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Summary
Background Atrial septal defect (ASD) increases the risk of adverse cardiovascular outcomes. Despite the potential for
risk mitigation through minimally invasive percutaneous closure, ASD remains underdiagnosed due to subtle
symptoms and examination findings. To bridge this diagnostic gap, we propose a novel screening strategy aimed at
early detection and enhanced diagnosis through the implementation of a convolutional neural network (CNN) to
identify ASD from 12-lead electrocardiography (ECG).

Methods ECGs were collected from patients with at least one recorded echocardiogram at 3 hospitals from 2 con-
tinents (Keio University Hospital from July 2011 to December 2020, Brigham and Women’s Hospital from January
2015 to December 2020, and Dokkyo Medical University Saitama Medical Center from January 2010 and December
2021). ECGs from patients with a diagnosis of ASD were labeled as positive cases while the remainder were labeled as
negative. ECGs after the closure of ASD were excluded. After randomly splitting the ECGs into 3 datasets (50%
derivation, 20% validation, and 30% test) with no patient overlap, a CNN-based model was trained using the
derivation datasets from 2 hospitals and was tested on held-out datasets along with an external validation on the
3rd hospital. All eligible ECGs were used for derivation and validation whereas the earliest ECG for each patient
was used for the test and external validation. The discrimination of ASD was assessed by the area under the
receiver operating characteristic curve (AUROC). Multiple subgroups were examined to identify any heterogeneity.

Findings A total of 671,201 ECGs from 80,947 patients were collected from the 3 institutions. The AUROC for
detecting ASD was 0.85–0.90 across the 3 hospitals. The subgroup analysis showed excellent performance across
various characteristics Screening simulation using the model greatly increased sensitivity from 80.6% to 93.7% at
specificity 33.6% when compared to using overt ECG abnormalities.

Interpretation A CNN-based model using 12-lead ECG successfully identified the presence of ASD with excellent
generalizability across institutions from 2 separate continents.
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Research in context

Evidence before this study
We searched PubMed using the terms (“deep learning” OR
“artificial intelligence”) AND “atrial septal defect” AND
(“electrocardiogram” OR “electrocardiography”) from
database inception up to May 8, 2023, with no language
restrictions. Only two studies about the deep learning-based
prediction of atrial septal defect (ASD) using
electrocardiography (ECG) were published. However, both
studies had various limitations, including a small sample size,
single-center design, and less modern model construction
approaches.

Added value of this study
The purpose of our study is to develop a deep learning-
based algorithm for predicting ASD using 12-lead ECGs.

Our model was constructed using a large multi-center ECG
dataset obtained from medical centers across 2 continents.
The approach allowed the model to be validated in a multi-
country setting including external validation.

Implications of all the available evidence
Our study findings demonstrate that the deep learning-based
model developed for detecting ASD using only a single
recording of 12-lead ECG shows excellent performance
compared to known ECG abnormalities associated with ASD.
Our model enhances the screening process, enabling early
detection and intervention for ASD closure, and is expected to
improve patient outcomes.
Introduction
Atrial septal defect (ASD) is one of the most common
adult congenital heart diseases (ACHD). If untreated,
ASD increases the risk of irreversible complications
such as atrial fibrillation (AF), stroke, heart failure, and
pulmonary hypertension.1–3 While minimally invasive
percutaneous closure can be performed in most cases,
the disease is largely underdiagnosed due to absent or
mild clinical symptoms and subtle findings on physical
exam. The diagnosis is usually incidental during medi-
cal screening or detected relatively later in life with the
onset of symptoms. Early detection is important since
early-stage closure has been shown to improve life ex-
pectancy and long-term medical follow-up is essential to
determine the timing of intervention, if not immediately
indicated.4,5 An effective screening strategy needs to be
developed to reduce the complications arising from the
disease. Echocardiography is a highly sensitive and ac-
curate imaging modality for detecting ASD. However,
the modality is time and labor intense, although non-
invasive. Thus, it is not feasible to perform echocardi-
ography on a large population without symptoms.

ECG is another modality used to detect cardiac ab-
normality. In contrast to echocardiograms, ECGs can be
performed within a very short time (approximately
1 min/test) and thus could be performed in large pop-
ulations including those without symptoms. For the
detection of ASD, ECGs are usually used as a screening
test to select those who should undergo echocardio-
grams. While several well-known ECG changes have
been observed in patients with ASD, the sensitivity and
specificity of ECG abnormalities are limited.1,6,7
Therefore, a large portion of ASD patients are missed
with the current screening approaches using ECG
criteria.

