posterior part of the DMN (i.e., the PCC and angular gyrus) was
significantly correlated with pain severity. In contrast, we found that
the FCs showing significant correlation with changes of pain severity
(treatment responses) were mainly between the mPFC and SN (i.e., the
insula, putamen, caudate, and dACC). Taken together, these results
indicate that while mPFC FC may be indicators for both cLBP patho-
physiology and treatment responsiveness, different connectivities and
networks (mPFC-DMN and mPFC-SN) were functionally involved.

Recent studies have demonstrated real and placebo treatment dif-
ferentiated at the brain circuit level (Gollub et al., 2018; Kong et al.,
2009a, 2009b; Tétreault et al., 2018; Vachon-Presseau et al., 2018).
While the long-term analgesia of real treatment may modulate the de-
velopment and maintenance of chronic pain with functional and

structural brain reorganization, placebo may also alter neural plasticity
via a different mechanism. Therefore, it is natural to expect that the
baseline predictors of treatment responses for real and sham would be
different.

For real acupuncture, we found that connectivity between the mPFC
and insula, putamen, and caudate was significantly correlated with
treatment responses after 4 weeks of treatment. The insula is a key re-
gion integrating the sensory processing system and cognitive mod-
ulatory system (Starr et al., 2009), and it has been shown to be acti-
vated during acupuncture (Cao et al., 2018; Gollub et al., 2018). In
particular, mPFC-insula FC was previously reported to be altered and
correlated with symptom changes of knee osteoarthritis patients after
acupuncture treatment (Chen et al., 2015). On the other hand, the
putamen and caudate are key regions in the dorsal striatum and em-
bedded in distinct cortico-striatal loop circuits, which connect to motor-
related cortical areas and frontal association areas. They integrate
sensory, cognitive, and affective information to help with decision-
making, action selection, and reward seeking (Haruno and Kawato,
2006). We believe that the mPFC-insula FC and mPFC-putamen/cau-
date FC may reflect patients' unique internal sensory and cognitive
states (e.g., reward) for acupuncture treatment, consequently influen-
cing treatment response (Wang et al., 2017).

In contrast, we found that mPFC-dACC connectivity was predictive
of treatment response to sham acupuncture. The dACC has been sug-
gested to be involved in the affective but not in the sensory aspect of
pain processing, indicating that it supports the motivational and emo-
tional aspects of pain (Lieberman and Eisenberger, 2015). Sham acu-
puncture, or the placebo effect, has been shown to reduce pain-related
negative emotions and consequently improve symptoms of chronic pain
(Flaten et al., 2011). Therefore, we speculate that sham acupuncture
may reduce symptoms in cLBP patients via the affective pain pathway
(medial pain system).

Machine learning models have demonstrated the ability to in-
dividualize brain measurements to predict treatment outcomes. For
instance, investigators have used machine learning to predict treatment
outcomes in patients with depression and anxiety disorders
(Doehrmann et al., 2013; Hahn et al., 2015; Whitfield-Gabrieli et al.,
2016), schizophrenia (Sarpal et al., 2016) and Parkinson's disease (Ye
et al., 2016). The findings from these studies have demonstrated the
value and potential of machine learning in the clinical setting. In the
present study, we used FC values from baseline to make reliable pre-
dictions of clinical symptom changes in response to a longitudinal
acupuncture treatment. In addition, unlike other studies predicting
treatment responses using initial severity (Doehrmann et al., 2013;
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Whitfield-Gabrieli et al., 2016), we found that treatment responses of
cLBP patients were not related to their baseline clinical characteristics.

Interestingly, we did not detect significant differences between the
high and low context groups, which differs from a previous study
showing that a high context group produced greater placebo effects
than a low context group (Kaptchuk et al., 2008). In our previous study
on knee osteoarthritis patients, we applied a different expectancy ma-
nipulation model using heat pain and informed patients that if acu-
puncture worked on reducing their experience to heat pain, it should
also work on their knee pain. We found that this condition-like ex-
pectancy method was able to significantly increase the treatment effect
after four weeks of knee pain treatment as compared to an identical
acupuncture treatment without the expectancy manipulation (Kong
et al., 2018). We believe that the failure of verbal + ritual expectancy
may mainly be due to individuals' different preferences or character-
istics when consulting with doctors (e.g., someone may prefer warm
conversations with the doctor, while others may prefer less conversa-
tion). Our findings suggest that gaining patients' trust is a complicated
process, and warmness and empathy may be just two of several factors
that can influence patients' expectancy/belief.

There are several limitations to this study. First, the treatment was
only 4 weeks in duration. Thus, the results obtained only represent
short- to mid-term effects. Second, our sample size is relatively small,
and more studies with larger sample sizes are needed to validate our
findings. The cross-validation approach may also lead to unstable and
biased estimates when the sample size is small, and the results should
be interpreted with caution (Varoquaux et al., 2017). Beyond that,
there is a need for validation in a fully independent sample to ensure
the robustness of the predictors. Third, participants were allowed to
continue their original treatments due to ethical concerns. Thus, the
ongoing treatments may be a confounding of our results. However, as a
randomized clinical study, we believe that we are largely protected
from noise due to other treatments. Further studies with larger sample
sizes are needed to further validate our findings.

In conclusion, we demonstrated the ecological feasibility and va-
lidity of using multivariate pre-treatment resting-state FCs to predict
treatment responses. The present findings provide a quantifiable
benchmark for selecting a treatment plan and may facilitate the de-
velopment of new tools to optimize time, cost, and available resources.
Elucidating different FC circuits to predict real and sham acupuncture
may shed light on our understanding of mechanisms underlying acu-
puncture and placebo and may facilitate the development of new
methods to enhance acupuncture treatment response (for instance,
through brain stimulation methods).
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