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A dendritic disinhibitory circuit mechanism for
pathway-specific gating
Guangyu Robert Yang1, John D. Murray1,2 & Xiao-Jing Wang1,3

While reading a book in a noisy café, how does your brain ‘gate in’ visual information while

filtering out auditory stimuli? Here we propose a mechanism for such flexible routing of

information flow in a complex brain network (pathway-specific gating), tested using a

network model of pyramidal neurons and three classes of interneurons with connection

probabilities constrained by data. We find that if inputs from different pathways cluster on a

pyramidal neuron dendrite, a pathway can be gated-on by a disinhibitory circuit motif. The

branch-specific disinhibition can be achieved despite dense interneuronal connectivity, even

with random connections. Moreover, clustering of input pathways on dendrites can naturally

emerge through synaptic plasticity regulated by dendritic inhibition. This gating mechanism in

a neural circuit is further demonstrated by performing a context-dependent decision-making

task. The model suggests that cognitive flexibility engages top-down signalling of behavioural

rule or context that targets specific classes of inhibitory neurons.
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D
istinct classes of inhibitory interneurons form cell-type-
specific connections among themselves and with pyrami-
dal neurons in the cortex1,2. Interneurons expressing

parvalbumin (PV) specifically target the perisomatic area of
pyramidal neurons. Interneurons expressing somatostatin (SOM)
specifically target thin basal and apical tuft dendrites of pyramidal
neurons3,4. Interneurons expressing vasoactive intestinal peptide
(VIP) avoid pyramidal neurons and specifically target SOM
neurons5. Long-range connections from cortical6,7 or subcortical8

areas can activate VIP neurons, which in turn suppress SOM
neurons, and disinhibit pyramidal dendrites. Such dendritic
disinhibitory circuit is proposed to gate excitatory inputs
targeting pyramidal dendrites9–11 (Fig. 1a).

Insofar as any cortical area receives inputs from tens of other
areas and projects to many other areas, information flow across
the complex cortical circuit needs to be flexibly gated (or routed)
according to behavioural demands. Broadly speaking, there are
three types of gating in terms of specificity. First, all inputs into a
cortical area may be uniformly modulated up or down.
Recent research in mice demonstrated that such gating involves
the disinhibitory motif mediated by VIP and SOM interneur-
ons6,8,12–15. These studies generally found that VIP neurons are
activated, and SOM neurons are inactivated, in response to
changes in the animals’ behavioural states, such as when mice
receive reinforcement14, or start active whisking6,15 or running8.
The reported state change-related activity responses can be
remarkably homogeneous across the local population of the same
class of interneurons12,13.

Second, gating may involve selective information about a
particular stimulus attribute or spatial location (for instance,
in visual search or selective attention7). Whether SOM or VIP
neurons are endowed with the required selectivity remains
insufficiently known. In sensory cortex, SOM neurons exhibit
greater selectivity to stimulus features (such as orientation
of a visual stimulus) than PV neurons16. Furthermore, in
motor cortex, SOM neurons have been shown to be highly
heterogeneous and remarkably selective for forward versus
backward movements17.

Third, for a given task, neurons in a cortical area may need to
‘gate in’ inputs from one of the afferent pathways and ‘gate out’
other afferent pathways18,19, which we call ‘pathway-specific
gating’. For instance, imagine yourself sitting in a noisy café and
trying to focus on your book. Your associational language areas

receive converging inputs from both auditory and visual
pathways. Opening the gate for the visual pathway while
closing the gate for the auditory pathway allows you to focus
on reading (Fig. 1b). In the classic Stroop task, the subject is
shown a coloured word, and is asked to either name the colour or
read the word. One possible solution to this task is for a decision-
making area to locally open its gate for the deliberate pathway
(colour-naming) while closing its gate for the more automatic
pathway (word-reading).

Using computational models, we propose that the dendritic
disinhibitory circuit can instantiate pathway-specific gating. Each
of the many branches of a pyramidal dendrite processes its inputs
quasi-independently20 and nonlinearly21. Feedforward and
feedback pathways target different regions (for example, basal
or apical tuft) of dendritic trees of pyramidal neurons22. We
hypothesize that excitatory inputs from different pathways can
cluster onto parts of dendrites of pyramidal neurons, which we
term ‘branch-specific’ even though inputs from a particular
pathway may target multiple branches. This hypothesis is
supported by mounting evidence for synaptic clustering on
dendritic branches23–25. A pathway can presumably be ‘gated-on’
by specifically disinhibiting the branches targeted by this pathway
(Fig. 1c), that is, by a disinhibition pattern aligned with the
excitation. This branch-specific disinhibition is motivated by
findings showing that synaptic inhibition from SOM neurons can
act very locally on dendrites, even controlling individual
excitatory synapse by targeting the spine4 or the pre-synaptic
terminal26. In this work, we developed a network model with
thousands of pyramidal neurons and hundreds of interneurons
for each (VIP, SOM and PV) type, and show that pathway-
specific gating can be accomplished by the disinhibitory motif,
even though the connectivity from SOM neurons to pyramidal
neurons is dense: each SOM neuron on average targets 460% of
neighbouring pyramidal neurons (o200mm)27.

