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Abstract: Esophageal cancer has a poor prognosis and high mortality rate across the world.
The diagnosis and treatment of esophageal cancer are hindered by the limited knowledge about
the pathogenesis mechanisms of esophageal cancer. Esophageal cancer has two major subtypes,
squamous and adenocarcinoma. In this work, we proposed a method to select candidate biomarkers of
esophageal squamous carcinoma based on the topological differential analysis between the gene–gene
interaction networks for esophageal squamous carcinoma and normal cells. We established the
gene–gene interaction networks for esophageal squamous carcinoma and normal based on the
correlation of genes. For each gene, we firstly calculated and compared five centrality measures,
which could reflect the topological property of a network. According to five centrality measures,
the genes with large differences between the two networks were regarded as candidate biomarkers for
esophageal squamous carcinoma. A total of 21 candidate biomarkers were identified for esophageal
squamous carcinoma, and seven of them have been confirmed to be biomarkers of esophageal-12
squamous carcinoma by previous research. In addition, six genes (RBPMS2, PDK4, IGK, SBSN, IFIT3
and HSPB6) were likely to be the biomarkers of tumorigenesis for esophageal squamous carcinoma
due to the fact that the biological processes in which they participate are closely related with the
development of esophageal squamous carcinoma. Statistical analysis indicates that effectiveness
of the detected biomarkers of esophageal squamous carcinoma. The proposed method could be
extended to other complex diseases for detecting the molecular features of pathopoiesis and targets
for targeted therapy.
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1. Introduction

Esophageal cancer is one of the leading causes of cancer-related deaths in the world [1]. Esophageal
cancer has a poor prognosis and high mortality rate, with an estimated 16,910 new cases and
15,910 deaths projected in 2016 in the United States [2]. Furthermore, the survival rate for affected
patients is very low at later stages, ranging from 10% in Europe to 16% in the United States [1]. Due to
the limitations of the technologies of diagnosis and treatment, it is difficult to find an effective method
for the diagnosis and therapy for the esophageal cancer.
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There are various techniques in tissular or cellular levels for the identification and classification of
esophageal cancer, including X-ray examination, positron emission tomography, magnetic resonance
imaging and biomarker testing such as prostate-specific antigens in the blood circulation [3]. However,
there are several deficiencies in adequately describing the changes between esophageal cancer and
normal in cellular levels. The important genetic changes always lead to specific changes in molecular.
With the development of personalized genome sequencing and the use of varieties of omics data,
it is available to find the molecular features of tumorigenesis or targeted therapy targets by using the
data mining method to process the transcriptome data [4], epitranscriptome data [5], metabolome
data [6], etc.

A systematic review has come to a conclusion that gene expression profiles could be used to
predict clinical outcome and to select optimal personalized therapy [7]. In previous studies, many
cancer-related genes have been identified based on gene transcriptome data. Some of these genes have
been confirmed as tumor suppressor genes, and some have been treated as targets in cancer targeted
therapy [8–10]. However, these studies mainly focus on identifying differentially expressed genes,
but neglect the topological difference between tumor and normal networks.

In this work, we proposed a method to select candidate biomarkers of esophageal squamous
carcinoma based on the topological differences between the gene-gene interaction networks for
esophageal squamous carcinoma and normal cells. Specifically, the gene-gene interaction networks
were established based on spearman rank correlation coefficients among genes in esophageal squamous
carcinoma and normal, respectively. Then, the topological difference was analyzed between these two
networks. Experimental analysis has demonstrated the effectiveness of the detected results.

2. Results

In our work, we established the gene-gene interaction networks for esophageal squamous
carcinoma and normal. In addition, the way to detect candidate biomarkers was applied on these
networks. The overall framework of our work is shown in Figure 1.

