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1  | MITOCHONDRIA IN THE NORMAL 
CONDITION

The mitochondrion is a double‐membrane‐bound organelle in most 
eukaryotic cell. Generally, mitochondria are between 0.75 and 3 μm 
in diameter but differ in lengths and structure. Hundreds of mito‐
chondria form cable‐like structures and supply the energy demand 
of cells through the oxidative phosphorylation (OXPHOS) process.

Mitochondria constantly divide, fuse, and alter their size and 
shape, forming a dynamic network to maintain their integrity and 
quantity. Normal mammalian cells maintain a balance between fu‐
sion and fission. Mitofusin 1 and 2 (Mfn1/2) proteins are involved 
in fusion of the outer mitochondrial membrane, and optic atrophy 
1 (OPA1) protein mediates fusion of the inner mitochondrial mem‐
branes. Mitochondrial fission 1 (Fis1) and dynamin‐related protein 1 

(Drp1) are associated with mitochondrial fission. Fis1 localizes pri‐
marily on the outer mitochondrial membrane. Drp1is a cytoplasmic 
protein that translocates to mitochondria and interacts with Fis1 to 
enhance fission.1 Figure 1 illustrates these general features of mito‐
chondrial fission and fusion.

A positive mitochondrial membrane potential (Δψm) of 
120‐200 mV is fundamental for the normal performance and sur‐
vival of cells, especially those that have a high‐energy requirement. 
Thus, loss of Δψm is an indicator of reduced cell health. The col‐
lapse of Δψm due to the opening of a high‐conductance pore in the 
inner mitochondrial membrane is part of the molecular mechanism 
in apoptosis. The mitochondrial uncoupler carbonyl cyanide‐m‐
chlorophenylhydrazone (CCCP) depolarizes the inner mitochondrial 
membrane, reducing Δψm and ATP production, thus increasing the 
level of AMP and the phosphorylated (active) AMP‐activated protein 
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Summary
Mitochondria not only supply the energy for cell function, but also take part in cell 
signaling. This review describes the dysfunctions of mitochondria in aging and neuro‐
degenerative diseases, and the signaling pathways leading to mitochondrial biogen‐
esis (including PGC‐1 family proteins, SIRT1, AMPK) and mitophagy (parkin‐Pink1 
pathway). Understanding the regulation of these mitochondrial pathways may be 
beneficial in finding pharmacological approaches or lifestyle changes (caloric restrict 
or exercise) to modulate mitochondrial biogenesis and/or to activate mitophagy for 
the removal of damaged mitochondria, thus reducing the onset and/or severity of 
neurodegenerative diseases.
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kinase (pAMPK). This sequence of events elevates the level of reac‐
tive oxygen species (ROS), leading to oxidative damage.

While mitochondria are critical in regulating cellular energy bal‐
ancem, they also have well‐described roles in the maintenance of 
essential cellular functions. These include processes such as cellular 
differentiation, regulation of the cellular growth cycle, and cell death.2

2  | MITOCHONDRIAL BIOGENESIS AND 
ITS REGUL ATORS

Mitochondrial biogenesis is regulated to adapt the mitochondrial 
population to a cell's energy demands in response to the condi‐
tions of growth, cell division, and changes in oxidative stimuli and 

F I G U R E  1   General features of mitochondria fusion and fission. Left: Outer mitochondrial membrane proteins Mfn1 and Mfn2 mediate 
fusion of the outer mitochondrial membrane while the inner membrane protein OPA1 regulates the fusion of the inner mitochondrial 
membranes. Right: Fis1 and Drp1 contribute to mitochondrial fission process

F I G U R E  2   The proteins involved in the process of mitochondrial biogenesis and mitophagy that help to maintain the mitochondria 
quality. Caloric restriction (CR), physical exercise, and energetic status elevate SIRT1 or NAD+ levels that promote the nuclear translocation 
of PGC‐1α, which would enhance the transcription of genes associated with the mitochondrial function and biogenesis. Supplementing with 
NAD+ also enhance SIRT1 activity and trigger mitophagy
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hormones. Mitochondrial biogenesis depends on the coordinated 
expression of nuclear and mitochondrial DNA. Mitochondrial tran‐
scription factor A (TFAM) and nuclear respiratory factors 1 and 2 
(NRF1 and NRF2) regulate the biogenesis of mitochondria.3,4 The 
PPARγ coactivator‐1 family of transcription coactivators, sirtuins 
and AMPK, also are involved in regulating gene expression during 
mitochondria biogenesis (Figure 2).