We first characterized how branch-specific disinhibition can
efficiently gate excitatory inputs onto pyramidal dendrites.
We then investigated the plausibility of branch-specific disin-
hibition in a dendritic disinhibitory circuit model constrained by
experimentally measured single-neuron physiology and
circuit connectivity. We found that, although SOM-to-
pyramidal connectivity is dense at the level of neurons, at the
level of dendrites it is sufficiently sparse to support branch-
specific disinhibition, and therefore pathway-specific gating, given
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Figure 1 | Dendritic disinhibitory circuit as a mechanism for pathway-specific gating. (a) Subcellular microcircuit motif for gating through dendritic

disinhibition. Dendrites of pyramidal neurons are inhibited by SOM interneurons, which are themselves inhibited by VIP interneurons. A control input

(representing a context or a task rule) targeting VIP interneurons (and potentially SOM neurons) can thereby disinhibit pyramidal neuron dendrites,

opening the gate for excitatory inputs targeting these dendrites. (b) Circuit configuration for pathway-specific gating. Pyramidal neurons receive converging

inputs from multiple pathways, for example, visual and auditory. Single neurons in these areas are selective to multiple stimulus features, indicated here by

colour and frequency. The processing of each pathway is regulated by the control input. (c) Inputs from different pathways target distinct subsets of

dendrites of these pyramidal neurons. A pathway can be gated-on by specifically disinhibiting the dendrites that it targets, corresponding to an alignment

between excitation and disinhibition. Disinhibition is represented by dashed lines.
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that SOM neurons can be selectively controlled. We then showed
control inputs targeting both VIP and SOM neurons can
selectively suppress SOM neurons as needed. Notably, we drew
these conclusions under some ‘worst-case’ assumptions to our
model such as random interneuronal connectivity. Using a
calcium-based synaptic plasticity model, we found that disin-
hibitory regulation of plasticity can give rise to an appropriate
alignment of excitation and disinhibition, which is required for
pathway-specific gating in our scheme. Finally, we demonstrated
the functionality of this mechanism in a circuit model performing
an example context-dependent decision-making task28.

Our results suggest that, in addition to the proposal that SOM
neurons provide a ‘blanket of inhibition’29, they can indeed
subserve pathway-specific gating. This work argues that top-down
behavioural control may involve rule signals targeting specific
interneuron types rather than, or in addition to, pyramidal
neurons, and that the disinhibitory motif could play a major role
in synaptic plasticity.

Results
Pathway-specific gating with dendritic disinhibition. To study
dendritic disinhibition, we first built a simplified neuron model

with a reduced morphology (Fig. 2a; Supplementary Fig. 1). It
comprises one spiking somatic compartment and multiple den-
dritic compartments, which are electrically coupled to the soma
but otherwise independent of each other. The somatic and
dendritic compartments have no spatial extent themselves. This
choice of morphology is inspired by previous studies showing
that different dendritic branches can integrate their local input
independently from one another20.

A prominent feature of active processing in thin dendritic
branches is their ability to produce NMDA (N-methyl-D-
aspartate) plateau potentials30, also called NMDA spikes. The
NMDA plateau potential is a regenerative event in which the
membrane potential increases nonlinearly and sometimes sharply
with the NMDAR (N-methyl-D-aspartate receptor) input, due to
the release of voltage-dependent magnesium block of NMDARs.
The reduced neuron model can exhibit NMDA plateau potential
in dendrites (Fig. 2b), in line with simulations of morphologically
reconstructed neuron models (Supplementary Fig. 1). The mean
dendritic voltage in response to a Poisson spike train input is a
sigmoidal function of the input rate, due to the NMDA plateau
potential (light blue curve in Fig. 2c).

The NMDA plateau potential can be prevented by applying
a moderate synaptic inhibition, mediated by GABAARs
(g-aminobutyric acid receptors), to the same dendrite (dark blue
curve in Fig. 2c). Inhibition is particularly effective in controlling
this dendritic nonlinearity when excitatory inputs are mediated
by NMDARs with experimentally observed saturation, in
stark contrast to AMPARs (a-amino-3-hydroxy-5-methyl-
4-isoxazolepropionic acid receptors; Supplementary Fig. 1) or
NMDARs without saturation (Supplementary Fig. 2). Inhibitory
input also linearizes the relationship between mean dendritic
voltage and excitatory input rate (Fig. 2c), due to stochastic
transitions into or out of NMDA plateau potential induced by
low-rate inhibition (Supplementary Fig. 2). Therefore, excitatory
inputs to a dendritic branch can be efficiently gated by
inhibition31.