2.1. Gene Networks

In our work, we calculated the Spearman rank correlation coefficients of all gene pairs in the
cancer group and the normal group, respectively [11]. Further, 0.8 was chosen as a threshold for
filtering relationships between genes based on the distribution of correlation coefficients. In other
words, if the correlation coefficient of a gene pair was greater than 0.8, then an edge was established
between the two genes; otherwise, no edges were established. In addition, a statistical analysis was
implemented to verify the reliability of the selected relationships. To be specific, we calculated the
repetition rate of each relationship for both esophageal cancer and normal cells. We found that the
average repetition rate of relationships between genes in normal cells was 0.69 and that in esophageal
cancer cells was 0.72. It implies that most relationships between genes hardly depend on the selected
samples [12]. Here, the gene-gene interaction network for esophageal cancer was termed as the cancer
network, while that for normal was named as the normal network.

As shown in Figure 2, the normal network had 441 nodes and 2047 edges, while the cancer
network contained 95 nodes and 140 edges. The average degree and the diameter of the normal
network were respectively 4.65 and 9, while 1.24 and 4 in the cancer network. Moreover, the average
clustering coefficients of them were 0.17 and 0.14. According to Figure 2, we could see that the number
of nodes and edges in normal network was much larger than those in cancer network. The main reason
to illustrate the fact is that in esophageal cancer cells, some of the normal pathways will be blocked,
which may lead to the phenomenon of dedifferentiation in the process of cancer cell formation [13].
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2.1.1. Comparison of the Communities between Esophageal Squamous Carcinoma and Normal

In what follows, we respectively detected communities in the cancer and normal networks and
then analyzed the biological processes in which the genes in a community mainly participated. In the
normal network, we detected two communities, i.e., Community 1 and Community 2. According to
Table 1, we found that the genes in Community 1 were mainly participated in the extracellular matrix,
cell framework, and cell membrane structure.

Table 1. Function enrichment of genes in communities of the normal network.

Community 1 Community 2

Cluster Term p-Value Cluster Term p-Value

1

Extracellular matrix 9.52 × 10−6

1

Notch signaling pathway 4.00 × 10−4

Secreted 0.0013 Epidermal growth factor
(EGF)-like calcium-binding 0.0315

Extracellular region 0.01416 conserved site 0.0316

2
Muscle contraction 1.60 × 10−7 EGF-type asparagine

hydroxylation site 0.0340

Actin-binding 0.0153 EGF-like, conserved site 0.0456
Cytoskeleton 0.0386 EGF_CA 0.0469

3
Cell membrane 8.50 × 10−4

2 Golgi apparatus 0.0229Membrane 0.0058
Plasma membrane 0.0026

It also can be seen that the genes in Community 2 were mainly involved in cell and external signal
transduction and protein synthesis. Previous literature indicated that the extracellular matrix provides
a suitable environment for cells and maintains its survival and activity, while the signal transduction
system affects the shape of cells, metabolism, function, migration, proliferation and differentiation.
It is suggested that the genes involved in these two communities maintain the operation of normal
cells [14]. However, these two communities did not appear in the cancer network, which suggests that
the incidence of esophageal cancer is associated with the loss of regulation of the gene associated with
extracellular matrix, as well as cell and external signal transduction [15]. It is indicated that due to
the dysfunction of above genes, cancer cells are characterized by infinite proliferation, mitochondrial
polymorphism, swelling, hyperplasia, cytoskeletal disorders, abnormal skeletal assemblage and
changes in cell surface characteristics in esophageal cancer tissues.

Furthermore, we selected the two largest communities (Community A and Community B) in
the cancer network for the functional enrichment analysis. The main functions of these are shown in
Table 2. According to Table 2, the genes in Community A were mainly involved in cell adhesion and
immunoglobulin functions. Previous research has shown that the normal cells are connected in three
ways: adherens junction, tight junction and gap junction [16]. Adherens junction relies on adhesion
such as cadherin, actin and catenin to achieve intercellular adhesion. The other two connections are
mainly used as intercellular channels for the transport of nutrients and signals. The cancer cells are
easily invaded and transferred due to the fact that the intercellular adhesion of cancer cells compared
to normal cells in the same tissue has a significant reduction [17]. It indicates that the interactions
between genes in Community A inhibit the adhesion of adherent cells. It was also found that genes
of immunoglobulins cannot express in normal tissue cells but only express in immune cells. Many
studies have shown that a variety of cancer cells can express immunoglobulins which play a role as
the growth factor, which suggests that cancer cells cannot grow and survive without immunoglobulin.
Moreover, the purified immunoglobulins isolated from human cancer tissue also inhibit lymphocyte
proliferation [18]. Immunoglobulins derived from cancer cells have the dual effects of promoting the
growth of cancer cells and inhibiting the cellular immune function of the host cells.
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Table 2. Function enrichment of genes in communities of the cancer network.