2.1 | PGC‐1 families

There are three members in the PPARγ coactivator‐1 (PGC‐1) fam‐
ily: PGC‐1α, PGC‐1β, and PGC‐1‐related coactivator (PRC). The 
PGC‐1 coactivators respond to different stimuli to promote mi‐
tochondrial gene expression.5,6 PGC‐1α, the master regulator of 
mitochondrial biogenesis, directly interacts with NRF1 to increase 
the transcription of the genes regulated by NRF1. Overexpression 
of PGC‐1α in cerebellar neurons increases mitochondrial density by 
30% and protects the neurons against mutant synuclein A53T‐α or 
mutant Huntingtin gene (Htt)‐induced degeneration.7 The brains 
of mice lacking PGC‐1α presents microvacuolation and neuronal 
loss, which highlights the important role of PGC‐1α in the nervous 
system.8,9 In fact, the common character of several neurodegener‐
ative diseases, including Alzheimer's disease, Parkinson's disease, 
and Huntington's disease, is the impaired function of PGC‐1α.

PGC‐1β plays a role in the maintenance of basal mitochondrial 
functions.7 PRC, which is expressed ubiquitously, also enhances the 
gene transcription of NRF1. PRC mainly regulates gene expression 
in proliferating cells and in growth‐regulated mitochondrial biogene‐
sis.10 PRC depletion results in the aggregation of atypical mitochon‐
dria and severe respiratory chain dysfunction.11

2.2 | Sirtuins

Sirtuins are class III protein deacetylases that consume one molecule 
of NAD+ during each deacetylation cycle. Evidence form the past 
research indicates that sirtuins regulate the aging process and ex‐
tend life span.12,13 Sirtuin levels are influenced by diet, exercise, and 
environmental stress. There are seven mammalian sirtuins, SIRT1‐7. 
In addition to deacetylating histones or other specific transcription 
factors to regulate gene expression, the mammalian sirtuins also 
regulate the activities of metabolic enzymes to response the calorie 
restriction or other stresses.

SIRT1 is the most studied sirtuin. Research has demonstrated 
that overexpression of SIRT1 can alleviate diseases, including neu‐
rodegenerative diseases, diabetes, and liver steatosis.14,15 SIRT1 
deacetylates various transcription factors and coactivators, includ‐
ing PGC‐1α, the tumor suppressor p53, and FOXO to enhance the 
transcription of genes regulated by these factors.16 In the energy‐
deficient condition caused by disease or injury, SIRT1 activation 
has neuroprotective effects by promoting mitochondrial biogene‐
sis and triggering the turnover of damaged mitochondria.17

Unlike SIRT1, which mostly localizes to the nucleus, SIRT3 lo‐
calizes to mitochondria and is essential to mediate the response 

to oxidative stress by activating superoxide dismutase‐2 (SOD2).In 
response to oxidative stress, SIRT3 deacetylates SOD2 to enhance 
its ability to scavenge ROS.18 Normally, the endogenous SOD2 is 
inactivated by acetylation and it is important for antioxidant en‐
zymes to counteract cellular ROS. SIRT3 deficiency dramatically ex‐
acerbates the degeneration of nigro‐striatal dopaminergic neurons 
in 1‐methyl‐4‐phenyl‐1,2,3,6‐tetrahydropyridine (MPTP)‐induced 
Parkinson Disease mice.19 Overexpression of SIRT3 decreases the 
excitotoxicity of N‐methyl‐d‐aspartic acid (NMDA) to the cultured 
mouse cortical neurons.20

