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Missense variant interpretation is challenging. Essential regions for protein function are conserved among gene-familymem-

bers, and genetic variants within these regions are potentially more likely to confer risk to disease. Here, we generated 2871

gene-family protein sequence alignments involving 9990 genes and performed missense variant burden analyses to identify

novel essential protein regions. We mapped 2,219,811 variants from the general population into these alignments and com-

pared their distribution with 76,153 missense variants from patients. With this gene-family approach, we identified 465 re-

gions enriched for patient variants spanning 41,463 amino acids in 1252 genes. As a comparison, by testing the same genes

individually, we identified fewer patient variant enriched regions, involving only 2639 amino acids and 215 genes. Next, we

selected de novo variants from 6753 patients with neurodevelopmental disorders and 1911 unaffected siblings and observed

an 8.33-fold enrichment of patient variants in our identified regions (95% C.I. = 3.90-Inf, P-value= 2.72× 10−11). By using

the complete ClinVar variant set, we found that missense variants inside the identified regions are 106-fold more likely to be

classified as pathogenic in comparison to benign classification (OR= 106.15, 95% C.I = 70.66-Inf, P-value< 2.2× 10−16). All

pathogenic variant enriched regions (PERs) identified are available online through “PER viewer,” a user-friendly online plat-

form for interactive data mining, visualization, and download. In summary, our gene-family burden analysis approach iden-

tified novel PERs in protein sequences. This annotation can empower variant interpretation.

[Supplemental material is available for this article.]

Sequencing technologies are becoming routinely applied in clini-
cal diagnostics (den Dunnen et al. 2016). The number of genetic
variants derived from patients has increased exponentially (Lek
et al. 2016), demanding scalable and accurate methods for variant
interpretation. Particularly, the ability to accurately predict vari-
ants associated with rare and complex Mendelian disorders be-
comes crucial in the development of personalized medicine (Xue
et al. 2015). Up to 85% of disease traits are explained by variation
within the coding region of the genome, thereby making whole-
exome and gene-panel sequencing the standard of care (Choi
et al. 2009; Bamshad et al. 2011). Still, variant interpretation re-
mains challenging (Gilissen et al. 2012) particularly for missense
variants—the most prevalent genomic alteration, with 10,000 to
12,000 events per individual (The 1000 Genomes Project
Consortium 2015). Protein truncating variants (PTVs) and large
deletions are generally assumed to cause disease by loss-of-func-
tionmechanisms in haploinsufficient genes. In contrast, missense
variants can have a variety of functional outcomes depending
on the amino acid substitution and protein domain affected
(Miosge et al. 2015), further complicating interpretation. Many

computational tools have been developed for missense variant
interpretation (Itan and Casanova 2015; Liu et al. 2016). These
tools are based on a combination of criteria, including the
physicochemical properties of the amino acids change (e.g.,
Grantham) (Grantham 1974), structural features (e.g., PolyPhen-
2) (Adzhubei et al. 2010), amino acid conservation across different
species (e.g., GERP++, SIFT) (Cooper et al. 2005; Kumar et al. 2009),
or combined machine learning consensus approaches (e.g.,
CADD, FATHMM, REVEL) (Shihab et al. 2013; Kircher et al.
2014; Ioannidis et al. 2016).

Repositories of variants from the general population have
been used as a resource to calculate gene constraint or to
identify coding regions “intolerant to variation” (Lek et al.
2016). Constraint metrics are extensively used for the identifica-
tion of potential disease genes and for individual variant interpre-
tation (Samocha et al. 2017). Missense variants are not randomly
distributed across the exome, and functionally essential genes
are constrained from variation (Petrovski et al. 2013; Bartha et al.
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2018). Thus, variants within genes that are intolerant to loss of
function or missense variation in the general population are
more likely to be pathogenic. Methods and scores that incorporate
variant tolerance have been developed. For example, evaluation of
the rate ofmissense against synonymous variants from the general
population allowed the identification ofmissense depleted regions
(MDRs) (Ge et al. 2016). Similarly, the missense tolerance ratio
(MTR) score evaluates constraint over a 31-amino-acid window
(Traynelis et al. 2017), and themeasure of deleterious effect ofmis-
sense badness, PolyPhen-2, and constraint score (MPC) combines
constraint with exchange and structural scores to report a mis-
sense-specific score (Samocha et al. 2017).

From an evolutionary perspective, it has been shown that
∼80% of the genes causingMendelian disorders have functionally
redundant paralogs (Chen et al. 2013b) expressed across different
cell types. Gene duplication events from ancestral genes have pro-
duced large sets of well-established paralog gene families in the hu-
man genome, with different degrees of amino acid conservation
and functional redundancy. Conserved amino acids across gene-
family members are more likely to hold essential functional do-
mains. Thus, amino acid conservation across gene paralogs can
be used at scale for variant interpretation (Parazscore) (Lal et al.
2017). Functional redundancy can help explain disease etiology
via the accumulation of pathogenic variants in analogous domains
within the tissues and organs, corresponding to the paralogous
genes expressed (Ware et al. 2012; Chen et al. 2013b; Walsh
et al. 2014; Barshir et al. 2018). Therefore, protein alignments of
gene-family members could significantly cluster independent
pathogenic variants in the same analogous domain. Variant aggre-
gationover protein domainhomologswithout distinction of gene-
family members has been reported for variant interpretation
(Gussow et al. 2016; Wiel et al. 2017), including the identification
of cancer-driver variants (Melloni et al. 2016).

Similar to genetic constraint, patient variant clustering along
the linear protein sequence can also be expected in functionally es-
sential regions. Thousands of pathogenic variants have been
used to train variant interpretation tools such as the Variant
Effect Scoring Tool (VEST) (Carter et al. 2013) and the Combined
Annotation Dependent Depletion (CADD) (Kircher et al. 2014).
However, patient variant enrichment analysis to detect disease-
sensitive regions has not been conducted on an exome-wide level.

Here, we compared the distribution of patient missense vari-
ants against population missense variants within gene-family
alignments and gene sequences. We developed a novel statistical
framework that, based on the observed mutational distribution,
can identify pathogenic variant enriched regions (PERs) across pro-
tein sequences. We show that the family-wise approach is able to
identify more and larger PERs than gene-wise analyses. Our identi-
fied family-wise and gene-wise PERs are high in resolution and can
be used for variant interpretation. We developed the “PER viewer”
(http://per.broadinstitute.org) to facilitate the exploration of all
data generated in this study, including gene-family alignments,
PERs, variants, and paralog conservation scores in a user-friendly
web application.

Results

Missense variant mapping in genes and gene families

Our goal was to generate an annotation for protein regions vulner-
able to disease.We found that protein residues near or within clus-
ters of pathogenic variants are more likely to be disease associated.