Community A Community B

Cluster Term p-Value Cluster Term p-Value

1

muscle contraction 1.07 × 10−6

1

proteinaceous extracellular matrix 2.95 × 10−5

stress fiber 7.67 × 10−4 extracellular matrix 4.34 × 10−5

focal adhesion 0.0029 extracellular region 0.0226
cytoskeleton 0.0388 extracellular matrix 3.53 × 10−7

cell junction 0.0753 secreted 7.31 × 10−5

2 immunoglobulin I-set 0.0049

signal peptide 3.45 × 10−4

signal 0.0013
compositionally biased region: Cysrich 0.004

2

collagen catabolic process 6.22 × 10−6

extracellular matrix 4.34 × 10−5

collagen fibril organization 2.34 × 10−4

extracellular matrix organization 0.0057
endoplasmic reticulum lumen 0.0079

extracellular region 0.0226
extracellular matrix 3.53 × 10−7

Ehlers–Danlos syndrome 3.34 × 10−5

collagen triple helix repeat 0.0010
hydroxylation 0.0015

collagen 0.0016

In addition, as can be seen from Table 2, the genes in Community B were mainly involved in the
following biological functions: extracellular matrix, extracellular secretion and collagen. Compared
with the normal network, the number of functional types enriched in the extracellular matrix was larger
than that in the cancer network. It indicates that the impact of genes on the extracellular matrix are
distinct between esophageal squamous carcinoma and normal cells, which affects the composition of
the extracellular matrix, the surrounding environment of cancer cells, and makes that more conducive
to its proliferation and survival [19]. Thus, esophageal cancer cells may regulate the extracellular matrix
environment by extracellular secretion to make them more conducive to the formation, development,
and proliferation [20].

2.1.2. Differential Analysis Based on Global Centrality Indexes

The global centrality indexes used in this work were degree, eigenvector centrality and core [21].
We calculated three global centrality indexes of genes. The genes which showed large differences
between the cancer network and normal network were listed in Table 3. The top ten genes with a large
difference of degree and high significance (p-value < 0.02, and FDR < 0.1) were selected into further
consideration. We found that five of them were associated with cancer, namely BNIPL, PRKG1, ABI3BP,
MIR145, and ERBB3. To be specific, BNIPL inhibits cell growth through cell cycle and apoptosis,
and it could induce the occurrence of cancer [22,23]. PRKG1 improves the activity and invasion of
cancer cells, and it is also indicated that PRKG1 plays a role as an intermediary in the epidermal
growth factor receptor (EGFR)-mediated cell death, likely via apoptotic pathway [24]. ABI3BP plays
an important role in the proliferation of replicative senescence and may serve as a trigger of tumor
development [25]. Low MIR145 expression levels in conjunction with elevated SIP1 expression levels
may contribute to cancer development [26] and might carry crucial roles in laryngeal squamous cell
carcinoma tumorigenesis, prognosis, metastasis, chemoresistance, and recurrence through regulating
stem cell properties of tumor cells [27]. ERBB3 is proto-oncogene and promotes differentiation of
undifferentiated cancer cells and plays an important role in cancer formation and are related to a
favorable prognosis [28,29].
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Table 3. TOP 10 genes based on global centrality indexes.