We now consider multiple pathways of inputs targeting
distinct sets of dendrites. In the default condition, all dendritic
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Figure 2 | Context-dependent gating of specific pathways. (a) A reduced

compartmental neuron with a somatic compartment connected to multiple,

otherwise independent, dendritic compartments (only three shown).

(b) Excitatory inputs can generate a local, regenerative NMDA plateau

potential in the dendrite. As number of activated synapses increased, there

is a sharp nonlinear increase in the evoked dendritic membrane

depolarization (VD). (c) Disinhibition of the targeted branch opens the gate

for the excitatory input. (d) A pyramidal neuron receives converging inputs

from multiple pathways carrying different stimulus features, giving it

selectivity to a preferred stimulus for each feature dimension. Each input

pathway targets separate dendrites, which are disinhibited correspondingly

in each context by top-down control inputs (not modelled here). (e) Tuning

curve for input pathway 1, when only this pathway is activated. The input

pathway encodes a stimulus feature, for example, motion direction, with a

bell-shaped tuning curve for the input. The preferred feature value

corresponds to higher input firing rate. When gate 1 is open by disinhibiting

the dendrites targeted by input pathway 1, the neuron exhibits strong tuning

(light blue). When gate 2 is instead open, the neuron exhibits weak tuning

for the feature (dark blue). The amount of inhibition reduced for a

disinhibited dendrite, that is, the disinhibition level, is 30 Hz. (f,g) Two-

dimensional tuning curves when both pathways are activated. (f) In the

default context, no dendrites are disinhibited and both pathways are gated-

off. The neuron exhibits weak responses regardless of the stimulus features.

(g) When gate 1 is open by disinhibiting branches targeted by pathway 1,

the response of this neuron is dominated by tuning to the pathway 1

stimulus, although pathway 2 has a residual impact.
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branches receive a high baseline inhibition from dendrite-
targeting SOM neurons6,15, closing gates for all pathways.
Disinhibiting the branches targeted by one pathway can
selectively open the gate for this pathway while keeping the
gates closed for other pathways (Fig. 2d). When a gate is open, the
neuron’s output firing rate transmits the stimulus selectivity of
the corresponding input pathway most effectively (Fig. 2e).

When two excitatory pathways are activated simultaneously,
we can plot the neuron’s response to stimulus variables of both
pathways, that is, the two-dimensional tuning curve (Fig. 2f,g). In
the default condition when all gates are closed, there is little
response to either pathway (Fig. 2f). By specifically disinhibiting
the branches targeted by pathway 1, we can open the gate for
pathway 1. With gate 1 opened, the neuron is primarily selective
to pathway 1 stimuli (Fig. 2g). The remaining impact of pathway
2 stimuli is due to the fact that the impact of excitatory inputs can
never be fully counteracted by dendritic inhibition.

The gating mechanism worsens when a fraction of excitatory
input is mediated by AMPARs, but improves when a fraction of
inhibitory input is mediated by GABABRs (Supplementary Fig. 3).
Under in vivo conditions, the relative contribution of
AMPAR-mediated inputs is likely quite low, as a result of a
lower glutamate affinity and a stronger desensitization21. For
parsimony, in the following sections, excitatory synaptic inputs
are mediated only by NMDARs, which are critical to the
nonlinear dendritic computations, and inhibitory inputs are
mediated only by GABAARs.

Performance of gating in pyramidal neurons. Which circuit
properties determine the effectiveness of pathway-specific gating
in our model? A neuron responds to its optimal stimulus from an
input pathway with (baseline-corrected) firing rate (ron) when the
pathway is gated-on, and (roff) when the pathway is gated-off,
which could be readily measured experimentally. The gating
selectivity is then quantified,

Gating selectivity ¼ ron� roff

ronþ roff
; ð1Þ

which ranges from 0 (no gating) to 1 (perfect gating). We
developed a multi-compartmental rate model20 that greatly
improves the efficiency of the circuit model simulation. The
rate model is fitted to quantitatively reproduce the activity of the
spiking neuron model (Supplementary Fig. 4; see Supplementary
Information for details).

We first tested how gating selectivity depends on our
assumption of branch-specific disinhibition in a single-neuron
setting. Here we assume an alignment of excitation and
disinhibition patterns, which can be achieved through synaptic
plasticity as shown later. Each excitatory pathway targets Ndisinh

randomly chosen dendrites, out of Ndend total dendrites, and this
pathway is gated-on by specifically disinhibiting these same
Ndisinh dendrites (Fig. 3a). Due to the random-independent
selection of targeted dendrites for each pathway, inputs from two
different pathways often overlap.