We compared the distribution of missense variants from patients
and individuals from the general population across protein se-
quences to identify regions enriched for patient variants. To
increase our statistical power, we performed a “family-wise” ap-
proach analyzing the missense variant burden along aligned pro-
tein sequences of gene-family members (i.e., paralogs) as a single
unit. First, we extracted a total of 2,219,811 missense variants
from the Genome Aggregation Database (gnomAD) (Lek et al.
2016) to serve as our “population” variant data set. Patient mis-
sense variants were retrieved from two sources: the ClinVar data-
base (Landrum et al. 2016) and the Human Gene Mutation
Database (HGMD) (Stenson et al. 2003). After variant filtering,
the union of ClinVar and HGMD yielded a total of 76,153 unique
high-confidence pathogenic/likely-pathogenic missense variants,
which were subsequently used as our “patient” data set. A detailed
description of the applied filtering criteria can be found in the
Methods section. Patient and population missense variant sets
are available in the Supplemental Code database folder (/db) and
at our GitHub repository (https://github.com/edoper/PERs/tree/
master/db). The workflow designed for PER detection is summa-
rized in Figure 1.

Missense burden analysis

To investigate mutational burden across paralog-conserved amino
acids, we mapped all missense variants from the population and
patient data sets onto a set of 2871 gene-family protein alignments
involving 9990 genes (Supplemental Table S1). To generate a
“gene-wise” analysis as a comparison group, we applied the same
mapping procedure to the single protein sequences of 18,805
RefSeq genes. To calibrate the optimal slidingwindow size, we con-
ducted multiple rounds of burden analyses with varying window
sizes (see Methods). We observed that at greater sliding window
sizes, more PERs were detected; however, the ratio of aligned ami-
no acids positions with patient variants versus without decreased
(Supplemental Fig. S1). To ensure specificity, we decided to limit
PERs to contain a minimum of 50% of amino acids with at least
one disease association in any gene-family member. As a result,
the analysis was calibrated to a slidingwindow of nine amino acids
(Supplemental Fig. S1).

PERs detected in the family-wise and gene-wise approaches

We identified 465 and 251 PERs in the family-wise and gene-wise
analysis, encompassing 41,463 and 2639 amino acids, respectively
(Fig. 2A). Collectively, a total of 42,713 amino acids from 1338
genes fall within PERs boundaries, which can be traced back to
128,139 nucleotides in the reference genome. For family-wise
and gene-wise analysis, the complete list of genes and amino acids
affected by PERs as well as the corresponding genomic coordinates
in BED format are shown in Supplemental Table S2. We observe a
5.8-fold enrichment of genes with at least one PER in the family-
wise analysis (n=1252) than in the gene-wise analysis (n=215).
All genes in the gene-wise approach have been previously associat-
ed to disease; however, the family-wise approachwas able to detect
PERs in 700 genes not yet associatedwith a humanphenotype (Fig.
2B). Similarly, among the amino acid positions within family-wise
PERs, 88.4% (n=36,660) have no prior disease association in com-
parison to 55.7% (n=1471) observed in the gene-wise PERs (Fig.
2C). Given that the family-wise PERs are composed of several
genes, the aligned amino acids covered by PERs are transferrable
to all the gene-family members” protein sequences. In general,
the family-wise approach identified more PERs, amino acids sites,
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and patient variants than the gene-wise approach. Overall, 83.9%
of genes with at least one PER were identified exclusively through
the family-wise approach (n =1221), whereas 6.3% of the total
genes (n=84) were found exclusively in the gene-wise analysis. A
total of 131 genes (9.8%) had PERs in both approaches (Fig. 2D).
It is important to note that 66 out of the 84 (78.5%) genes with
PERs exclusively found in the gene-wise analysis do not belong
to a gene family. Considering the 131 genes with PERs detected
in both methods, we found that out of the 155 PERs found in
the gene-wise analysis, 143 (92.2%) were also captured by the fam-
ily-wise analysis. The family-wise overlapping PERs were, on aver-
age, five amino acids larger than PERs found with the gene-wise
approach (Supplemental Table S2). The average patient variant
fold enrichment observed for PERs identified in the family-wise
approach was lower than that observed for PERs identified by
the gene-wise analysis (Fig. 2E). However, the corresponding asso-
ciation was more significant in the family-wise analysis compared
with the gene-wise analysis (Fig. 2F). Taken together, PERs show an
average size of 33 amino acids covering 5.48% of the affected pro-
tein sequence (Supplemental Table S2). The smallest PER detected
was found in the SCNN1D gene, with a size of three amino acids
(0.37% of protein sequence), whereas the largest was found in
COL11A1 gene, with 350 amino acids (28.91% of protein se-
quence). Annotation of the total set of amino acids covered in

PERs (n= 42,713) showed that 33,256 (77.8%) overlapped with
known Pfam domains. The most frequent domain affected by
PERs was the ion transport protein domain (PF00520), with 4174
amino acids overlapped by PERs, followed by collagen triple helix
repeat domain (PF01391), with 2888 amino acids involved, and
the intermediate filament protein domain (PF01391), with 2574
amino acids affected (Supplemental Fig. S2).

Illustrative example: the voltage-gated sodium channel

gene family

We show themissense burden analysis results of the voltage-gated
sodium channel gene family (family ID: 2614) composed of 10
paralogous genes: SCN1A, SCN2A, SCN3A, SCN4A, SCN5A,
SCN7A, SCN8A, SCN9A, SCN10A, and SCN11A (Fig. 3). The align-
ment of the 10 protein sequences consists of 2188 amino acids,
in which the patient and populationmissense variants were subse-
quentlymapped. Clinical phenotypes from patient variants found
in any gene-family member were aggregated into the correspond-
ing aligned amino acid position. The missense burden analysis
identified 16 PERs (Fig. 3A). Overall, regions with a drop in the dis-
tribution of population variants are increased for patient variants
and vice versa. PER10 represented the longest patient variant en-
riched region, with 44 consecutive aligned amino acid sites from