Gene Degree p-Value Gene Eigenvector p-Value Gene Core Score p-Value

C1orf116 61 1.6 × 10−14 SORBS1 1 1.7 × 10−5 C1orf116 0.50 1.6 × 10−14

NEXN 48 0.0145 COL3A1 0.93 1.5 × 10−11 BNIPL 0.40 3.8 × 10−15

BNIPL 45 3.8 × 10−15 MYLK 0.90 0.0057 PRSS27 0.38 4.0 × 10−12

ERBB3 44 7.8 × 10−16 PGM5 0.87 7.4 × 10−7 ERBB3 0.34 7.8 × 10−16

SCN7A 43 0.000108 MIR100HG 0.68 0.0003 CNFN 0.33 4.4 × 10−17

PRSS27 40 4.0 × 10−12 RBPMS2 0.60 0.0002 PRKG1 0.28 0.01496
MRGPRF 37 0.0002 SCN7A 0.58 0.0001 PDK4 0.26 1.6 × 10−5

PRKG1 37 0.0149 C1orf116 0.56 1.6 × 10−14 CCDC64B 0.26 2.7 × 10−14

ABI3BP 36 3.5 × 10−5 MIR145 0.56 0.0003 YOD1 0.24 4.6 × 10−12

MIR145HG 33 0.0003 CCDC64B 0.50 2.7 × 10−14 METRNL 0.24 3.7 × 10−10

We also detected the top 10 genes with a large difference of eigenvector centrality and
p-value < 0.02 with FDR < 0.1 (t-test). It was found that among the 10 genes, seven genes (SORBS1,
PGM5, COL3A1, MYLK, MIR100HG, RBPMS2 and MIR145) were confirmed to be related to cancer by
analyzing the biological function of these genes. Specifically, SORBS1 and PGM5 were proposed to be
involved in the assembly of myocytes and myofibrils. In addition, it was found that myofibrillar cells
are a class of cells with low level of differentiation in myofibroblasts, which are an important source of
matrix remodeling protein in the tumor microenvironment and participates in tumor angiogenesis [30].
COL3A1 promotes the metastasis and invasion of cancer cells [31]. MYLK is responsible for the high
proliferative ability of cancer cells through anti-apoptosis in which the p38 pathway is involved and
represents a mediator of invasive behavior of cancer cells that are regulated by the ZEB1/miR-200
feedback loop [32,33]. It has been reported that MIR100HG has been used as proto-oncogene and
RBPMS2 is used as a target for gastric cancer markers and cancer targeted therapy [34].

Core score measures the degree to which a node belongs to the core in the core-periphery structure
of a network [35]. The nodes with large core scores were referred to core nodes, while those with small
core scores were in terms as periphery nodes. Core nodes in a network might play a different role from
periphery ones [36]. Hence, core nodes might be more influential or powerful than periphery ones.
We calculated the difference of each gene’s core score between the cancer and the normal networks.
The first ten genes with large absolute difference value and p-value < 0.02 with FDR < 0.1 were selected
for further analysis. We found that five genes were related to cancer, including BNIPL, ERBB3 and
PRKG1, which were also been detected by degree or eigenvector measures. The other two genes are
PDK4 and YOD1. It has been reported that the upregulation of PDK4 makes intracellular glucose
metabolism pathways prone to glycolysis to promote cell proliferation [37]. Besides, PDK4 promotes
the occurrence of cancer. An important feature of cancer cells is that the aerobic respiration is replaced
by glycolysis, which is closely related to the occurrence and development of cancer [38].

2.1.3. Differential Analysis Based on Local Centrality Indexes

Above global indexes could reflect the centrality of a node in the whole network. However, these
indexes may not reflect its importance in a local subnetwork. For example, if the degree of a node is
five, the importance and influence of the node will be different in terms of the different size of networks
(e.g., a network with 10 nodes and that with 100 nodes). In what follows, we defined two indexes
(local mean degree difference and local eigenvector centrality difference) to measure the difference of
the same node in different networks.

We identified the community structures in the two simplified networks [39]. Further, the local
mean degree difference and local eigenvector centrality difference of each node were calculated.
As shown in Table 4, we selected the first 15 genes with a large difference of local centrality indexes for
further analysis. The 15 genes were taken into statistical analysis (t-test). It was found that the p-values
of the 15 genes were smaller than 0.02.
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Table 4. Top 15 genes based on local centrality indexes.