We found that gating selectivity depends critically on the
sparseness of the disinhibition (Fig. 3b), defined as the proportion
of targeted/disinhibited dendrites Ndisinh/Ndend. Gating selectivity
improves when disinhibition patterns are sparsened, because the
proportion of dendrites that receive overlapping inputs is
reduced. We can approximate the limit of Ndisinh/Ndend-0 with
non-overlapping disinhibition pattern (diamonds in Fig. 3b,c). In
this case, the gating selectivity is highest but below 1, due to the
remaining impact of inputs targeting inhibited dendrites, and is
therefore modulated by the level of disinhibition (Fig. 3c).

Pathway-specific gating with SOM neurons. We have shown
that a key determinant of gating performance is the sparseness of
innervation patterns onto the dendritic tree. Yet, the connectivity
from SOM interneurons to pyramidal neurons is dense27.
Is it possible for the proposed gating mechanism to function in
a cortical microcircuit limited by the dense interneuronal
connectivity? To address this issue, we built an interneuronal
circuit model, containing hundreds of VIP and SOM inter-
neurons and thousands of pyramidal neurons. We considered
‘worst-case’ conditions in which interneuronal connectivity is
completely random (as our gating mechanism can be facilitated
by structured connectivity). Surprisingly, we found that relatively
high gating performance is achievable under these conditions. We
analysed gating in this circuit in two steps: first, assuming
SOM neurons are context-selective, we characterized how the
SOM–pyramidal subcircuit can support high gating selectivity.
Second, we characterized how SOM neurons can become context-
selective in the VIP–SOM–pyramidal circuit.

First, we built a simplified model of a SOM–pyramidal
subcircuit (Fig. 4a), which corresponds roughly to a cortical
L2/3 column (400� 400 mm). The model contains Npyr (E3,000)
multi-compartmental pyramidal neurons, each with Ndend (E30)
dendrites and NSOM (E160) SOM neurons (Supplementary
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(a) Schematic of gating, presenting pathway 1 input when gate 1 is opened

(left) or gate 2 is opened (right). There are Ndend available dendrites in

total. Each input pathway targets Ndisinh dendrites. To gate a pathway on,

these exact Ndisinh dendrites are disinhibited, creating an aligned pattern of

disinhibition. Each pathway selects dendrites randomly and independently

from other pathways, which can result in overlap of the excitation–

disinhibition patterns across pathways. When Ndisinh is large, projections

from different pathways are more likely to overlap. The neuron’s firing rate

is ron and roff in response to the preferred stimulus of the gated-on (left) and

gated-off (right) pathway, respectively. The gating selectivity is defined as

(ron� roff)/(ronþ roff), which is 1 for perfect gating and 0 for no gating.

(b) Gating selectivity increases as excitation/disinhibition patterns become

sparser, that is, with a smaller proportion of targeted and disinhibited

dendrites for a pathway (Ndisinh/Ndend). Diamonds mark the case of non-

overlapping excitatory projections, corresponding to the limit of maximal

sparseness. (c) Gating selectivity is higher with stronger disinhibition, for all

sparseness levels.
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Table 1). Here we analyse the dependence of gating selectivity
on the connectivity from SOM to pyramidal neurons. We
consider worst-case conditions in which these connections
are random, subject to the SOM-to-pyramidal connection
probability of PSOM-pyr (E0.6). Assuming that a SOM neuron
chooses to target each pyramidal dendrite independently with a

SOM-to-dendrite connection probability of PSOM-dend, then we
have

PSOM!dend ¼ 1�ð1�PSOM!pyrÞ1=Ndend ð2Þ

� PSOM!pyr=Ndend; for small PSOM!pyr: ð3Þ

Under this assumption, a SOM neuron on average targets
Ndend � PSOM-dend/PSOM-pyrE1.5 dendrites of a pyramidal
neuron given that the two are connected. Each SOM–dendrite
connection can correspond to multiple (3–5) clustered
synapses32. So each SOM neuron can make on average 5–8
synapses onto a pyramidal neuron. The connection probability
between two neurons is higher at closer proximity27, leading to a
even higher number of contacts.

In a default state, SOM neurons fire at a relatively high baseline
rate around 10 Hz (refs 6,15), closing the gates to all inputs. To
open the gate for pathway 1, a randomly chosen subset (50%) of
SOM neurons is suppressed, resulting in a pattern of disinhibition
across dendrites. Again, we assume the excitatory input pattern of
pathway 1 is aligned with the corresponding disinhibition pattern.
Notably, disinhibition patterns for different pathways generally
overlap due to the random selection of SOM neurons and the
random connectivity. This overlap can be reduced with either
structured connections or inhibitory plasticity.

Under the above assumptions, the circuit achieves a mean
gating selectivity B0.5, equivalent to ronE3roff. We found that
the impact of these circuit parameters is determined by one
critical parameter: the number of SOM neurons targeting each
dendrite NSOM-dend¼NSOM � PSOM-dendE5 (Fig. 4b, see also
Supplementary Note 1). When we vary parameters while keeping
NSOM-dend fixed, the gating selectivity remains largely constant
(Fig. 4c–e). We found that gating selectivity is highest when
NSOM-dend is small (Fig. 4f), and decreases as we increase
NSOM-dend. Because the overall strength of inhibition has a
simple scaling effect on the gating selectivity (Fig. 3c), we keep it
fixed when varying other parameters.