A

C

B

Figure 1. Study workflow and the PER viewer. (A) Starting from protein alignments of paralogous genes (gene-family approach) or all genes (gene-wise
approach), missense variants from gnomAD (population; green) and ClinVar/HGMD (patient; purple) were mapped independently to the corresponding
amino acid positions. (B) The mapping follows a binary notation. For sites with at least one missense variant reported, a “1” state was assigned.
Alternatively, if no mutation was found, a “0” state was annotated instead. Amino acid sliding window (bin) counting over the alignment/sequence
was used to calculate the corresponding missense burden. (C) The ratio between the number of sites with missense variants inside and outside the bin
defines the burden area (population burden=green; patient burden =purple). Statistical comparison between the population and patient variant burden
across aligned sequences allowed the identification of significant pathogenic variant enriched regions (PERs; red area).
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positions1466 to1509.As anexample,we showtheclinicalpheno-
typesof patients carryingvariants inPER5, locatedbetweenaligned
positions 941 to 949 (Fig. 3B). The patient variant enrichment
within PER5 was based on missense variants in SCN1A (n=4),
SCN5A (n=4), SCN4A (n=3), SCN8A (n=2) and SCN2A (n=2),
SCN1A (n=1), and SCN9A (n=1), representing patients with long
QT syndrome, Brugada syndrome, Dravet syndrome, and a broad
range of infantile epilepsies and epileptic encephalopathies. In
contrast to the family-wise burden analysis, the gene-wise burden
analysiswas not able to identify PERs in anyof the 10 voltage-gated
sodium channel genes (Supplemental Fig. S3), indicating greater
statistical power of family-wise burden analysis in this gene family.

PER viewer

We developed an R-based online tool to make the full set of
results accessible. The “PER viewer” is available at http://per

.broadinstitute.org. The main features
of PER viewer are shown in Supplemen-
tal Figure S4. The user can query any
gene and search for its corresponding
missense burden analysis results. If the
gene belongs to a gene family, the results
will be shown family-wise with the op-
tion to evaluate genes independently.
For genes that do not belong to a gene
family, the single gene burden analy-
sis will be shown. Burden analyses and
table browsing are displayed in the
same format shown in Figure 3. The
user can explore the burden observed in
the population and patient data sets
along the alignment or gene sequence
at the amino acid level. Alignments, bur-
den analyses, summary statistics, and the
identification of PERs are available for
download at PER viewer.

PERs on independent cohorts

To test the utility of PER annotation in an
independent data set, we evaluated the
distribution of de novomissense variants
(DNVs) within and outside of the identi-
fied PERs from a large neurodevelopmen-
tal (NDD) case-control cohort (Heyne
et al. 2018). The data set included 6753
patients with 4404 missense DNVs iden-
tified and 1911 unaffected siblings with
768 missense DNVs identified (Fig. 4A).
Patient missense DNVs (n=228) were
8.33-fold enriched within PERs com-
pared with control missense DNVs (OR
=8.33, 95% C.I. = 3.90-Inf, P-value =
2.72×10−11). The fold enrichment of pa-
tient variants in PERs was even greater
when we restricted the analysis to con-
strained genes (pLI > 0.9) (Lek et al.
2016). For this group of haploinsufficient
genes, no patient DNV enrichment was
observed (OR= Inf, 95% C.I. = 7.48-Inf,
P-value=1.34×10−9). It is not expected
that all patient DNVs are pathogenic. In

an additional analysis, we evaluated the distribution of benign
and unknown significance (VUS) missense variants reported in
the complete ClinVar release (October 2019). We found 23 benign
variants and 1370 VUSmissense variants within PERs (Fig. 4B).We
note that 16 (70%) of the 23 benign variants came from single sub-
mitters, and none of them were evaluated with the established
guidelines criteria for variant interpretation (Richards et al.
2015). We compared the number of ClinVar pathogenic and
benign variants inside and outside PERs and observed a 106.15-
fold enrichment for pathogenic variants (OR=106.15, 95% C.I. =
70.66-Inf, P-value <2.2 ×10−16) inside PERs boundaries. Finally,
to explore if the number of PERs is increasing over time, we con-
ducted burden analyses using patient missense variants
(ClinVar/HGMD) from three different time points against the
same set of population variants: (1) missense variants reported un-
til December 2017 (patient variants = 64,458), (2) until December
2018 (patient variants = 69,863), and (3) until October 2019

BA

DC

FE

Figure 2. PERs detected with the family-wise and gene-wise burden analyses. Summary statistics for
family-wise (orange) and gene-wise (green) approaches are shown for number of PERs detected (A),
number of genes with PERs (B), and number of amino acids involved in in PERs (C). For B and C, the num-
ber of genes and amino acids associated to disease is shown in purple. (D) To reflect gene with PERs dis-
tribution by approach, a Venn diagram is shown. (E,F) Overall enrichment (log odds ratio) and
significance (adjusted P-value) distribution of all PERs detected in each approach are shown in E and F,
respectively.
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(current; patient variants = 76,153). We observe a consistent in-
crease in the number of PERs, genes, and amino acids involved
(Fig. 4C). Family-wise PER detection found 407 (genes = 1116; ami-
no acids= 36,552) and 435 (genes = 1183; amino acids= 38,731)
PERs with patient variants reported until 2017 and until 2018, re-
spectively. In comparison, 465 PERs (genes = 1252; amino acids =
41,464) were detected with the current release (October 2019).
The PERs detected with the current 2019 set of patient variants

are able to capture 6.89% and 13.43% more amino acids than
with the 2018 and 2017 patient variant sources, respectively. We
note that the increase of power is driven mostly by the family-
wise analysis because PERs detected with the gene-wise analysis
showed more stable numbers (2017=232 PERs; 2018= 253 PERs;
2019=251 PERs) (Fig. 4C, left). Regardless of themethod, the over-
all significance of PERs also increases slightly over time (average
−log P-value: 2017=3.65; 2018=3.68; 2019=3.75). However, we

A

B

Figure 3. PER viewer tool example. The voltage-gated sodium channel family. (A) Missense burden analysis of the voltage-gated sodium channel protein
family (family ID: 2614.subset.3) composed by SCN1A, SCN2A, SCN3A, SCN4A, SCN5A, SCN7A, SCN8A, SCN9A, SCN10A, and SCN11A. Population and
patient missense burden are shown in green and purple, respectively. Significant pathogenic enriched regions (PERs) identified are shown in the red neg-
ative area and are proportional to their adjusted P-values (gray horizontal lines). (B) Table view of pathogenic enriched region 5 (PER5; positions 941–949).
Gene columns denote individual canonical sequence alongside corresponding amino acid position. Column “Gene:Disease” displays analogous diseases
observed in the patient data set. N/A sites show aligned amino acids positions with no disease reported.
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note that the annual rate of new PERs decreased over time (Fig. 4C,
right).