Gene Local Degree p-Value Gene Local Eigenvector p-Value

FAM3D 0.63 5.2 × 10−13 SBSN 0.95 1.2 × 10−16

SBSN 0.58 4.7 × 10−5 OGN 0.95 5.2 × 10−13

SPINK7 0.56 7.9 × 10−6 IFIT3 0.93 1.7 × 10−14

HSPB6 0.55 1.6 × 10−5 PDK4 0.90 8.4 × 10−6

LINC01279 0.50 0.1191 RSPO3 0.89 0.003063
SCEL 0.47 3.5 × 10−5 ABI3BP 0.87 6.2 × 10−13

SMIM5 0.47 8.4 × 10−6 HSPB6 0.84 5.8 × 10−17

OGN 0.47 1.2 × 10−16 FAM3D 0.75 4.7 × 10−5

YOD1 0.47 1.7 × 10−14 SPINK7 0.72 4.6 × 10−12

PELI1 0.46 1.7 × 10−5 SORBS1 0.70 6.48 × 10−8

GNG2 0.44 0.00306 LINC01279 0.70 0.00236
IFIT3 0.43 6.4 × 10−8 PELI1 0.70 7.92 × 10−6

IGDCC4 0.43 0.00236 GNG2 0.70 0.091054
IGK 0.43 0.09105 IGK 0.70 3.76 × 10−5

RSAD2 0.43 3.7 × 10−5 RSAD2 0.68 3.56 × 10−5

Nine of the 15 genes were suggested to be related to esophageal cancer, where six of them were
newly detected, and other three were previously described. It is reported that SPINK7 is a novel
candidate of the tumor suppressor gene identified from human esophagus and plays an important
role in the carcinogenesis of esophageal cancer [40]. Many studies suggested that SPINK7 may
function as a tumor suppressor gene regulating the protease cascades during carcinogenesis and
invasion of esophageal cancer [41–43]. IGK is an immunoglobulin variable kappa gene involved in
the immune function to cancer cells. The findings provided IGK as a novel diagnostic marker for risk
stratification in human cancer [44]. It may be used as a new marker for the diagnosis of esophageal
cancer. It has been reported that SBSN can be used as a new candidate proto-oncogene and has a
potential relationship with the angiogenesis of cancer [45]. Besides, previous studies suggested that
suprabasin (SBSN) plays an important oncogenic role in promoting proliferation and tumorigenesis of
esophageal squamous cell carcinoma [46]. It has been reported that IFIT3 is a proto-oncogene, and its
upregulation can maintain the cellular condition of pseudo inflammatory in cancer tissue [47]. Studies
have shown that inflammation plays an important role in cancer formation and growth, because it can
promote the formation of cancer and activate some transcription factors such as Angiogenesis regulator,
proliferation medium and anti-apoptotic factors. HSPB6 can inhibit the growth of hepatocellular
carcinoma by inhibiting the AKT pathway, and in other cancers, it is also found to inhibit the growth
of cancer and can be used as a new marker for cancer diagnosis [48]. RSPO3 has been reported as a
regulatory gene in the cancer tissue as a cyclical gene [49,50].

Similarly, we analyzed the results of the local eigenvector centrality. Among the top 15 genes,
nine genes were proposed to be related to cancer in previous literature. What is more, except SCEL
and IGDCC4, the other seven genes were also detected by other centralities indexes. That is, as an
esophageal cancer related gene, SCEL can only be identified by local eigenvector centrality [51].
It implied the effectiveness of the way to identify cancer related molecular by local eigenvector
centrality. A pervious study has identified IGDCC4 as a novel oncofetal surface marker for murine and
human HCC and it is specifically expressed by epithelial tumor cells but not in preneoplastic stages
and is a promising marker [52].