The advancement of high-performance computer
and deep learning (DL) technologies has enabled the
construction of models that detect diseases, predict
outcomes, and automate measurements using raw ECG
voltage data.8,9 Several DL models have shown the ability
to perform tasks beyond that of expert ECG
operators.10–12 By leveraging the power of DL in detecting
subtle ECG changes, we aimed to enhance the screening
process for ASD by building an accurate and scalable
model to identify patients who should undergo further
diagnostic tests with echocardiograms.
Methods
Data sources and study population
This study involved data from three hospitals in Japan
and the United States: Keio University Hospital (KUH),
which is a tertiary hospital in an urban area in Japan,
Brigham and Women’s Hospital (BWH), which is a
tertiary hospital in an urban area in the United States,
and Dokkyo Medical University Saitama Medical Center
(SMC), which is a primary/secondary care center in a
rural area in Japan. We used the data from KUH and
BWH to develop and validate a DL-based algorithm to
detect ASD, and the algorithm was externally validated
using the data from SMC. Patients ≥18 years, who un-
derwent both ECG and transthoracic echocardiography
at KUH (from July 2011 to December 2020) and BWH
(from January 2015 to December 2020) were recruited.
www.thelancet.com Vol 63 September, 2023
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The presence or absence of ASD was confirmed using
echocardiography. If the ASD was closed during the
study period, the date of ASD closure was identified
through chart review, and only the ECG data prior to
ASD closure were extracted to prevent the model from
learning ECG features caused by the closure. Patients
from KUH and BWH were randomly assigned to the
derivation, validation, and test cohorts in a 5:2:3 ratio
using the random package in Python 3.7.3. Since the
randomization was performed at a patient level, ECG
data from the same patient were not allocated to more
than one cohort. In cases where multiple eligible ECGs
were available for a single patient, all ECGs were used in
the training process to maximize the data. For the test
datasets, the earliest ECG for each patient was selected
since the more recent ECGs would be likely to be
affected by left-right shunt over time which could lead to
an overestimation of the model performance compared
to the deployment aiming for early detection. The model
was trained using data from the derivation dataset. The
validation cohort was used for hyperparameter tuning
and model selection. The only hyperparameter tuned
was the selection of optimizers (Adams vs RMSprop).
The final model was tested once using the test datasets
from KUH and BWH to evaluate the model’s perfor-
mance. Additionally, to verify the accuracy of the algo-
rithm in a different dataset, external validation was
performed using the SMC dataset which was collected
using a similar procedure as KUH and BWH, including
patients ≥18 years who underwent ECG and echocar-
diography between January 2010 and December 2021 at
SMC. Similar to the test dataset, the earliest ECG for
each patient was selected for this dataset.

Data processing
The 12-lead ECG data were stored as measurements of
time-series voltage. All the ECGs from KUH were
recorded using a Nihon Kohden ECG machine (Nihon
Kohden, Tokyo, Japan) with a sampling rate of
1000 Hz whereas those from BWH were recorded
with an ECG machine by GE (GE HealthCare, Chi-
cago, USA) at multiple sampling rates (250 Hz and
500 Hz). Conversion of ECG data to matrices was
done using our previously published method with
slight modifications.13,14 Briefly, the data were con-
verted to 250 Hz by subsampling to allow the model to
utilize all available data. The first 10 s were used if the
recording was longer as this was the standard length
of 12-lead ECG recording in all the institutions
included in the study. Only the data from the standard
12-leads (I, II, III, aVR, aVF, aVL, V1, V2, V3, V4, V5,
V6) were used. ECGs with incomplete recordings (e.g.,
those that did not have data for all 12 leads) were
excluded. Finally, the data were saved as a 2D matrix
of shape 12 × 2500 in a binary format designed to hold
a multidimensional matrix (i.e., NumPy array)
(Supplementary Fig. S1).
www.thelancet.com Vol 63 September, 2023
Model training
For time series data where the current observation de-
pends on previous observations, traditional fully con-
nected networks cannot efficiently learn the data due to
the lack of mechanisms to retain past information.
Recurrent neural networks (RNN) introduced the
concept of memory to neural networks by including the
dependency between data points and are suitable for
learning time-series data. However, RNNs require
sequential processing and thus are limited in the capa-
bility of parallelizing the calculations. A convolutional
neural network (CNN) is another variant of a neural
network that detects local patterns from a multi-
dimensional space. In contrast to RNNs, CNNs only
require data from the local area and thus could be
effectively parallelized. By considering the time axis as
one of the axes of the multi-dimensional space, CNNs
could detect local patterns across time, which effectively
is learning the patterns within the time series. Thus, the
current study utilized a 2D-CNN-based model as previ-
ously described to achieve optimal training performance
on a massively parallel environment using graphics
processing units (Fig. 1).12 The architecture utilized the
concept of Inception-Net (multiple CNN with different
shapes) and ResNet (residual connection) but was
designed to fit the unique shape of the ECG data. The
model was trained to minimize the binary cross-entropy
against the label (ASD yes/no encoded as 1/0) for 150
epochs (an epoch indicates one pass over the entire
training data set analyzed by the algorithm) using the
RMSprop optimizer with an initial learning rate of
0.0001, which provided better result compared to
Adams optimizer.