Discussion

The present work compares the exome-wide distribution of mis-
sense variants from the general population with patient variants
across single-protein sequences and gene-family protein sequence
alignments. The family-wise approach was more sensitive and

powerful than the basic gene approach in PER detection (Fig. 2).
Missense variants in amino acid positions within PERs are more
likely to be classified as pathogenic rather than benign. These re-
gions, enriched for patient variants and depleted for population
variants, likely encompass functionally essential protein features.
We show that 77.8% of amino acids captured by PERs overlapped
with conserved functional domains. The remaining 22.2% of sites
can still provide additional biological insights, suggesting novel
functional regions that might not be directly captured by

BA

C

Figure 4. Disease-causing variants are enriched in PERs. (A) Neurodevelopmental disorder DNVs inside PERs. Case and control comparison of DNVs in-
side PERs retrieved from Heyne et al. (2018) is shown for all genes (blue; OR=8.33, 95% C.I. = 3.90-Inf, P-value = 2.72 × 10−11) and genes with high prob-
ability of being loss-of-function intolerant (light blue; OR= Inf, 95%C.I. = 7.48-Inf, P-value = 1.34 ×10−9). Fold enrichment observed in cases was calculated
with a one-sided Fisher’s exact test. Resulting odds ratio (OR) with 95% confidence and corresponding P-values are shown in the horizontal axis. (B) ClinVar
missense variants (fromOctober 2019 release) inside PERs with benign and unknown (VUS) clinical significance. The number of variants observed is shown
considering all genes (blue) and pLI > 0.9 genes only (light blue). (C) Burden analysis performance over time. PER detection was performed with patient
variants reported until 2017 and 2018 and comparedwith the current 2019 data set analysis. (Left) Overall amount of PERs, amino acid, and genes detected
as a function of the number of input patient variants. (Right) Rate of PERs, genes, and amino acids detected per patient variant contained in 2017, 2018, and
2019 sources.
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traditional annotation (McLaren et al. 2016). The generated
exome-wide map of PERs can be used as an additional criterion
for variant interpretation. Specifically, PER annotation and evalu-
ation could be included in the “PM1” category of the American
College of Medical Genetics and Genomics (ACMG) guidelines.
PM1 is defined as “variants located in a mutational hot spot
and/or critical and well-established functional domain without
benign variation” (Richards et al. 2015). Furthermore, the statisti-
cal framework designed to detect PERs provides fold enrichments
and 95% confidence intervals that can be integrated into
Bayesian tools based on ACMG guidelines (Tavtigian et al. 2018).
It has been estimated that an observed fold enrichment above
18.7 can be considered as a strong criterion for variant interpreta-
tion. Thus, 26.01% of all PER sites could be further incorporated as
a strong criterion for variant interpretation. In this regard, for each
PER, genomic coordinates, the corresponding enrichment values,
and significance are included in Supplemental Table S2.

Identification of functional essential domains and sites across
single protein sequences represents a challenge for rare Mendelian
disorders. The number of patient variants annotated for most
genes is still small and limits variant interpretation and prediction
score development. However, the number of variants and quality
of interpretation has been increasing exponentially during the
past years (Harrison et al. 2017). Our analysis with previous, small-
er releases of ClinVar and HGMD with fewer patient variants (Fig.
4C) suggests that more PERs remain to be identified with future
larger variant data sets.

Our approach aggregates variants across analogous sites with-
in gene families to a single unit, hypothesizing that functionally
essential sites across related proteins are conserved. We observed
that the distribution pattern of patient and population variants
across protein sequences was similar across gene-family members,
which yielded in a larger number of PERs and genes with PERs in
the family approach compared with the single-gene approach
(Fig. 2). Similar sequence grouping approaches have been conduct-
ed over homologous protein domains (Wiel et al. 2017), defined as
functional subunits that can be present in a broad spectrum of un-
related proteins (Finn et al. 2016). In this regard, a recent study
conducted a similar approach to detect domains or exons enriched
with pathogenic variants based on ClinVar and gnomAD variants.
They reported 259 genes in which there is a significant relation-
ship between intolerance scores and the location of pathogenic
missense mutations (Hayeck et al. 2019). We note that 40.9% (n
=108) of these genes have PERs. Collectively, these studies are
not mutually exclusive but rather complementary to our results
and provide additional tools and regions that should also be con-
sidered for variant interpretation. In contrast to domain-wise ap-
proaches, our missense burden analyses were performed on
functionally redundant genes. Paralogous genes have accumulated
a significant amount of disease variants because they can be
masked by paralog functional redundancy (Chen et al. 2013b;
Barshir et al. 2018). Paralog families can leverage additional in-
sights in the context of sequence grouping approaches.

In comparison with other variant interpretation tools such as
MTR (Traynelis et al. 2017), VEST 3.0 (Carter et al. 2013), or CADD
(Kircher et al. 2014), PER viewer does not provide a score for all pos-
sible substitutions but instead provides a set of amino acids regions
in which pathogenic variants accumulate significantly. PERs are
able to capture aligned amino acids sites, regardless of disease asso-
ciation, which allows variant interpretation even if no missense
variant has been previously reported (e.g., lysine index position
943) (Fig. 2B). The family-wise variant annotation allows us to

manually inspect variants across the alignment index position,
which can be useful for biological and clinical interpretation. For
example, in the voltage-gated sodium channel gene-family exam-
ple, we observe at index position 941 the fully paralog conserved
leucine (PER5) (Fig. 2B) with pathogenic variants in the genes
SCN1A, SCN8A, SNC4A, and SCN5A. Here, future variants found
inside the genes SCN2A or SCN11A at the same alignment index
position (leucine 870 or 690, respectively) are more likely to be
pathogenic, reflecting the practical use of our family-wise ap-
proach. In fact, paralogous annotation and variant interpretation
transfer has been explored before and could be considered as com-
mon practice in the field of electrophysiology (Ware et al. 2012;
Walsh et al. 2014).

Our approach has several limitations. First, the missense bur-
den analysis and statistical identification of PERs is highly depen-
dent upon the number and quality of variants used as references
for the population and patient data sets. We cannot rule out that
missense variants outside PER boundaries are pathogenic; rather,
we are prioritizing variants within these regions. Similarly, the as-
certainment of variants for specific genes can be skewed, for exam-
ple, different sequencing coverage of patient and population
variants. As we showed with the burden analyses performed with
older releases of patient variants, it is likely that more and stronger
PERs will be identified as the population and patient databases
continue to grow in size and quality. Second, paralogs belonging
to the same family may evolve different functions through the de-
velopment of specific domains (Pires-daSilva and Sommer 2003;
Dos Santos and Siltberg-Liberles 2016). Upon alignment, gene-spe-
cific domains not present in other family members will not show
conservation; they are therefore less likely to reach significance in
the family-wise burden analysis. Nevertheless, if gene-specific do-
mains are in fact enriched for pathogenic variants, the gene-wise
approach could still identify PERs in such regions. Third, function-
al redundancy among paralogs does not guarantee the same degree
of tolerance or intolerance to variation. Burden analyses, including
genes tolerant to variation, will introduce noise andmaymask spe-
cific signals. Similarly, genes with no pathogenic variants decrease
the chances of reaching significance in regions with pathogenic
variants in other family members. Fourth, our approach is able
to identify protein regions constrained for variants in the general
population and likely disease causing when mutated. Protein re-
gions that can confer risk to disease through low penetrance vari-
ants or late onset of disease after typical reproductive age are
unlikely to be identified in PERs owing to little constraint in the ge-
neral population (Bodmer and Bonilla 2008). Finally, our analysis
and the PERs detected are limited to canonical transcripts. Testing
all combinations of transcripts alignments in the burden analysis
would have made it very difficult to reach significance after multi-
ple testing.