2.3 | AMP‐activated protein kinase

AMP‐activated protein kinase (AMPK) is an important regulator 
of cellular metabolism in eukaryotes. AMPK is activated by the 
increased AMP/ATP ratio which leads to enhanced glucose trans‐
port, fatty acid oxidation, and so on.21 AMPK also regulates mito‐
chondria function. On one hand, AMPK can stimulate mitochondria 
biogenesis through increasing the gene transcription regulated by 
PGC‐1α; on the other hand, AMPK can acutely trigger the destruc‐
tion of existing defective mitochondria through Unc‐51‐like au‐
tophagy activating kinase (ULK1)‐dependent mitophagy. The dual 
processes controlled by AMPK have the net effect of replacing 
existing defective mitochondria with new functional mitochon‐
dria. AICAR (5‐aminoimidazole‐4‐carboxamide ribonucleoside), 
the agonist of AMPK, has neuroprotective effects by reducing β‐
amyloid peptide (Aβ) production in neuronal cell culture in the AD 
cellular model.22

3  | MITOCHONDRIAL ANOMALIES WITH 
AGING

Aging induces many potentially interconnected defects and is a com‐
mon risk factor for adult human diseases. During the aging process, 
multiple mitochondrial anomalies may occur, including bioenergetic 
deficiency, the increased oxidative stress from respiratory chain, and 
the accumulation of the dysfunctional mitochondria.23,24 Damaged 
mitochondrial DNA (mtDNA) and the accumulation of injured mito‐
chondria are considered major contributors to aging.

Mutation in mtDNA reduces the lifespan of mice and humans.27 
According to the mathematical models, there is only a limited clonal 
expansion of somatic mtDNA mutations that can occur in short‐lived 
organisms like fruit flies. The experimentally obtained very high 
mtDNA mutation levels, which are unlikely to be found in nature, 
also reduce the lifespan of fruit flies. Additionally, adulthood is less 
sensitive to mtDNA mutations than is embryonic development.28

3.1 | Mitochondrial damage and mutation caused by 
ROS and replication errors

Impairment of mitochondrial dynamics can result in reduced oxida‐
tive phosphorylation and cell death. Mitochondria produce ATP for 
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cellular energy requirements, and ROS are toxic by‐products gener‐
ated during OXPHOS in mitochondria. Mitochondria generate about 
90% of the ROS present in cells. Excess ROS may cause oxidative 
damage to both nuclear DNA (nDNA) and mtDNA, which may con‐
tribute to many age‐related disease states.29 Compared to nDNA, 
mtDNA is prone to be damaged by oxidative stress because it is not 
protected by associated histones and other chromatin proteins and 
is near the ROS‐generating respiratory chain.

Besides ROS, replication errors and failure of the repair mech‐
anisms may be the more important reason for accumulation of 
mtDNA mutations.30 mtDNA replication is independent of cellular 
division, so the replication rate is higher than that of nDNA.31 In the 
meanwhile, there is a decrease in the DNA repair enzymes such as 
DNA polymerase 1 and endonuclease in aged tissue.26 Ultra‐deep 
sequencing was used to study genome‐wide mtDNA mutation load; 
the sequence analysis showed that most somatic mtDNA mutations 
occur as replication errors during development and do not result 
from damage accumulation in adult life.32

3.2 | Accumulation of dysfunctional mitochondria

Fusion and fission proteins control mitochondrial dynamics. 
Dysfunctional mitochondria are marked and selectively removed 
by the specific autophagic process called mitophagy. Through the 
process of fission, the dysfunctional mitochondria are selected for 
mitochondrial fragmentation, then turnovered by mitophagy and 
degraded in lysosomes. Therefore, fission is important for keeping 
mitochondrial quality and integrity. The level of both autophagy and 
mitophagy decline with aging,33,34 which results in an accumulation of 
dysfunctional mitochondria, advanced oxidative stress, and increased 
cell apoptosis. Dysfunctional mitochondrial accumulation occurs in all 
tissues during aging, including skeletal muscle, liver, and brain.