According to Tables 3 and 4, among the top 10 or 15 genes selected for each index, five genes
detected by degree are related to esophageal cancer and seven genes by eigenvector centrality; five
genes are identified by core score and nine genes by both local mean degree and local eigenvector
centrality. At last, we integrated all of the above genes related to esophageal cancer and identified
21 non-redundant genes that were related to esophageal cancer, among which seven genes have been
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confirmed to be biomarkers of esophageal cancer by previous research, and six genes (RBPMS2, PDK4,
IGK, SBSN, IFIT3 and HSPB6) may be novel biomarkers for the diagnosis of esophageal cancer.

2.1.4. Performance Comparison

In this paper, a network-based method (i.e., topological parameters analysis) was chosen to
compare with the proposed method. The differentially expressed genes and the network were obtained
by use of the Cytoscape software (3.5.1, National Institute of General Medical Sciences (NIGMS),
Bethesda, MD, USA) [53]. Protein pairs whose combined score were larger than 0.4 were assembled
for network construction by Cytoscape software [54]. Then, the values of degree and betweenness of
each node were calculated. The nodes of which the values of degree were larger than 5 and the values
of betweenness were larger than 0.03 were selected as hub-bottleneck genes [55]. The top six nodes
are all related to cancer, but there are few reports of their association with esophageal cancer (Table 5).
The proposed method was superior to the comparison method, since the proposed method found a
larger number of genes which were reported to be related to esophageal cancer in previous research.

Table 5. The hub-bottleneck nodes obtained by the comparison method.

R Gene Description Degree BC

1 ACTA2 actin, alpha 2, smooth muscle, aorta 8 0.45
2 PRKG1 protein kinase, cGMP-dependent, type I 7 0.40
3 GNB1 G protein subunit beta 1 7 0.05
4 COL1A2 collagen type I alpha 2 chain 6 0.18
5 ITGA1 integrin subunit alpha 1 6 0.06
6 MYH11 myosin heavy chain 11 6 0.04
7 COL3A1 collagen type III alpha 1 chain 5 0.15

3. Discussion

In this work, we detected the tumorigenesis-related genes for esophageal squamous carcinoma
based on topological differential analysis and explored the functional divergence between esophageal
squamous carcinoma and normal. To be specific, five indexes were selected to reflect the global and
local differences between cancer and normal networks: the degree of nodes, eigenvector centrality,
the core score in core–periphery structure, the local mean degree and the local eigenvector centrality.
We calculated the difference value of above indexes of each gene between the normal and cancer
networks, and found 21 genes which may play important parts in the pathogenesis of esophageal
squamous carcinoma. Among the detected 21 genes related to esophageal squamous, nine of
13 carcinoma, seven genes have been confirmed to be related to esophageal squamous carcinoma by
previous research and the other 14 genes are newly detected biomarker candidates for esophageal
squamous carcinoma. In addition, six of the newly detected genes are closely related to the formation
of esophageal cancer, i.e., RBPMS2, PDK4, IGK, SBSN, IFIT3 and HSPB6. Previous works have proved
that degree and betweenness are useful to find hubs and bottlenecks which are supposed to be essential
to certain biological function. In this work, we found that the hub-bottlenecks which were detected
based on degree and betweenness showed little relation to esophageal squamous carcinoma. Therefore,
the bottlenecks may be not suitable for the markers to the difference of network structures.

However, as there is a lack of knowledge about genes, there is not enough evidence for the rest of
the genes selected to have specific relationships to esophageal squamous carcinoma, and the genes
determined to be the biomarkers of esophageal cancer are worthy of further study. More generally,
the current method could be extended to other complex diseases for detecting the molecular features
of pathopoiesis and targets for targeted therapy.
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4. Methods

4.1. Data Source and Data Processing

We used the specimens of GSE23400 (a Gene Expression Omnibus accession number for
microarray data), obtained from National Center for Biotechnology Information (NCBI, http://www.
ncbi.nlm.nih.gov/). These specimens contained the expression data of 22,645 probes in 102 specimens,
where 51 were the samples of esophageal squamous carcinoma and the rest 51 were the normal
samples. The microarray expression data was normalized through the Microarray Suite 5 (Mas5 for
short) algorithm [56]. The Mas5 algorithm generated a p-value and a mean signal value that assessed
the reliability of the expression level for each probe. If the mean value of the p-value of each sample for
a probe was larger than 0.02, then the probe data was filtered out. Besides, the probes matched no gene
symbols were also deleted. If more than one probe corresponded to a gene, then we calculated the
mean value of these probes in a sample to get the expression data of the gene. Finally, the expression
data of 6047 genes were obtained.