To eliminate the need to centralize the data, the
model was trained by alternating between the 2 datasets
by transferring the weights within institutions (cycle
learning, see Supplementary Methods for detail). At the
end of each epoch, the performance of the model was
evaluated using the validation dataset from KUH and
BWH. The model with the best performance, according
to the mean of area under the receiver operating char-
acteristics curve (AUROC) KUH and BWH validation
datasets, across the 150 epochs was chosen as the final
model (Fig. 2). The performance of the final model was
evaluated using the test datasets from KUH and BWH
along with an external dataset from SMC. To explore the
features that the model utilized for prediction, an
enhanced class activation mapping technique called
GRAD-CAM was applied to the outputs of the model.15

Statistical analyses
Baseline characteristics such as age, sex, and body mass
index were compared between the ASD and non-ASD
groups. No attempts of imputation were made and the
statistics were calculated based on complete cases for
missing data. Additionally, we conducted comparisons
of patient characteristics between the three randomly
3
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Fig. 1: Structure of the neural network of our deep learning model. Schematic illustration of the neural network model. The details of the
multi-convolution cell in the network are shown in the right panel, and the overall network structure is shown in the left panel. The input value
is the 2D matrix data of a 12-lead ECG, and the output value takes a continuous value between 0 and 1 and represents the likelihood of the
outcome; closer to 1 means a higher probability and closer to 0 means a lower probability. ECG, electrocardiography; Conv 2D, two-dimensional
convolution; max pooling 2D, two-dimensional max pooling.
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assigned groups in KUH and BWH, as well as among
three facilities. For the test cohort in KUH, the most
recent hemodynamic parameters including catheter
results on Qp/Qs and mean pulmonary artery pressure
(PAP), and ASD diameter measured by transesophageal
echocardiography in the unclosed state were collected
through chart review. For the test cohort in BWH, chart
review allowed us to collect up-to-date parameters such
as Qp/Qs by catheterization, magnetic resonance im-
aging (MRI), transthoracic echocardiography, mean
PAP by catheterization, and unclosed ASD diameter
measured by transesophageal echocardiography, MRI,
and transthoracic echocardiography. Continuous values
are presented as mean ± standard deviation (SD) and
categorical values are presented as numbers and per-
centages. All probability values were 2-tailed, and
P-values < 0.05 were considered to be statistically sig-
nificant. All the models were trained using TensorFlow
2.4.1. The performance of the model was evaluated by
assessing the area under the curve of the receiver
operating characteristic (AUROC) with two-sided 95%
confidence intervals (CI), accuracy, sensitivity (or
recall), specificity, positive predictive value (PPV, or
precision) and F1 score (harmonic mean of the preci-
sion and recall). The receiver operating characteristic
(ROC) curves and precision-recall curves were also
plotted. From the model output results, Youden index
was calculated, and the cut-offs were calculated in 5%
increments of PPV on KUH test datasets. The cut-offs
were then assigned to the BWH and SMC datasets,
and accuracy, sensitivity, specificity, PPV, and F1 scores
were calculated. In addition, AUROC were calculated
for groups stratified by age, sex, BMI, and rhythm (i.e.,
AF or not), and the differences were examined using
the DeLong test. The AUROC at KUH were also
calculated when ASD group is stratified by hemody-
namics, ASD size, and the existence of other congenital
heart diseases (see Supplementary Methods). Finally,
sensitivity analyses regarding closure indication (Qp/
Qs ≥ 1.5) and BMI classification were performed using
KUH cohort. All statistical analyses were performed
using scikit-learn 0.23.2 and SciPy 1.5.2 packages on
Python 3.7.3.

Ethics statement
The study protocol was approved by the Institutional
Review Board (IRB) of Keio University School of Med-
icine (approval number: 20200030) and Mass General
Brigham (2019P002651), and conducted in accordance
with the Declaration of Helsinki. Due to the retrospec-
tive nature of the study and minimal risk of harm, the
IRB waived the need for informed consent.