4  | MITOCHONDRIAL ABNORMALITIES 
LE AD TO NEURODEGENER ATIVE DISE A SES

Mitochondrial dysfunction occurs in most neurodegenerative 
diseases, including Parkinson's diseases (PD), Alzheimer's (AD), 
Huntington's disease (HD), Friedreich's ataxia (FRDA), and amyo‐
trophic lateral sclerosis (ALS).

4.1 | Parkinson's disease

Parkinson's disease is a widespread neurodegenerative disease. 
The primary hallmark of PD is the loss of dopaminergic neurons 
of the substantia nigra (SN). Several important genes including 
PARK7 (encoding DJ‐1), α‐synuclein, parkin, PINK1, or LRRK2 
have pathogenic mutations in PD which cause defects in mito‐
chondrial dynamics and function.36 Specifically, mutation of α‐sy‐
nuclein leads to its aggregation and these α‐synuclein aggregates 
delay fusion of phagosomes with lysosomes during the mitophagic 
process. Meanwhile, PINK1 deletion results in increased oxidative 

stress within mitochondria.37 In addition, environmental toxins 
cause mitochondrial dysfunction and are regarded as risk factors 
for PD as implicated in PD animal or cell models. For example, the 
complex I inhibitors MPTP, rotenone, pyridaben, and fenpyroxi‐
mate can mimic the pathological features of PD at low doses and 
lead to neurodegeneration in flies, rodents, and mammalian cell 
culture models. Recently, the MitoPark mouse, a model that spe‐
cifically lacks the gene for TFAM, has become the new genetic 
model for PD. The mitochondria dysfunction in dopaminergic 
neurons in MitoPark mice mimics many distinct characteristics of 
PD, including progressive and selective loss of dopamine neurons, 
motor deficits, and accumulation of inclusion bodies.38

4.2 | Alzheimer's disease

Alzheimer's disease is a common form of dementia that is associated 
with aging. The disease‐defining appearance of h Aβ aggregates and 
Tau pathologies correlate with mitochondrial dysfunctions in neurons. 
Aβ is generated through the cleavage of Aβ precursor protein39 by α‐, 
β‐, and γ‐secretases. The increased oxidative stress resulting from mi‐
tochondrial dysfunction generates the lipid peroxidation product 4‐
hydroxynonenal, which covalently modifies the γ‐secretase complex 
and leads to amplified secretase activity. Increased γ‐secretase activ‐
ity results in accelerated Aβ accumulation.40,41 Hyperphosphorylation 
of Tau protein (pTau) is another hallmark of AD along with Aβ.42 
Elevated Ca2+ and ROS levels during mitochondrial dysfunction both 
contribute to the accumulation of pTau aggregates.43,44 Melov et al45 
showed that mitochondrial SOD2 deficiency can result in pTau ag‐
gregates in mice, a symptom that is reversible by the administration 
of antioxidants. Most recently, Sorrentino et al46 also demonstrated 
that amyloid aggregation in cells can be reduced by pharmacologically 
and genetically targeting the mitophagy process.

4.3 | Huntington's disease

Huntington's disease is a neurodegenerative disease caused by CAG 
repeat expansion in the mutant HTT (or IT15) gene, which increases 
the size of the polyglutamine (polyQ) tract in the N‐terminal of the 
Huntington (Htt) protein. The mutant Htt protein with expanded 
polyQ forms aggregates. This aggregation recruits other proteins 
and mitochondria, adversely affecting the mitochondrial fission‐fu‐
sion process and disrupting the mitochondrial transportation along 
axons and dendrites.47,48 Mutant Htt may interact directly with 
the outer mitochondrial membrane and destabilize the membrane 
while increasing the sensitivity to Ca2+ or other apoptotic induc‐
ers.50 Meanwhile, ROS production also increases in HD patients 
and the mouse models, causing mitochondrial impairment.51 In HD 
patients and mouse models, mitochondrial fragmentation increases 
while the motility and respiration decrease. 3‐Nitropropionic acid 
(3‐NP), an inhibitor of the mitochondrial citric acid cycle, produces 
the selective striatal degeneration and mimics the progressive loco‐
motor deterioration of HD.52,53 Glyceraldehyde 3‐phosphate dehy‐
drogenase (GAPDH) is a key molecule in the glycolytic pathway. In 