The ACMG guidelines (Richards et al. 2015) have made con-
siderable efforts to provide guidelines and standardize criteria for
pathogenicity assignment. Nevertheless, ∼49.49% of missense
variants in ClinVar (October 2019) either have conflicting reports
of pathogenicity, have no interpretation at all, or are annotated as
VUSs (Landrum et al. 2016). With increasing data, machine learn-
ing approaches are likely to outperform older variant prediction al-
gorithms such as PolyPhen and SIFT (Itan and Casanova 2015).
However, they lack the ability to understand why a given predic-
tion score is high or low, limiting translation into therapeutics
and biology.With the PER viewer, we are able to collect the pheno-
types observed from a given region in an online tool that can
simultaneously serve as an intuitive variant interpretation tool.
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Our framework is not restricted to the aforementioned resources
and can be implemented with alternatives inputs. For example,
missense burden analysis using the Catalogue of Somatic
Mutations in Cancer (COSMIC) (Forbes et al. 2017) may be of
use in the detection of cancer-specific PERs.

PERs will empower gene discovery studies by facilitating the
identification of specific regions within these candidate disease
genes. This will have an immediate impact on the prioritization
of candidate variants for researchers and molecular diagnostic lab-
oratories evaluating variants within PERs.

Methods

Population missense variants

Protein-coding variants fromthe general populationwere retrieved
from gnomAD public release 2.0.2 (Lek et al. 2016). Exonic
variants were downloaded in the variant call format (VCFs) follow-
ing gnomAD guidelines (http://gnomad.broadinstitute.org/
downloads). Missense variants were extracted using VCFtools
(Danecek et al. 2011) based on the consequence “CSQ” field. The
CSQ field is preannotated by gnomAD with the Variant Effect
Predictor (VEP) software (Ensembl v92) and provides information
on 68 features, including gene/transcript, cross-database identifi-
ers, as well as the desired molecular consequence. All annotations
refer to the human reference genome version GRCh37.p13/hg19.
Entries passing gnomAD standard quality controls (filter = “PASS”
flag) and annotated to a canonical gene transcript (CSQ canoni-
cal = “YES” flag) were extracted. The canonical transcript is defined
as the longest CCDS translation with no stop codons according to
Ensembl (Hunt et al. 2018). Missense variants calls were merged
into one single file,matching amino acid position and annotation.
The final “population”data set contains allmissense variantswith-
in canonical transcripts found in the general population.

Patient missense variants

Disease-associated missense variants were retrieved from two
sources: the ClinVar database (ClinVar; release October 2019)
(Landrum et al. 2016) and HGMD professional release 2019.2
(Stenson et al. 2003). ClinVar variants were downloaded directly
from the ftp site (ftp://ftp.ncbi.nlm.nih.gov/pub/clinvar/) in a ta-
ble format. Molecular consequence was inferred through the anal-
ysis of the Human Genome Variation Society (HGVS) sequence
variant nomenclature field (den Dunnen et al. 2016). Specifically,
when the variant was reported to cause an amino acid change dif-
ferent to the reference, it was subsequently annotated as amissense
variant (e.g., p.Gly1046Arg). To increase stringency, ClinVar mis-
sense variants exclusively classified as “pathogenic” and/or “likely
pathogenic”were considered.Missense variantswith conflictingor
ambiguous clinical significance (e.g., “pathogenic, other”)were ex-
cluded from the study. The HGMD data were directly filtered for
“missense variants,” “high-confidence” calls (hgmd_confidence=
“HIGH” flag), and “disease-causing” state (hgmd_variantType=
“DM” flag). All annotations refer to the human reference genome
versionGRCh37.p13/hg19, and variants belonging to noncanoni-
cal transcripts were removed. Our approach is based in the study of
missense variants mapped within canonical protein sequences
with a consensus coding sequence (CCDS) (Supplemental Table
S1), which are stable across different human genome assemblies
(Pruitt et al. 2009). Thus, using GRCh38 annotations would not
significantly affect our conclusions. Because ClinVar and HGMD
are not mutually exclusive, we took the union of both resources
and removed duplicated entries by comparing HGVS annota-

tions. The final “patient” data set contains patient-derived mis-
sense variants and their corresponding disease annotation.

Gene-family definition

Gene families were retrieved following the method previously de-
scribed (Lal et al. 2017). Briefly, we downloaded the human
paralog definitions from the Ensembl BioMart system (Kinsella
et al. 2011). Noncoding genes and genes without a HUGO Gene
Nomenclature Committee (HGNC) (Yates et al. 2017) symbol
were excluded. Similarly, gene families with fewer than two
HGNC genes were filtered out. For all analyses, we used one tran-
script per gene, keeping only the canonical version according to
Ensembl. To construct a family-wise FASTA file, respective
CCDSs were downloaded for all canonical transcripts from the
UCSC Table Browser (Karolchik et al. 2004). Family protein se-
quence alignment was conducted with MUSCLE (Edgar 2004).
Younger evolutionary paralogs show higher functional redundan-
cy (Chen et al. 2013a). To avoid alignments of strongly diverging
sequences and to enrich for overall similarity, we filtered out fam-
ilies with <80% similarity in their overall protein sequence
(Dufayard et al. 2005). In total, we used 2871 gene families com-
prising 9990 genes. Paralog gene-family structure and canonical
protein sequences are shown in Supplemental Table S1.
Population and patient data sets containing all missense variants
analyzed in the present study (“input.gnomad” and “input.clin-
var-hgmd,” respectively) are available in the Supplemental Code
and at our GitHub repository (https://github.com/dlal-group/
PERs/). Because access to HGMD professional release 2019.2 is re-
stricted, the genomic coordinates and phenotypes of HGMD mis-
sense variants are not included in the patient variant input file
(“input.clinvar-hgmd”). Here, HGMD missense variants contain
only the observed protein exchange (e.g., Arg109Phe), which al-
lows one to entirely reproduce the burden analyses and PER detec-
tion reported in this study.