Role of the funding source
The funders had no role in the study design, data collec-
tion and analysis, or preparation of the manuscript. They
also had no access to datasets and were not involved in any
decisions for the submission or publication.
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Fig. 2: Training and testing of the model. Schematic illustration of
the training and testing processes. The model was trained using data
from the derivation cohort at KUH and BWH, and the performance
of each model was calculated using the validation dataset from KUH
and BWH at the end of each epoch. The model that performed the
best in the validation cohort during the 150 epochs was chosen as
the final model. The performance of the final model was calculated
only once using data from the testing dataset at KUH and BWH as
internal validation. Furthermore, the performance of the model was
verified using the external cohort at SMC. KUH; Keio University
Hospital, BWH; Brigham and Women’s Hospital; SMC; Dokkyo
Medical University Saitama Medical Center.
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Results
Data selection
ECG data were collected from 33,431 patients diagnosed
with or without ASD by transthoracic echocardiography
at KUH (Supplementary Fig. S2). Of these, 857 patients
were diagnosed with ASD. ECGs performed after ASD
closure were excluded from the analysis since distinct
ECG characteristic changes can be expected due to he-
modynamic improvement or the closure procedure it-
self. Of the 666 patients who underwent ASD closure,
532 had at least one ECG prior to the closure procedure.
The ECG data of 160 patients without ASD closure were
combined, and 692 patients were finally defined as the
ASD group. After excluding patients with missing or
invalid ECG data, 30,234 patients were allocated to the
non-ASD group from the remaining 32,574 patients. A
total of 399,056 ECGs were collected for the 30,926 pa-
tients and 15,415 (199,922 ECGs), 6164 (77,495 ECGs),
www.thelancet.com Vol 63 September, 2023
and 9347 (9347 ECGs) patients were allocated to deri-
vation, validation, and test cohorts, respectively. Simi-
larly, of 25,067 patients who had transthoracic
echocardiography in BWH, 187 had a diagnosis of ASD
(Supplementary Fig. S3). After excluding those who did
not have available ECG data in the study period or
before closure, the cohort consisted of 297 ECGs from
72 patients with a diagnosis of ASD and 246,670 ECGs
from 24,771 without a diagnosis of ASD. From the
SMC, 25,850 patients underwent both ECG and echo-
cardiography. Among them, 154 had a diagnosis of ASD
without closure, and the remaining patients were not
diagnosed with ASD. After excluding patients with
invalid ECG data, 25,178 patients were included in the
external cohort (Supplementary Fig. S4). The prevalence
of ASD was 2.24% (692/30,926 patients) at KUH, 0.29%
(72/24,843 patients) at BWH, and 0.27% (69/25,178
patients) at SMC (Supplementary Table S1).

Patient characteristics
Patients with ASD were younger (54.2 ± 18.5 vs
63.5 ± 16.0, 41.4 ± 21.0 vs 62.2 ± 16.0, and 57.2 ± 19.6 vs
64.1 ± 15.7 for with-ASD vs non-ASD group in KUH,
BWH, and SMC, respectively; all P < 0.05) and had
lower body mass index (22.0 ± 4.2 vs 22.9 ± 4.2,
22.7 ± 4.7 vs 28.9 ± 8.7, and 22.3 ± 3.8 vs 23.6 ± 10.2 for
with-ASD vs non-ASD group in KUH, BWH, and SMC,
respectively; all P < 0.05) compared to those without
ASD (Table 1). Higher prevalence of AF (10.2% vs 5.7%
with and without ASD, respectively) and other ACHD
(5.3% vs 1.7% with and without ASD, respectively) were
observed in KUH, while the prevalence of AF was not
different in BWH and SMC. The number of patients
with other ACHD was too small for statistical analysis in
BWH and was not available in SMC. Similar trends
were observed in the derivation and validation datasets
from KUH and BWH (Supplementary Tables S2–S5).
The baseline characteristics were not different between
derivation, validation, and test dataset in KUH and
BWH (Supplementary Tables S6 and S7).

Model performance
The model showed excellent discrimination for patients
with ASD with AUROCs of 0.90 (95% CI, 0.87–0.93)
and 0.88 (95% CI, 0.78–0.99) for the test dataset from
KUH and BWH, respectively (Fig. 3a and b) and showed
an AUROC of 0.85 (95% CI, 0.80–0.91) in the external
dataset at SMC (Fig. 3c) with no statistical differences
(P = 0.52 for AUROCs between KUH and SMC, and
P = 0.52 for AUROCs between BWH and SMC). The
model performed better compared to the predictions
based on overt ECG abnormalities (right bundle branch
block, right atrial dilation, and any ECG abnormality) as
indicated by the sensitivity/specificity plotted under the
ROC curve of the model. Subgroup analyses revealed
consistent performance across age, sex, BMI, presence
or absence of AF, and presence or absence of any ECG
5
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KUH BWH SMC

Total Missing ASD Missing Non-ASD Missing P-valuea Total Missing ASD Missing Non-ASD Missing P-valuea Total Missing ASD Missing Non-ASD Missing P-valuea