820  |     WANG et Al.

normal cells, oxidized inactive GAPDH (iGAPDH) helps initiate the 
engulfment of the damaged mitochondrion into the lysosome for 
degradation. However, Hwang et al55 have shown that expanded 
polyglutamine repeats in HD cell models abnormally interacted 
with GAPDH, which stalled the GAPDH‐mediated mitophagy.

4.4 | Friedreich's ataxia

Similar to HD, Friedreich's ataxia (FRDA) is an inherited neurodegen‐
erative disorder caused by homozygous DNA repeat expansion mu‐
tation. FRDA's GAA expansion mutation leads to deficiency of the 
frataxin protein, causing mitochondrial dysfunction through promot‐
ing ROS production.56 Recently, studies by Abeti et al57 revealed that 
FRDA mouse models show a decrease in mitochondrial membrane 
potential that is caused by an activity imbalance between Complex 
I and II in the electron transport chain. This imbalance causes ROS 
generation in the mitochondrial intermembrane space and the matrix, 
and the subsequent lipid peroxidation results in neuron degeneration. 
PGC‐1a, the master regulator of mitochondria biogenesis, also plays a 
role in FRDA development. Lin et al58 demonstrated that in diseased 
FRDA mouse models, both PGC‐1a and its downstream effectors are 
significantly reduced compared to healthy controls. This impairment 
occurred early in the mitochondrial biogenesis pathway and is consid‐
ered a potential therapeutic target for FRDA treatment.

4.5 | Amyotrophic lateral sclerosis

Amyotrophic lateral sclerosis is a progressive disease that affects 
motor neurons in spinal cord and brain. Over 90% of ALS patients 
are sporadic. The ALS patients have movement abnormalities as well 
as a progressive loss of intellectual function. Mitophagy, the pro‐
cess of eliminating damaged mitochondria, plays a significant role in 
the ALS disease mechanisms. The neuromuscular junction (NMJ) of 
SOD1G39A mice, an ALS disease model, contains significantly fewer 
phagosomes than do in wild‐type mice, indicating a disruption in 
mitophagy. The mitophagy‐related proteins PINK1 and Parkin also 
are downregulated. In PINK1‐Parkin double‐knockout models, mice 
experience exacerbated NMJ degeneration and axon swelling which 
corresponds to ALS symptoms.

Furthermore, double‐knockout mice show an increased amount 
of ATP synthase beta subunit. This suggests that the increasing 
quantity of mitochondria at the junction resulted from dysfunctional 
mitophagy.59

5  | THE ELIMINATION OF ABNORMAL 
MITOCHONDRIA

5.1 | Mitophagy maintains the quality of 
mitochondria in cells

Mitophagy is part of the mitochondrial quality control system and is 
regulated by mitochondria fission‐ and fusion‐promoting proteins. 

In these processes, impaired mitochondria are engulfed into an au‐
tophagosome, which then fuses with a lysosome for degradation by 
lysosomal enzymes (Figure 2). Mitochondrial dynamics is a crucial 
process in maintaining proper mitochondrial morphology and in reg‐
ulating mitochondrial function, responses to apoptotic stimuli, and 
monitoring mitochondrial quality.60,61

The PINK1/Parkin interaction is crucial in regulating mitophagy 
in mammalian cells. PTEN‐induced putative kinase 1 (PINK1) is a ser‐
ine/threonine protein kinase present in the cytosol but also targeted 
to the outer mitochondrial membrane. Mitochondria with positive 
mitochondrial membrane potential import and degrade PINK1, pre‐
venting its accumulation on the outer mitochondrial membrane. 
PINK1 accumulates on the impaired mitochondria with a decreased 
Δψm. Parkin, a component of a multi‐protein E3 ubiquitin ligase 
complex, binds with PINK1 accumulated on the impaired mitochon‐
dria and tags the damaged mitochondria with ubiquitin for degrada‐
tion through mitophagy.62,63