Missense variant mapping

The population and patientmissense variants were independently
mapped to corresponding amino acids in all gene-family protein
sequence alignments. Population and patient missense variant
mapping was conducted using a binary annotation: “0” for amino
acids with no missense variant reported and “1” for residues with
at least one missense variant reported. We expected that con-
strained regions across the gene-family alignment will be enriched
with amino acids marked as “0,”whereas disease-sensitive regions
will cluster amino acidsmarkedwith “1.”We found that gene-fam-
ily alignment regions with more gaps are less conserved than
aligned amino acids and are more likely to not be functionally es-
sential. Thus, in the population variant mapping, gaps introduced
in any gene-familymember were also assigned a “1” state as if they
were mutated to penalize less-conserved sites. For the patient var-
iant mapping, the gaps were kept as “0.” Because every missense
variant contained in the patient subset was associated with at least
one phenotype in one gene, multiple genes and diseases were ag-
gregated in aligned residues upon alignment. This information
was collected in an additional “Gene:Disease” field for further fol-
low up.

Missense burden analysis—family-wise

Weperformed statistical comparisons between population and pa-
tient variants mapped to protein family alignments. Specifically,
we applied sliding windows of nine amino acids across index posi-
tions of the paralog alignments with a 50%overlap to increase sen-
sitivity (Fig. 1A). We summed the number of “0” and “1” sites
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inside and outside the window across the whole alignment index.
A one-sided Fisher’s exact test with 95% confidencewas performed
over each sliding window, comparing general population and pa-
tient counts inside the window against the corresponding counts
outside of it. For example, a burden analysis based on a slidingwin-
dow of size 5 will first test the counts of index positions 1 to 5
against the counts found from position 6 to the end of the align-
ment (Fig. 1). Bonferroni multiple testing adjustment was applied,
accounting for the total number of slidingwindows tested for each
gene-family alignment. Sliding windows with adjusted P-values
below 0.05 were considered significant and subsequently called
PERs. If two or more consecutive sliding windows were found sig-
nificant, the final PER reported will reflect the fusion of all consec-
utive significant windows boundaries. To identify the optimal
sliding window size, the analysis was executed with multiple slid-
ing window sizes—from three up to 31 amino acids—to evaluate
the window size sensitivity and specificity (Supplemental Fig.
S1). Sensitivity was measured by the number of significant regions
detected, amino acids involved, and gene families affected.
Specificity of the analysis was measured by the ratio between the
number of amino acids sites inside PERs with no disease associa-
tions and the number of amino acids inside PERs with disease as-
sociations (i.e., in at least one family gene member). Missense
variant mapping and sliding window counts were performed
with an in-house Perl script. Fisher’s exact tests, Bonferroni adjust-
ment, and plots were performed with the R statistical software (R
Core Team 2011).

Missense burden analysis—gene-wise

Themissense variantmapping and burden analysis protocols were
further applied to all RefSeq genes independently to evaluate gene-
wise enrichment. For all 18,805 canonical transcripts, their respec-
tive CCDS was downloaded from the UCSC Table Browser
(Karolchik et al. 2004). The missense variant mapping and burden
analyses were conducted using the same Perl scripts, treating each
gene as a one-member “family.” Perl (Part-1-missense-aligner.pl)
andR (Part-2-burden-analysis.R) scripts used to carry out both fam-
ily-wise and gene-wise missense burden analyses are available in
the Supplemental Code and at our GitHub repository (https://
github.com/edoper/PERs). Additionally, we provide a tutorial,
test data, and expected output that allow users to carry out PER
detection on any given alignment or gene file. PER Pfam domain
annotation was performed with VEP software (McLaren et al.
2016) using the genomic coordinates of PERs for both gene-wise
and family-wise analysis approaches.

Development of PER viewer

Population and patientmissense burden calculations as well as the
identification of significant regionswithin genes and gene families
were made publicly available through the PER viewer (http://per
.broadinstitute.org). PER viewer was developed with the Shiny
framework of R studio, which transforms regular R code into
HTML that can be displayed by any web browser. Precalculated
burden analyses for all genes and gene families (Supplemental
Table S1) were deployed in a Google virtual machine (VM) using
the googleComputeEngineR package (https://cloudyr.github.io/
googleComputeEngineR/). All graphs shown in the present work
and by the online tool are based on the ggplot2 R library
(Wickham 2009).

Software availability

The complete set of burden analyses for all gene families and genes
is freely available on the PER viewer (http://per.broadinstitute.org).

Thewebsitewas implementedwith R shiny framework, and allma-
jor browsers are supported. The Supplemental Code and our
GitHub repository (https://github.com/dlal-group/PERs/) contain
the source code and missense variants able to perform the mis-
sense burden analysis (Perl script: Part-1-missense-aligner) and
PER detection (R script: Part-2-burden-analysis). Here, we included
a detailed tutorial with test data and expected output that will al-
low the user to replicate entirely our burden analysis, patient ver-
sus population burden plots, and PER detection. The software is
supported on Linux and freely available to noncommercial users
under a MIT license.
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A, Özen S, Sanjad S, et al. 2009. Genetic diagnosis by whole exome cap-
ture and massively parallel DNA sequencing. Proc Natl Acad Sci 106:
19096–19101. doi:10.1073/pnas.0910672106

Cooper GM, Stone EA, Asimenos G, Green ED, Batzoglou S, Sidow A. 2005.
Distribution and intensity of constraint in mammalian genomic se-
quence. Genome Res 15: 901–913. doi:10.1101/gr.3577405

Danecek P, Auton A, Abecasis G, Albers CA, Banks E, DePristo MA,
Handsaker RE, Lunter G, Marth GT, Sherry ST, et al. 2011. The variant
call format and VCFtools. Bioinformatics 27: 2156–2158. doi:10.1093/
bioinformatics/btr330

den Dunnen JT, Dalgleish R, Maglott DR, Hart RK, Greenblatt MS,
McGowan-Jordan J, Roux A-F, Smith T, Antonarakis SE, Taschner
PEM. 2016. HGVS recommendations for the description of sequence
variants: 2016 update. Hum Mutat 37: 564–569. doi:10.1002/humu
.22981

Pe ́rez-Palma et al.