Each dendrite should more appropriately be interpreted as an
independent computational unit. When inhibitory connections
control individual excitatory connection through pre-synaptic
receptors26 or by targeting spines4, the independent unit would
be single excitatory synapses. This leads to a lower effective value
of NSOM-dend, then a higher gating selectivity.

Pathway-specific gating with SOM and VIP neurons. Having
analysed the SOM–pyramidal connectivity, we next examined
how SOM neurons can be context-selective, and characterized the
gating selectivity in a circuit model containing VIP, SOM and
pyramidal neurons. On top of the previous SOM–pyramidal
subcircuit, We added NVIP VIP neurons that only target SOM
neurons5. Here we assume VIP neurons target all SOM neurons
with connection probability PVIP-SOM. Broadly speaking, we
found two scenarios in which SOM neurons can be suppressed
selectively based on the context, depending on the targets of the
top-down or locally generated control inputs (Fig. 5).

In the first scenario, control inputs target VIP neurons solely
(Fig. 5a). In this intuitive scenario, control inputs excite VIP
neurons, which in turn inhibit SOM neurons thereby disinhibit-
ing pyramidal dendrites. Gating selectivity is high only if a small
proportion of VIP neurons is targeted by control (Fig. 5b),
indicating that VIP neurons must be context-selective, and VIP-
to-SOM connections need to be sparse (Fig. 5c). VIP-to-SOM
connectivity could possibly be effectively sparse on the scale of a
cortical column, since the axonal arbour of VIP neurons are
rather spatially restricted33. When varying parameters, we kept
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Figure 4 | Gating selectivity as functions of SOM–pyramidal circuit

parameters. (a) A simplified model for a cortical column of SOM and

pyramidal neurons. We only modelled the SOM-to-pyramidal connections.

The model is subject to experimentally measured constraints of the

following parameters: number of SOM neurons (NSOM), connection

probability from SOM to pyramidal neurons (PSOM-pyr), and the number of

dendrites on each pyramidal neuron (Ndend). We consider the ‘worst-case’

scenario that the SOM-to-dendrite connections are random. Finally, we

assume for now that control input for each pathway suppresses a

random subset of SOM neurons. The different contrasts used are for

illustration purpose only. (b) A critical parameter for the SOM-to-

pyramidal circuit is the number of SOM neurons targeting each dendrite

(NSOM-dend). This parameter can be calculated using other experimentally

measured parameters under the assumption of random connectivity,

NSOM!dend ¼ NSOM � ½1�ð1� PSOM!pyrÞ1=Ndend �. (c–e) Gating selectivity only

weakly depends on Ndend (c), NSOM (d) and PSOM-pyr (e) if NSOM-dend is

kept constant by co-varying another parameter. The plotted curve marks

the mean and the shaded region marks the bottom 10% to top 10% of the

neuronal population. (f) Gating selectivity is high when each dendrite is

targeted by a few SOM neurons. Given experimental measurements of

PSOM-pyrE0.6, NdendE30 and NSOME160, we obtained NSOM-dendE5,

leading to relatively high gating selectivity B0.5. Total strength of inhibition

onto each pyramidal dendrite is always kept constant when varying

parameters.
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fixed the overall baseline inhibition received by each SOM neuron
and the overall strength of control inputs.

In the second scenario, excitatory control inputs target both
VIP and SOM neurons (Fig. 5d). If the VIP-to-SOM connectivity
is dense, then VIP neurons activated by control inputs will
provide nearly uniform inhibition across all SOM neurons
(Supplementary Fig. 5). However, SOM neurons can receive
selective excitation if the control inputs only directly target a
randomly chosen subset of SOM neurons. If the inhibition is on
average stronger, then the overall effect is a selective suppression
of SOM neurons (Supplementary Fig. 5). As a result, gating
selectivity no longer depends on the proportion of VIP neurons
targeted by control inputs, but does depend on the proportion of
SOM neurons targeted (Fig. 5e). Therefore, SOM neurons need to
be context-selective, but VIP neurons need not be. Similarly,
gating selectivity does not depend on the connection probability
from VIP to SOM neurons, PVIP-SOM (Fig. 5f).

In summary, to achieve branch-specific disinhibition, control
inputs targeting interneurons have to be selective. Notably, the
level of specificity required for the control inputs depends
strongly on the neurons they target. When targeting only VIP
neurons, the control inputs have to be highly selective (Fig. 5a,b).
However, when control inputs target both VIP and SOM
neurons, high gating selectivity can be achieved in a much
broader range of parameters, reducing the level of specificity
required (Fig. 5d,e).