In addition, increasing evidence supports, that mitophagy also 
can occur in a Parkin‐independent way. Without the participation of 
Parkin, some proteins, such as NIX, FUNDC1, or BNIP3, and cardio‐
lipin directly interact with LC3 protein and engulf the dysfunctional 
mitochondria into autophagosome.64,65 Meanwhile, other E3 ubiq‐
uitin ligases such as SMURF1 and MUL1 also can ubiquitinate the 
damaged mitochondria and promote mitophagy.67

Endosomes also play a role in mitochondrial elimination. 
Dysfunctional mitochondria are marked with ubiquitin by parkin, se‐
questered into Rab5‐positive early endosomes, and ultimately deliv‐
ered into lysosomes for degradation. In certain cell types, disruption 
of the endosomal pathway through loss of Rab5 function increases 
the likelihood of cell death due to mitochondrial stress.68

5.2 | Abnormal mitochondrial function affects 
lysosomal activity

Maintaining mitochondrial homeostasis requires the cooperation 
of mitochondrial biogenesis, mitochondrial fusion, fission, and mi‐
tophagy. The lysosome is the main degradation and recycling orga‐
nelle. Mitophagy tags and delivers the dysfunctional mitochondria 
to the lysosome for degradation. Meanwhile, mitochondrial dys‐
function also affects the structure and function of lysosomes.69 
Mfn2 promotes lysosomal autophagocytosis. Mfn2 depletion in 
cardiomyocytes retards the fusion of autophagosomes with lys‐
osomes.70 Phagocytosis also can be impaired by the depletion of 
proteins AIF, OPA1, or PINK1, and by chemical inhibition of the 
electron transport chain, causing the enlarged lysosomal vacuoles. 
CCCP increases mitochondrial ROS levels via membrane depolari‐
zation and specifically activates the lysosomal TRPML1 channels, 
causing lysosomal Ca2+ release. This activation triggers nuclear 
translocation of transcription factor EB (TFEB). This calcineurin‐
dependent transcription factor can activate the autophagy/lyso‐
some pathway by regulating the biogenesis of autophagy/lysosome 
organelles.71
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6  | METHODS TO ENHANCE 
MITOCHONDRIAL FUNC TION

6.1 | Pharmacological methods

There are several pharmacological strategies aimed at trigger‐
ing mitochondria biogenesis to treat neurodegenerative diseases. 
Rosiglitazone and bezafibrate can activate the PPAR‐PGC‐1α axis, 
and the SIRT1 agonists quercetin and resveratrol can activate sir‐
tuins and AMPK.72,73 Bezafibrate increase the mitochondrial pro‐
teins and mitochondrial ATP generating capacity; as the result, it 
had a neuroprotective effect in this mouse model of mitochondrial 
encephalopathy.76 Rosiglitazone can increase mitochondrial mass 
and attenuate mitochondrial dysfunction in mutant Htt‐expressing 
cells.77

Several antioxidants such as creatine, coenzyme Q10, and mi‐
tochondrially‐targeted antioxidants/peptides seems to improve the 
patient's ankle mobility in PD clinical trials.78 However, most of the 
antioxidants, such as dimebon, seem to have beneficial effects in the 
AD preclinical research, but failed in the AD clinical trials.79,80 Since 
mitochondrial dysfunction occurs at the early stage of diseases, the 
method of pharmacological interventions should be considered.