70 Genome Research
www.genome.org

http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.252601.119/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.252601.119/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.252601.119/-/DC1
https://github.com/edoper/PERs
https://github.com/edoper/PERs
https://github.com/edoper/PERs
https://github.com/edoper/PERs
https://github.com/edoper/PERs
http://per.broadinstitute.org
http://per.broadinstitute.org
http://per.broadinstitute.org
http://per.broadinstitute.org
http://per.broadinstitute.org
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.252601.119/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.252601.119/-/DC1
https://cloudyr.github.io/googleComputeEngineR/
https://cloudyr.github.io/googleComputeEngineR/
https://cloudyr.github.io/googleComputeEngineR/
https://cloudyr.github.io/googleComputeEngineR/
https://cloudyr.github.io/googleComputeEngineR/
https://cloudyr.github.io/googleComputeEngineR/
http://per.broadinstitute.org
http://per.broadinstitute.org
http://per.broadinstitute.org
http://per.broadinstitute.org
http://per.broadinstitute.org
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.252601.119/-/DC1
https://github.com/dlal-group/PERs/
https://github.com/dlal-group/PERs/
https://github.com/dlal-group/PERs/
https://github.com/dlal-group/PERs/
http://gnomad.broadinstitute.org/about
http://gnomad.broadinstitute.org/about
http://gnomad.broadinstitute.org/about
http://gnomad.broadinstitute.org/about
http://gnomad.broadinstitute.org/about


Dos Santos HG, Siltberg-Liberles J. 2016. Paralog-specific patterns of struc-
tural disorder and phosphorylation in the vertebrate SH3–SH2–tyrosine
kinase protein family.Genome Biol Evol 8: 2806–2825. doi:10.1093/gbe/
evw194

Dufayard J-F, Duret L, Penel S, Gouy M, Rechenmann F, Perrière G. 2005.
Tree pattern matching in phylogenetic trees: automatic search for
orthologs or paralogs in homologous gene sequence databases.
Bioinformatics 21: 2596–2603. doi:10.1093/bioinformatics/bti325

Edgar RC. 2004. MUSCLE: multiple sequence alignment with high accuracy
and high throughput. Nucleic Acids Res 32: 1792–1797. doi:10.1093/
nar/gkh340

Finn RD, Coggill P, Eberhardt RY, Eddy SR, Mistry J, Mitchell AL, Potter SC,
Punta M, Qureshi M, Sangrador-Vegas A, et al. 2016. The Pfam protein
families database: towards a more sustainable future. Nucleic Acids Res
44: D279–D285. doi:10.1093/nar/gkv1344

Forbes SA, Beare D, Boutselakis H, Bamford S, Bindal N, Tate J, Cole CG,
Ward S, Dawson E, Ponting L, et al. 2017. COSMIC: somatic cancer ge-
netics at high-resolution. Nucleic Acids Res 45: D777–D783. doi:10
.1093/nar/gkw1121

Ge X, Gong H, Dumas K, Litwin J, Phillips JJ, Waisfisz Q, Weiss MM,
Hendriks Y, Stuurman KE, Nelson SF, et al. 2016. Missense-depleted re-
gions in population exomes implicate ras superfamily nucleotide-bind-
ing protein alteration in patients with brain malformation. NPJ Genom
Med 1: 16036. doi:10.1038/npjgenmed.2016.36

Gilissen C, Hoischen A, Brunner HG, Veltman JA. 2012. Disease gene iden-
tification strategies for exome sequencing. Eur J HumGenet 20: 490–497.
doi:10.1038/ejhg.2011.258

Grantham R. 1974. Amino acid difference formula to help explain protein
evolution. Science 185: 862–864. doi:10.1126/science.185.4154.862

Gussow AB, Petrovski S, Wang Q, Allen AS, Goldstein DB. 2016. The intol-
erance to functional genetic variation of protein domains predicts the
localization of pathogenic mutations within genes. Genome Biol 17: 9.
doi:10.1186/s13059-016-0869-4

Harrison SM, Dolinsky JS, Johnson AEK, Pesaran T, Azzariti DR, Bale S, Chao
EC, Das S, Vincent L, Rehm HL. 2017. Clinical laboratories collaborate
to resolve differences in variant interpretations submitted to ClinVar.
Genet Med 19: 1096–1104. doi:10.1038/gim.2017.14

Hayeck TJ, Stong N, Wolock CJ, Copeland B, Kamalakaran S, Goldstein DB,
Allen AS. 2019. Improved pathogenic variant localization via a hierar-
chical model of sub-regional intolerance. Am J Hum Genet 104: 299–
309. doi:10.1016/j.ajhg.2018.12.020

Heyne HO, Singh T, Stamberger H, Abou Jamra R, Caglayan H, Craiu D, De
Jonghe P, Guerrini R, Helbig KL, Koeleman BPC, et al. 2018. De novo
variants in neurodevelopmental disorders with epilepsy. Nat Genet 50:
1048–1053. doi:10.1038/s41588-018-0143-7

Hunt SE, McLaren W, Gil L, Thormann A, Schuilenburg H, Sheppard D,
Parton A, Armean IM, Trevanion SJ, Flicek P, et al. 2018. Ensembl vari-
ation resources. Database (Oxford) 2018: bay119. doi:10.1093/data
base/bay119/5255129

Ioannidis NM, Rothstein JH, Pejaver V, Middha S, McDonnell SK, Baheti S,
Musolf A, Li Q, Holzinger E, Karyadi D, et al. 2016. REVEL: an ensemble
method for predicting the pathogenicity of rare missense variants. Am J
Hum Genet 99: 877–885. doi:10.1016/j.ajhg.2016.08.016

Itan Y, Casanova J-L. 2015. Can the impact of human genetic variations be
predicted? Proc Natl Acad Sci 112: 11426–11427. doi:10.1073/pnas
.1515057112

Karolchik D, Hinrichs AS, Furey TS, Roskin KM, Sugnet CW, Haussler D,
Kent WJ. 2004. The UCSC Table Browser data retrieval tool. Nucleic
Acids Res 32: D493–D496. doi:10.1093/nar/gkh103

Kinsella RJ, Kähäri A, Haider S, Zamora J, Proctor G, Spudich G, Almeida-
King J, Staines D, Derwent P, Kerhornou A, et al. 2011. Ensembl
BioMarts: a hub for data retrieval across taxonomic space. Database
(Oxford) 2011: bar030. doi:10.1093/database/bar030/465356

Kircher M, Witten DM, Jain P, O’Roak BJ, Cooper GM, Shendure J. 2014. A
general framework for estimating the relative pathogenicity of human
genetic variants. Nat Genet 46: 310–315. doi:10.1038/ng.2892

Kumar P, Henikoff S, Ng PC. 2009. Predicting the effects of coding non-syn-
onymous variants on protein function using the SIFT algorithm. Nat
Protoc 4: 1073–1081. doi:10.1038/nprot.2009.86

Lal D, May P, Samocha KE, Kosmicki JA, Robinson EB, Møller RS, Krause R,
Nüernberg P, Weckhuysen S, Jonghe PD, et al. 2017. Gene family infor-
mation facilitates variant interpretation and identification of disease-as-
sociated genes. bioRxiv doi:10.1101/159780

LandrumMJ, Lee JM, BensonM, BrownG,ChaoC, Chitipiralla S, Gu B, Hart
J, Hoffman D, Hoover J, et al. 2016. ClinVar: public archive of interpre-
tations of clinically relevant variants. Nucleic Acids Res 44: D862–D868.
doi:10.1093/nar/gkv1222

Lek M, Karczewski KJ, Minikel EV, Samocha KE, Banks E, Fennell T,
O’Donnell-Luria AH, Ware JS, Hill AJ, Cummings BB, et al. 2016.