Number of
patients

9347 – 206 – 9141 – – 7453 – 16 – 7437 – – 25,178 – 69 – 25,109 – –

Age, years 63.3 ± 16.4 1204 54.2 ± 18.5 17 63.5 ± 16 1187 P < 0.01 62.1 ± 16.0 0 41.4 ± 21.0 0 62.2 ± 16.0 0 P < 0.01 64.1 ± 15. 7 190 57.2 ± 19.6 0 64.1 ± 15. 7 190 P < 0.01

Male 5250
(56.2%)

0 69 (33.5%) 0 5181
(56.7%)

0 P < 0.01 3823
(52.3%)

0 4 (25.0%) 0 3819
(51.4%)

0 P = 0.06 14,390
(57.6%)

0 30 (43.5%) 0 14,360
(57.6%)

0 P = 0.05

Race 1711 0 1711 P < 0.01

White 4924
(66.1%)

10 (62.5%) 4914
(66.1%)

Black 378 (5.1%) 2 (12.5%) 376 (5.1%)

Asian 9347
(100%)

206
(100%)

9141
(100%)

150 (2.0%) 2 (12.5%) 148 (2.0%) 25,178
(100%)

69 (100%) 25,109
(100%)

Other 290 (3.9%) 2 (12.5%) 288 (3.9%)

BMI, kg/m2 22.9 ± 4.2 1240 22.0 ± 4.2 24 22.9 ± 4.2 1216 P < 0.01 28.9 ± 8.7 1937 22.7 ± 4.7 3 28.9 ± 8.7 1934 P < 0.01 23.6 ± 10.2 681 22.3 ± 3.8 3 23.6 ± 10.2 678 P < 0.01

HR, bpm 72.2 ± 16.6 0 72.3 ± 15.0 0 72.2 ± 16.7 0 P = 0.91 75.8 ± 18.4 0 84.9 ± 19.2 0 75.8 ± 18.4 0 P = 0.08 72.7 ± 17.1 0 73.0 ± 15.9 0 72.7 ± 17.1 P = 0.87

SBP, mmHg 127.3 ± 16.9 1709 116.2 ± 18.6 0 127.3 ± 16.9 1709 P = 0.03

Normal ECG 3111
(33.3%)

0 40 (19.4%) 0 3071
(33.6%)

0 P < 0.01 1511
(20.3%)

0 3 (18.8%) 0 1508
(20.3%)

0 P = 1.00 7106
(28.2%)

0 16 (23.2%) 0 7096
(28.3%)

0 P = 0.43

AF 543 (5.8%) 0 21 (10.2%) 0 522 (5.7%) 0 P = 0.01 613 (8.2%) 0 1 (6.3%) 0 612 (8.2%) 0 P = 1.00 1552 (6.2%) 0 5 (7.2%) 0 1547 (6.2%) 0 P = 0.90

Other CHD 162 (1.7%) 0 11 (5.3%) 0 151 (1.7%) 0 P < 0.01 – – 1 (6.3%) 0 – – – – – – – – – –

Qp/Qs – – 2.3 ± 0.8 73 – – – – – 2.0 ± 0.8b 5b – – – – – – – – – –

Mean PAP,
mmHg

– – 19.1 ± 6.4 94 – – – – – 28.0 ± 4.4 13 – – – – – – – – – –

ASD size, mm – – 18.2 ± 6.1 65 – – – – – 18.0 ± 7.9c 12c – – – – – – – – – –

Values are presented as mean ± SD or number (percentage). KUH, Keio University Hospital; BWH, Brigham and Women’s Hospital; SMC, Dokkyo Medical University Saitama Medical Center; ASD, atrial septal defect; ECG, electrocardiography; CHD, adult
congenital heart disease; AF, atrial fibrillation; PAP, pulmonary artery pressure; MRI, magnetic resonance imaging. aDifference between ASD and non-ASD groups. bIncludes data from catheterization, MRI, transesophageal echocardiography, and
transthoracic echocardiography. Measurement priority is in this order. cIncludes data from transesophageal echocardiography, MRI, and transthoracic echocardiography. Measurement priority is in this order.