Besides enhancing mitochondria biogenesis and the scavenging 
of ROS, inducing mitophagy would be another strategy to maintain 
mitochondria homeostasis. Urolithin A, a metabolite of ellagitannins 
produced by the human gut microbiota, induces mitophagy, prevents 
the accumulation of dysfunctional mitochondria with age, and pro‐
longs lifespan in Caenorhabditis elegans and increases muscle func‐
tion in rodents.81 Urolithin A can go through the blood‐brain barrier, 
which may have neuroprotective effects against neurodegenerative 
diseases. Spermidine is produced from putrescine and could be a pre‐
cursor of spermine generation. Spermidine acts as acetylase inhibitor 
and induces autophagy in a SIRT1‐independent manner.82 Therefore, 
spermidine promotes basal autophagic flux and stimulates mito‐
phagy repairing mitochondrial activity in aged cardiomyocytes.83 
Spermidine feeding protects from age‐induced memory impairment 
in an autophagy‐dependent manner.84 Spermidine induces the for‐
mation of mitophagosomes and decreases the aggregation of dys‐
functional mitochondrial through the PINK1/Parkin pathway.85

6.2 | Caloric restriction

Caloric restriction (CR) is to decrease the calories intake but maintain 
all the essential nutrients and without malnutrition. CR decreases 
the production of ROS and reduces oxidative DNA damage, slows 
down the transcriptional changes associated with aging.86

Sirtuins are considered to have an important role in mediat‐
ing the beneficial effects of CR on longevity.87,88 Similar with CR, 
SIRT1 overexpression is helpful to extend the life span and de‐
crease the disease syndromes of neurodegenerative diseases. CR 
induced the expressions of sirtuins, such as SIRT1, SIRT3, SIRT5, 
and SIRT7.89 SIRT1 knockout mice cannot live longer even with the 
CR diet.90 CR delayed the onset of prion disease mice but failed to 

delay the onset in the SIRT1 knockout strain.91 Knocking out the 
mitochondrial SIRT3 prevents the protective effect of CR against 
hearing loss.92

Caloric restriction enhances the number of mitochondrial cris‐
tae as well as the number of mitochondria in per cell.93 CR also 
prevents excitotoxic conditions through the indirect decrease in mi‐
tochondrial permeability and calcium retention. These are mediated 
through CR‐activated SIRT3 deacetylation and inhibition of cyclo‐
philin D, a peptidylprolyl isomerase.94

Additionally, CR inhibits the PI3K/AKT pathway, induces auto‐
phagy, which may increase mitophagy and maintain mitochondria 
homeostasis.

6.3 | Physical exercise

Some research results show that exercise might be helpful in retard‐
ing the progress of neurodegenerative diseases,95,96 which may be 
associated with the recovery of mitochondrial function by exercise. 
Exercise stimulates brain mitochondrial activity. Exercise not only 
increases resistance against rotenone, an inhibitor of complex I ac‐
tivity, but also increases mRNA expression of TFAM and Ndufa6, 
subunits of mitochondrial complex I.97 At the same time, exercise 
increases mtDNA repair capacity in the mouse hippocampus and 
activates mitochondrial uncoupling proteins (UCP) which can regu‐
late mitochondrial proliferation98 and control the production of mi‐
tochondrial‐derived ROS. Exercise upregulates UCP2 levels in the 
hippocampus, lowers cellular oxidative stress99 and can activate 
autophagy, which is helpful in maintaining muscle mass.100,101 We 
have found that exercise could ameliorate the detrimental effect 
of chloroquine on skeletal muscles through restoring autophagic 
flux104 and activating the autophagy/lysosomal pathway through 
AMPK pathway in cerebral cortex and striatum.105 The enhanced mi‐
tophagy lessens the level of dysfunctional mitochondria to maintain 
a high quality of mitochondria in cells.

7  | CONCLUDING REMARKS

Mitochondrial dysfunction, the downstream oxidative stress and im‐
paired autophagy/lysosomal activity are the main factors involved in 
neurodegeneration. Thus, drugs that improve mitochondria function, 
scavenge the excessive ROS, or enhance the autophagic flux may have 
the potential to treat neurodegenerative diseases. However, pharma‐
cological agents enhancing mitochondria integrity to treat neurode‐
generative diseases remain to be developed. At this point, both CR 
and exercise, which can enhance mitochondria biogenesis and the 
autophagy/lysosome pathway (including mitophagy), maybe helpful 
in retarding the onset and progression of neurodegenerative diseases.
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