Analysis of protein-coding genetic variation in 60,706 humans. Nature
536: 285–291. doi:10.1038/nature19057

Liu X, Wu C, Li C, Boerwinkle E. 2016. dbNSFP v3.0: a one-stop database of
functional predictions and annotations for human nonsynonymous
and splice-site SNVs. Hum Mutat 37: 235–241. doi:10.1002/humu
.22932

McLaren W, Gil L, Hunt SE, Riat HS, Ritchie GRS, Thormann A, Flicek P,
Cunningham F. 2016. The Ensembl Variant Effect Predictor. Genome
Biol 17: 122. doi:10.1186/s13059-016-0974-4

Melloni GEM, de Pretis S, Riva L, Pelizzola M, Céol A, Costanza J, Müller H,
Zammataro L. 2016. LowMACA: exploiting protein family analysis for
the identification of rare driver mutations in cancer. BMC
Bioinformatics 17: 80. doi:10.1186/s12859-016-0935-7

Miosge LA, Field MA, Sontani Y, Cho V, Johnson S, Palkova A, Balakishnan
B, Liang R, Zhang Y, Lyon S, et al. 2015. Comparison of predicted and
actual consequences of missense mutations. Proc Natl Acad Sci 112:
E5189–E5198. doi:10.1073/pnas.1511585112

Petrovski S, Wang Q, Heinzen EL, Allen AS, Goldstein DB. 2013. Genic in-
tolerance to functional variation and the interpretation of personal ge-
nomes. PLoS Genet 9: e1003709. doi:10.1371/journal.pgen.1003709

Pires-daSilva A, Sommer RJ. 2003. The evolution of signalling pathways in
animal development. Nat Rev Genet 4: 39–49. doi:10.1038/nrg977

Pruitt KD, Harrow J, Harte RA, Wallin C, Diekhans M, Maglott DR, Searle S,
Farrell CM, Loveland JE, Ruef BJ, et al. 2009. The consensus coding se-
quence (CCDS) project: identifying a common protein-coding gene
set for the human and mouse genomes. Genome Res 19: 1316–1323.
doi:10.1101/gr.080531.108

R Core Team. 2011. R: a language and environment for statistical computing. R
Foundation for Statistical Computing, Vienna. https://www.R-project
.org/.

Richards S, Aziz N, Bale S, Bick D, Das S, Gastier-Foster J, GrodyWW, Hegde
M, Lyon E, Spector E, et al. 2015. Standards and guidelines for the inter-
pretation of sequence variants: a joint consensus recommendation of
the American College of Medical Genetics and Genomics and the
Association for Molecular Pathology. Genet Med 17: 405–423. doi:10
.1038/gim.2015.30

Samocha KE, Kosmicki JA, Karczewski KJ, O’Donnell-Luria AH, Pierce-
Hoffman E, MacArthur DG, Neale BM, Daly MJ. 2017. Regional mis-
sense constraint improves variant deleteriousness prediction. bioRxiv
doi:10.1101/148353

Shihab HA, Gough J, Cooper DN, Stenson PD, Barker GLA, Edwards KJ, Day
INM, Gaunt TR. 2013. Predicting the functional, molecular, and pheno-
typic consequences of amino acid substitutions using hidden Markov
models. Hum Mutat 34: 57–65. doi:10.1002/humu.22225

Stenson PD, Ball EV, Mort M, Phillips AD, Shiel JA, Thomas NST,
Abeysinghe S, Krawczak M, Cooper DN. 2003. Human Gene Mutation
Database (HGMD®): 2003 update. Hum Mutat 21: 577–581. doi:10
.1002/humu.10212

Tavtigian SV, Greenblatt MS, Harrison SM, Nussbaum RL, Prabhu SA,
Boucher KM, Biesecker LG. 2018. Modeling the ACMG/AMP variant
classification guidelines as a Bayesian classification framework. Genet
Med 20: 1054–1060. doi:10.1038/gim.2017.210

Traynelis J, Silk M, Wang Q, Berkovic SF, Liu L, Ascher DB, Balding DJ,
Petrovski S. 2017. Optimizing genomic medicine in epilepsy through
a gene-customized approach to missense variant interpretation.
Genome Res 27: 1715–1729. doi:10.1101/gr.226589.117

Walsh R, Peters NS, Cook SA,Ware JS. 2014. Paralogue annotation identifies
novel pathogenic variants in patients with Brugada syndrome and cat-
echolaminergic polymorphic ventricular tachycardia. J Med Genet 51:
35–44. doi:10.1136/jmedgenet-2013-101917

Ware JS, Walsh R, Cunningham F, Birney E, Cook SA. 2012. Paralogous an-
notation of disease-causing variants in long QT syndrome genes. Hum
Mutat 33: 1188–1191. doi:10.1002/humu.22114

WickhamH. 2009. ggplot2: elegant graphics for data analysis. Springer-Verlag,
New York.

Wiel L, Venselaar H, Veltman JA, VriendG, Gilissen C. 2017. Aggregation of
population-based genetic variation over protein domain homologues
and its potential use in genetic diagnostics. Hum Mutat 38: 1454–
1463. doi:10.1002/humu.23313

Xue Y, Ankala A, Wilcox WR, Hegde MR. 2015. Solving the molecular diag-
nostic testing conundrum for Mendelian disorders in the era of next-
generation sequencing: single-gene, gene panel, or exome/genome se-
quencing. Genet Med 17: 444–451. doi:10.1038/gim.2014.122

Yates B, Braschi B, Gray KA, Seal RL, Tweedie S, Bruford EA. 2017.
Genenames.org: the HGNC and VGNC resources in 2017. Nucleic
Acids Res 45: D619–D625. doi:10.1093/nar/gkw1033

Received May 16, 2019; accepted in revised form December 19, 2019.

Identification of pathogenic enriched regions

Genome Research 71
www.genome.org

https://www.R-project.org/
https://www.R-project.org/
https://www.R-project.org/
https://www.R-project.org/
https://www.R-project.org/