Table 1: Baseline characteristics in the test cohorts at KUH, BWH, and SMC in patient level.
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Fig. 3: Performance of the final model for the detection of ASD. (a) ROC curve for the internal test cohort at KUH is shown as a solid green
line. Sensitivities/specificities of common ECG abnormalities within the cohort are shown as cross-marks. (b) ROC curve for the internal test
cohort at BWH is shown as a solid green line. Sensitivities/specificities of common ECG abnormalities within the cohort are shown as cross-
marks. (c) ROC curve for the external validation cohort at SMC is shown as a solid green line. Sensitivities/specificities of common ECG ab-
normalities within the cohort are shown as cross-marks. (d) The precision-recall curve for the internal test cohort at KUH is shown as a solid red
line. (e) The precision-recall curve for the internal test cohort at BWH is shown as a solid red line. (f) The precision-recall curve for the external
cohort at SMC is shown as a solid red line. ASD, atrial septal defect; ROC, receiver operating characteristics; KUH, Keio University Hospital, BWH,
Brigham and Women’s Hospital; SMC, Dokkyo Medical University Saitama Medical Center; ECG, electrocardiography; RBBB, right bundle branch
block; RAD, right axis deviation; PPV, positive predictive value; CI, confidence interval.
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abnormalities in the three institutions (Fig. 4a–e for
KUH, Supplementary Fig. S5a–e for BWH,
Supplementary Fig. S6a–e for SMC, and Supplementary
Table S8 for statistical analyses between the subgroups).
The model performance was also consistent across races
in BWH (AUROC: 0.86 [95% CI, 0.71–1.00] for White;
0.91 [95% CI, 0.64–1.00] for Black, 0.87 [95% CI,
0.55–1.00] for Asian, and 0.96 [95% CI, 0.78–1.00] for
others; Supplementary Fig. S5f). While the model
showed robust performance for mean PAP (AUROC:
0.94 [95% CI, 0.90–0.99] for mean PAP ≥20 mmHg and
0.88 [95% CI, 0.83–0.93] for mean PAP <20 mmHg;
Fig. 4f), the model tended to discriminate severe ASD
better: Qp/Qs (AUROC: 0.99 [95% CI, 0.96–1.00] for
Qp/Qs ≥ 2.5, 0.90 [95% CI, 0.85–0.95] for 1.5 ≤ Qp/
Qs < 2.5, and 0.76 [95% CI, 0.63–0.88] for Qp/Qs < 1.5;
Fig. 4g), ASD size (AUROC: 0.95 [95% CI, 0.88–1.00]
for size ≥25 mm, 0.91 [95% CI, 0.87–0.95] for 10 ≤ size
<25 mm, and 0.65 [95% CI, 0.45–0.84] for size <10 mm;
www.thelancet.com Vol 63 September, 2023
Fig. 4h). The model showed robust performance for
detecting ASD without other ACHD (AUROC: 0.90
[95% CI, 0.88–0.93] for simple ASD; Fig. 4i). These
analyses could not be performed on other institutions
due to the small number of patients in the subgroup or
the missingness of the data. GRAD-CAM analyses
revealed that the model focused primarily on the P wave
and QRS complex in the limb leads, regardless of the
presence of overt ECG abnormality (Fig. 5).