Pathway-specific gating with SOM, VIP and PV neurons. PV
neurons receive inhibition from themselves and SOM neurons,
and project to perisomatic areas of pyramidal neurons1.
Suppression of SOM neurons therefore also leads to the
disinhibition of PV neurons and an increase of somatic
inhibition onto pyramidal neurons. We included PV neurons
into our interneuronal circuit model (Fig. 6a) and found that this

inclusion and the consequent increase in somatic inhibition
strictly improve gating selectivity in a wide range of parameters
(Fig. 6b). Since the SOM-to-PV and PV-to-pyramidal neuron
connections are dense29, a selective pattern of SOM suppression
will result in an elevated somatic inhibition that is almost uniform
across pyramidal neurons (Supplementary Fig. 6). Furthermore,
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we proved that a uniform increase in somatic inhibition will
always improve gating selectivity, except when the somatic
inhibition is unreasonably strong (Supplementary Note 2).

For an intuitive explanation, consider a linear input–output
function in the soma. Gating selectivity is based on the relative
difference between the pyramidal neuron responses when the gate
is open (ron) and when the gate is closed (roff). Providing an equal
amount of somatic inhibition in these two conditions is
equivalent to subtracting both values by the same constant,
which will enhance the relative difference.

Learning pathway-specific gating. A critical feature of our
scheme is the alignment between excitation and disinhibition
patterns (Fig. 1c): pyramidal dendrites targeted by an excitatory
input pathway are also disinhibited when the gate is open for that
pathway. Dendritic disinhibition can regulate synaptic plasti-
city34,35. We hypothesized that such an alignment can naturally
arise as a result of the regulated plasticity. To test this hypothesis,
we first established a realistic calcium-based plasticity model for

dendrites in our reduced spiking neuron model. Pre- and post-
synaptic spikes induce calcium transients in dendrites, which
determine the synaptic weight changes36 (Fig. 7a). We fitted
parameters of the model to capture experimental data37

(Supplementary Fig. 7). Our model also quantitatively predicts
findings that were not used in the fitting.

The calcium-based plasticity model allows us to naturally study
the effects of dendritic disinhibition on synaptic plasticity and
their functional implications. Again, we assume that pre- and
post-synaptic firings are Poisson spike trains with specified rates.
We found that dendritic inhibition can shift the plasticity from
potentiation to depression, even when the pre-synaptic excitatory
input rate and the post-synaptic firing rate are both kept constant
(Fig. 7b), consistent with the previous modelling findings35. We
note that plasticity models based solely on pre- and post-synaptic
neuronal firing would not predict the inhibitory modulation of
synaptic plasticity.

We then tested whether disinhibitory regulation of plasticity
can support the development of excitation–disinhibition align-
ment, as needed for pathway-specific gating (Fig. 7c). Impor-
tantly, the strength of disinhibition is realistic, similar to those
used throughout this paper. Initially, excitatory synapses from
each pathway are uniformly distributed across the dendritic
branches of single neurons. Different excitatory pathways are
then activated one at a time. Whenever a pathway is presented, a
particular subset of dendrites is disinhibited, while the rest of the
dendrites remain inhibited. Through calcium-based excitatory
plasticity, the activated excitatory synapses targeting the disin-
hibited dendrites become strengthened, whereas those targeting
the inhibited dendrites become weakened. Synapses not activated
remain the same regardless of the inhibition level (Fig. 7b). After
learning, the alignment of excitation and disinhibition patterns
support pathway-specific gating (Fig. 7d,e; compare with Fig. 2e),
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Pre- and post-synaptic spikes both induce calcium influx. The overall

synaptic weight change is determined by the amount of time the calcium

level spends above thresholds for depression (yd) and potentiation (yp)36.

The model is fitted to the experimental data, and is able to quantitatively

predict results not used in the fitting. (b) Dendritic inhibition makes

potentiation harder to induce. With background-level inhibition (light blue),

synaptic weight change shows three regimes as a function of excitatory

input rate: no change for low rate, depression for medium rate and

potentiation for high rate. With a medium level of inhibition (dark blue),

potentiation requires a higher excitatory input rate. With relatively strong

inhibition (black), potentiation becomes impossible within a reasonable

range of excitatory input rates. The post-synaptic rate is fixed at 10 Hz.

(c) Learning paradigm. Left: excitatory synapses from each pathway are

initialized uniformly across dendrites. When pathway 1 is activated, specific

branches of the neuron are disinhibited (dashed line), that is, gate 1 is open.

During learning, only one pathway is activated at a time. Right: after

learning, activated excitatory synapses onto the disinhibited branches are

strengthened, while activated synapses onto inhibited branches are

weakened, resulting in an alignment of excitation and disinhibition patterns.

Synaptic weights of non-activated synapses remain unchanged (not

shown). (d) Response properties of the neuron before learning. Top: tuning

curve of the neuron when only pathway 1 is presented. The neuron shows

no preference to the gate opened prior to learning. Bottom: two-

dimensional tuning curve of the neuron when both pathways are

simultaneously presented and gate 1 is open. See Fig. 2 for the definition of

the tuning curves. (e) Response properties of the neuron after learning. Top:

the neuron shows strong tuning to pathway 1 input when gate 1 is open.