4.2. Spearman Rank Correlation Coefficient

Spearman rank correlation coefficient of vectors X and Y reflects how closely X and Y are related
by monotonic functions. The vectors X and Y are first respectively ranked according to the elements in
them to obtain the vectors P and Q. Then, we calculate the Spearman rank correlation coefficient ρ of
vectors X and Y as Equation (1):

ρ(X, Y) = 1− 6 ∑n
i=1(pi − qi)

2

n(n2 − 1)
, (1)

where n is the dimension of X, and pi and qi are the ith entry of P and Q, respectively.

4.3. Centrality Measures

For a given network G = (V, E), V represents the set of vertices and E is the set of edges. Let A = av,t

be the adjacency matrix. In what follows, the centrality measures are presented.
Degree centrality. Degree used to describe the number of links connected to a node. The degree

of a node i is calculated as Equation (2):
ki = ∑

j∈N
aij (2)

where aij is the element in the ith row and jth column of A.
Eigenvector centrality. The eigenvector centrality score of node v is calculated as Equation (3).

xv =
1
γ ∑

t∈M(v)
xt =

1
γ ∑

t∈G
av,txt (3)

where M(v) is a set of the neighbors of v, and γ is a constant.
Core score. Suppose C is a matrix with the same dimension to the adjacency matrix A. The core

quality was calculated as Equation (4) [21].

Rγ = ∑
i,j

AijCij, (4)

where g presents the core quality, the elements Cij of the core matrix are given by Cij = Ci × Cj and
Ci ≥ 0 is the local core value of the ith node.

We select a core vector C that maximizes Rγ and is a normalized (so that its entries sum to 1)
shuffle of the vector C∗ whose components C∗i = g(i) are determined by a transition function g.

http://www.ncbi.nlm.nih.gov/
http://www.ncbi.nlm.nih.gov/
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C∗i (α, β) = gα,β(i) =


i(1−α)
2bβNc , i ∈ (1, . . . , bβNc)

(i−bβNc)(1−α)
2(N−bβNc) + 1+α

2 , i ∈ (bβNc+ 1, . . . , n)
, α, β ∈ [0, 1]. (5)

When β = 0, only the top case in Equation (5) applies; when β = 1, only the bottom case applies.
The parameter β sets the size of the core: as β varies from 0 to 1, the number of nodes included
in the core varies from N to 0. The parameter α sets the size of the score which jumps between
the highest-scoring peripheral node and the lowest-scoring core node. With the transition function
Equation (5) and the product C form Equation (4) for the core–matrix elements, the core quality is
given by

Rγ = Rα,β = ∑
i,j

AijCij = ∑
i,j

AijCi × Cj (6)

The core score of each node i is defined as

CS(i) = Z ∑
γ

Ci(γ)× Rγ (7)

where the normalization factor Z is chosen so that maxk[CS(k)] = 1.
Local eigenvector centrality. The local eigenvector centrality score of node i can be defined based

on eigenvector centrality scores of nodes as:

xi =
1
γ′ ∑

ti∈Mi(i)
xti =

1
γ′ ∑

ti∈g
ai,tixti (8)

where Mi(i) is a set of the neighbors of i and γ′ is a constant.
Local mean degree. The local mean degree of a node is the ratio of its degree of in the community

to the sum of all the degrees of the community’s nodes. The local mean degree dv(i) is defined as:

dv(i) =
dv

ni
(9)

where dv is the degree of node i in the community, and the sum of all nodes in the community is ni.
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