Sensitivity analyses
The model detected ASD cases with closure indication
(defined as Qp/Qs ≥ 1.5) with AUROC 0.91 (95% CI,
0.88–0.94, Supplementary Fig. S7a). The model perfor-
mance was also consistent across different BMI
thresholds (AUROC 0.94 [95% CI, 0.89–1.00], 0.90 [95%
CI, 0.86–0.94], and 0.90 [95% CI, 0.90–0.98] for those
with BMI < 18.5, 18.5 ≤ BMI < 25, and BMI ≥ 25,
respectively, Supplementary Fig. S7b).
7
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Fig. 4: Performance of the model for detecting ASD stratified according to subgroups in KUH. (a) The ROC curve is shown for the internal
test cohort stratified according to age. (b) The ROC curve is shown for the internal test cohort stratified according to sex. (c) The ROC curve is
shown for the internal test cohort stratified according to BMI. (d) The ROC curve is shown for the internal test cohort stratified according to AF
or not. (e) The ROC curve is shown for the internal test cohort stratified according to normal ECG or not. (f) The ROC curve is shown for the
internal test cohort stratified according to mean PAP. (g) The ROC curve is shown for the internal test cohort stratified according to Qp/Qs. (f)
The ROC curve is shown for the internal test cohort stratified according to ASD size. (i) The ROC curve is shown for the internal test cohort
stratified by other CHD. KUH, Keio University Hospital; ASD, atrial septal defect; ROC, receiver operating characteristic; AUC, area under the
curve; CI, confidence interval; BMI, body mass index; AF, atrial fibrillation; PAP, Pulmonary artery pressure; CHD, congenital heart disease.
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Deployment simulation
When the probability threshold for ASD detection in the
KUH dataset was set to the Youden index (0.000199),
the accuracy, sensitivity, specificity, and PPV were
88.5%, 79.1%, 88.7%, and 13.6%, respectively. At the
cut-off of 0.000082, which demonstrated a 10% PPV at
KUH, the sensitivity/specificity was 82.5/83.3% at
KUH, 68.8/87.5% at BWH, and 68.1/91.2% at SMC.
When adjusting the cut-off to 0.001192 to achieve a 25%
PPV at KUH, the sensitivity/specificity remained 69.4/
95.3% at KUH, 43.8/96.7% at BWH, and 50.7/96.8% at
SMC. These results indicate a relatively consistent per-
formance in the three cohorts, across various cut-off
points (Supplementary Tables S9–S11). When
www.thelancet.com Vol 63 September, 2023
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Fig. 5: Gradient-weighted class activation mapping images. Gradient-weighted class activation mapping (GRAD-CAM) images for ASD
samples with and without overt abnormality. The primary focus of the model is indicated by the colored areas. ASD, atrial septal defect.
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compared with the performance of conventional ECG
readings, the model showed great improvement in
sensitivity. In the KUH dataset, the presence of any ECG
abnormality had a sensitivity of 80.6% and a specificity
of 33.6%. In contrast, the model demonstrated a much
higher sensitivity of 93.7% at the same specificity.
Similar improvements in sensitivities were observed for
the other institutions as well (Supplementary
Table S12). With respect to detecting ASD cases with
closure indication, the model showed a better diagnostic
performance at the same sensitivity (specificities, 90.3% vs
88.7%; PPVs, 14.1% vs 13.6% at a sensitivity of 79.1%)
with a higher cut-off of 0.00027.
Discussion
In this study, we showed that a DL algorithm detected
ASD with excellent performance using 12-lead ECG data.
Due to subtle symptoms and examination findings, ASD
is largely underdiagnosed even though it is treatable if
diagnosed promptly. The presence of ASD increases the
risk of irreversible diseases such as AF, stroke, and heart
failure, and early diagnosis is thus essential. The diagnosis
of ASD in adults is usually triggered by abnormalities
www.thelancet.com Vol 63 September, 2023
noted on ECGs, chest X-rays, or heart murmur noted on
physical examination, as well as by incidental echocardi-
ography, arrhythmias, or stroke.16 Since ECG is a simple
tool for identifying possible ASD, several studies on ECG
and ASD have been conducted. Right atrial loading with a
right-left shunt can result in increased P-wave amplitude
as well as prolonged P-wave duration and increased P-
wave dispersion due to delayed atrial conduction,17,18 and
right ventricular loading can produce right bundle branch
block.19 However, these findings are observed in many
cardiac diseases other than ASD. Given the sensitivity/
specificity associated with these findings, they alone are
unlikely to raise suspicion for ASD in a real clinical
setting.20 The crochetage pattern is another characteristic
ECG finding of ASD. The specificity of the crochetage
pattern was reported as 92–100% when it appeared in the
three inductions, II, III, and aVF. However, the sensitivity
was limited (28–73%), and it was also reported to appear in
patients with ventricular septal defect, pulmonary valve
stenosis, and healthy individuals.6,21 Considering the utility
of ECG for screening where false negatives need to be
reduced, suspecting ASD based on these ECG findings is
unsatisfactory. Consequently, diagnosis of ASD is often
delayed, and the condition remains undetected until other
9
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overt symptoms develop in a large number of individuals.
In contrast to the conventional ECG abnormalities, our
model demonstrated much higher sensitivity when
achieving the same specificity. Therefore, our model has a
strong potential to reduce missed ASD when deployed, by
serving as an effective tool to suggest further investigation
with echocardiograms, utilizing the widely available and
inexpensive ECG.

In addition to the ability of the model to “rank” the
probability of the disease (measured by AUROC), the
consistency of sensitivity/specificity for the cutoff points
across multiple institutions is an important factor to
determine the utility of the model. Even with a high
AUROC, if the sensitivity/specificity differs substan-
tially across institutions, the cutoff of the model will
need to be re-calculated whenever the model is deployed
in a new institution. Since the determination of cutoffs
requires a large number of patients, this is not always
feasible and thus greatly limits the applicability of the
model. Hence, we analyzed the performance of our
model across various cutoff points utilizing our multi-
institutional data, which revealed similar sensitivities
and specificities across all institutions. This finding
emphasizes the generalized performance of the model
and supports its utility without re-calculating the cutoff
for new institutions.