Bottom: when both pathways are presented, the neuron’s response is

primarily driven by pathway 1 stimulus, although pathway 2 stimulus also

affects the neuron’s firing.
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with a gating selectivity B0.7. These findings show that a key
aspect of the gating architecture, namely, the alignment of
excitation and disinhibition patterns, can emerge naturally from
the interaction between excitatory synaptic plasticity and context-
dependent disinhibition.

Modelling a flexible behaviour with pathway-specific gating.
How is gating at the neural level related to gating at the beha-
vioural level? Is moderate gating selectivity (for example, B0.5 as
above) sufficient to explain performances in flexible cognitive
tasks? To address these issues, we applied our model to a context-
dependent decision-making task28. In this task, the behavioural
response should be based on either the motion direction or the
colour of a random-dots motion stimulus, depending on the
context cued by a rule signal (Fig. 8a).

We built a stylized neural circuit model to implement this task
using pathway-specific gating through dendritic disinhibition
(Fig. 8b). The local circuit comprises a sensory network and a
decision network. The sensory network contains pyramidal
neurons that receive convergent sensory inputs from both motion
and colour pathways, and they group into four pools according to
their selectivities to colour and motion evidence. The dendrites of
pyramidal neurons are controlled by the VIP–SOM interneuronal

circuit described above (Figs 8c,5d). A subset of pyramidal
neurons with high gating selectivity projects to the decision
network. Pyramidal neurons representing colour and motion
evidence for the same target project to the corresponding decision
neural pool. The decision network, as modelled previously38, is a
strongly recurrent network that generates a winner-take-all
decision based on its inputs.

We fitted the performance of the model to a monkey’s
psychometric behavioural data from ref. 28, using three free
parameters in the model, namely, the proportion of sensory
neurons that project to the decision network, and the overall
connection strengths from the input pathways to the sensory
network and from the sensory network to the decision network.
By fitting these three parameters, we obtained a quantitative
match of the empirical psychometric performance, as a function
of relevant (Fig. 8d) and irrelevant (Fig. 8e) features. Our model
shows that the impact of the irrelevant information should
be stronger when the relevant information is more ambiguous
(with lower motion coherence, for instance; Fig. 8f). Although at
its default parameters the interneuronal circuit model can show
similar task performance as the empirical data, we found that it
can no longer fit the empirical performance if we significantly
degrade the neural gating selectivity (Supplementary Fig. 8). This
simulation therefore serves as a proof of principle to demonstrate
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the potential of dendritic disinhibition as a mechanism for
pathway gating, and as a link to assess the utility of neural gating
selectivity in terms of flexible behavioural performance.

Discussion
A canonical cortical microcircuit motif specialized for disinhibi-
tion of pyramidal neuron dendrites was proposed theoretically9

and has received strong empirical support from a series of recent
experiments5–8,14,15,39. Here we explored the functional roles of
dendritic disinhibition using computational modelling, at both
the single-neuron and circuit levels. In contrast to somatic
disinhibition, dendritic disinhibition can gate the inputs to a
neuron9,11,31. We propose that dendritic disinhibition can be
utilized to gate inputs from separate pathways, by specifically
disinhibiting dendrites that receive inputs from a target pathway.

We studied the effectiveness of gating in an interneuronal
circuit model. Most data used to constrain the model have
become available only in recent years thanks to the advance of
optogenetics and other experimental tools. Where data are not
available, we considered the ‘worst-case scenario’, namely,
connections from VIP to SOM neurons, and from SOM to
pyramidal dendrites are completely random, which is most likely
not the case40 and any specificity would facilitate our proposed
mechanism. Although the SOM-to-pyramidal connections are
dense, we found that the connectivity from SOM neurons to
pyramidal dendrites is actually sparse enough to support branch-
specific disinhibition. We found that the increase of somatic
inhibition mediated by the SOM–PV–pyramidal neuron
connections further improves gating selectivity. We demon-
strated that branch-specific clustering of excitatory pathways can
naturally emerge from disinhibitory regulation of synaptic
plasticity. As proof of principle, we applied this mechanism to
a model for a recent experiment using a context-dependent
decision-making task28.

Inhibitory connections in the cortex tend to be dense27. This
finding has led to the proposal that cortical inhibition functions
as a locally non-selective ‘blanket of inhibition’29. Our study
offers an alternative perspective, which is compatible with dense
interneuronal connectivity, but has different implications for
circuit functions. The dense connectivity is measured on a cell-to-
cell level. Nonetheless, connections from dendrite-targeting SOM
interneurons can be sparse at the level of the dendritic branch,
and therefore potentially selective as required for our gating
scheme. Our alternative proposal is fundamentally grounded in
consideration of dendritic branches as functional units of
computation20.