In recent years, due to the rapid growth of available
medical data, various DL models have been developed
to aid diagnosis and treatment.22 In the area of cardi-
ology, ECGs have been an attractive target for devel-
oping DL models.23 DL models can extract
unrecognized information from ECGs and incorporate
minute and bias-free features that are often missed by
the human eye, ultimately enabling the construction of
more accurate algorithms. Research to improve neural
networks has produced various architectures that can
be applied to different data structures, for example,
models using CNNs11,24,25 and models using recurrent
neural networks (RNN) including long short-term
memory (LSTM).13,14,26–28 In this study, the DL model
was constructed using CNNs. While RNNs are suitable
for learning time series, they require data from the
previous time step, which prevent massive paralleliza-
tion. In contrast, CNN can process each filter inde-
pendently allowing the training process to be better
parallelized. This characteristic of CNN enabled us to
train a larger network compared to our previous work,
which detected potential cardiac amyloidosis.12 We
have expanded on this prior work to detect ASD from
12-lead ECG. The DL-enhanced ECG approach could
also be applied for the detection of other congenital
diseases.29 With the advancement of artificial intelli-
gence and the efficient collection of longitudinal
congenital heart disease data from large registries or
real-world databases, it is anticipated that more effec-
tive detection of congenital heart diseases will become
possible in the near future.
A clear strength of this study was the validation,
which was performed in an ethnically heterogeneous
population and at an external institution. It has been
shown that models tested only at single institutions
often display unexpectedly low performances on an
external dataset.30,31 Our model not only showed
excellent discrimination on the KUH dataset (AUROC
0.90) and BWH dataset (AUROC 0.88) but also
generalized well to a dataset from an external institu-
tion (AUROC 0.85 on the SMC dataset), proving the
external validity of the algorithm. The prevalence of
ASD among the three institutions differs. The partic-
ularly high prevalence of ASD at KUH may strongly
reflect the characteristics of the KUH facility; KUH is a
tertiary care center with multiple specialists in surgical
or percutaneous ASD closure and is a high-volume
medical center for ASD treatment where ASD pa-
tients are referred from a very wide geographic area.
On the other hand, BWH and SMC are also advanced
medical facilities, but the prevalence of ASD was
considerably closer to the general population which is
reported to be around 0.085%.32 The fact that our
model performed well on such diverse populations
strongly suggests the applicability of the model in real-
world practice.

For a thorough understanding of the results, several
limitations should be acknowledged. First, KUH is an
academic institution that deals with various uncommon
diseases, as evidenced by the high prevalence of ASD.
Furthermore, since the entire cohort consisted of pa-
tients who underwent echocardiography, the results
could have been affected by selection bias. To minimize
such concerns, we validated the model using data from
an academic medical center and a community hospital,
through internal and external validation, which
demonstrated excellent performance in both settings
with different prevalence rates and patient backgrounds.
However, further prospective studies in the general
populations are needed to validate the applicability of
our model to unselected asymptomatic individuals.
Second, since this model was trained with ASDs
detected by transthoracic echocardiography, it is
possible that small ASDs could have been missed and
thus misclassified into the non-ASD group. The model
also showed a tendency for lower AUROC for detecting
less severe ASD. However, since patients with small
ASDs usually do not require closure, it is unlikely to
cause major clinical problems even if the sensitivity to
detect very small ASDs is low. Third, we used all avail-
able ECGs rather than matching age or sex between
cases and controls. While this approach enabled us to
evaluate the model performance on a population
reflecting the actual prevalence of ASD at each institu-
tion, it could be possible that the model learned the
difference in age and sex within the cohort. However,
the results of the subgroup analysis showed that there
were no differences in performance across different age
www.thelancet.com Vol 63 September, 2023
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or sex groups, which suggests that the influence, if it
exists, is small. Fourth, while not statistically significant,
the discrimination of ASD was numerically lower for
ASD with other ACHDs. However, those with ACHDs
likely had an indication for echocardiograms and thus a
screening strategy for ASD in this population is less
important. Fifth, since some clinical information
including medication and comorbidity was not available
due to the nature of our datasets, their potential impacts
on the model performance could not be assessed. Sixth,
the model performance could have been affected by the
inter-rater variability for detecting ASD (particularly
small ASD). Since we did not have data to identify the
individual technicians who performed the examination,
we were not able to directly assess the impact of the
variability. However, our data showing consistent per-
formance across different institutions support that the
impact was minimal. It should also be noted that all the
examinations and associated reports were over-read by
at least one experienced specialist. Finally, one of the key
limitations in DL is the lack of explainability. We
attempted to mitigate this limitation by performing a
GRAD-CAM analysis, which revealed that the model
focused on P waves and QRS complexes. However, the
result only provides information on “where” the feature
was and does not show “what” the feature was. Thus,
the model is not able to fully provide information for
humans to understand novel features to look for in
ECGs.

In conclusion, this study showed that a neural
network-based DL algorithm using 12-lead ECG data
can detect ASD excellently with good generalization.
The model can be used to improve ASD screening,
where symptoms and laboratory findings are subtle.
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