Our hypothesis has three essential requirements. First,
dendritic inhibition must be able to effectively regulate dendritic
processing of excitatory inputs. This has been shown in our
simulation of a fully reconstructed and a simplified neuron model
(Supplementary Fig. 1; Fig. 2), as well as in previous models31.

The second requirement states that dendritic disinhibition
should be specific at the level of dendritic branches.
In a simplified interneuronal circuit model, we showed that the
SOM-to-pyramidal neuron circuit can very well support branch-
specific disinhibition, mainly because the connectivity from SOM
neurons to pyramidal dendrites is effectively sparse. Several
circuit components are identified as critical to this requirement
and subjects to experimental tests, including the number of SOM
neurons targeting each dendrite, and the proportion of SOM
neurons targeted by top-down control inputs.

The third and final requirement is an alignment between
excitation and disinhibition, which we found can be achieved
through synaptic plasticity on excitatory synapses. This feature
could also potentially be achieved through inhibitory plasticity41,

by adapting the disinhibition pattern to align with fixed excitatory
inputs. These two forms of plasticity are complementary, and
both are likely at play. Indeed, a recent study found that during
motor learning, spine reorganization on dendrites of pyramidal
neurons is accompanied by change in the number of
SOM–neuron synapses onto these dendrites40. One appeal of
studying excitatory plasticity here is that our calcium-based
plasticity model could be quantitatively constrained by data, and
therefore tested in a biologically plausible regime. At present,
much less is known experimentally about the dependence of
inhibitory plasticity on pre- and post-synaptic spike timing,
dendritic calcium levels or the class of interneuron42.

Although all necessary, the three requirements only need to be
fulfilled to a certain degree. For example, dendritic inhibition
needs to effectively regulate, but need not abolish, the effects of
excitatory inputs. It would be of interest to investigate which
requirements pathway-specific gating is most sensitive to, in
future research.

A direct consequence of the branch-specific disinhibition and
excitation–disinhibition alignment is branch-specific excitation,
namely, clustering of excitatory pathways onto pyramidal neuron
dendritic branches. The computational benefits of input cluster-
ing have been previously proposed43. There is mounting
experimental evidence for input clustering, from anatomical
and physiological studies23,24 (for a review see ref. 25). Consistent
with our model, experimental studies have shown that input
clustering can emerge through NMDAR-dependent synaptic
plasticity44, and that clustering is functionally related to
learning24,45. Our model prediction that branch-specific
clustering can occur at the level of pathways remains to be
directly tested.

We focused on whether the disinhibitory circuit motif can
support pathway-specific gating. Our model contains only the
minimal elements to answer this question. We did not include all
known connections between the four major classes of neurons. In
particular, among the missing connections are the pyramidal-to-
interneuron and the SOM-to-VIP connections. These connec-
tions are unlikely to influence our results, since none affect our
essential requirements. It remains to be tested whether the
pyramidal-to-pyramidal recurrent excitation will interfere with
the plasticity-based induction of excitation–disinhibition align-
ment. We did not model synaptic dynamics or short-term
plasticity, because we focused on the steady-state behaviour.

Our model makes specific, experimentally testable predictions.
One of the most straightforward and testable predictions is that
SOM neurons should show context/rule selectivity in some
context-dependent or rule-based tasks. Surprisingly, we found
that VIP neurons need not be context-selective, as long as SOM
neurons are directly receiving context-selective excitatory control
inputs (Fig. 5d–f). Experimental disruption of these context-
selective interneurons should impair the animal’s ability to
perform context- or rule-dependent choice tasks. The context-
selectivity of SOM or VIP neurons is not necessarily present in
every behavioural task. For instance, a recent study, recording in
mouse prefrontal cortex during a auditory discrimination task,
found highly homogeneous responses within SOM and VIP
populations12. We propose that SOM neurons are more likely to
exhibit selectivity to context or task in experiments in which the
animal performs multiple tasks and branch-specific dendritic
spikes also exhibit task selectivity17,46. A direct test of our model
awaits future experiments in a task-switching paradigm to
examine gating of different pathways into association cortical
areas and the selective changes of activity in SOM neural
subpopulations. We emphasize that interneuron classes in our
model should be more appropriately interpreted according to
their projection targets rather than their biochemical markers.
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Branch-specific dendritic spikes are already observed experi-
mentally, and SOM neurons are critical for this branch-
specificity46. It is however unknown whether SOM-mediated
inhibition is also branch-specific. Direct patch-clamping of
pyramidal neuron dendrites in vivo47 can isolate inhibitory
currents on individual branches, and provide a direct test for our
hypothesis, although such an experiment is technically difficult at
present. Our plasticity model predicts that SOM interneurons
play a critical role in the learning-related emergence of branch-
specific clustering of excitatory synapses on pyramidal neuron
dendrites24.

Flexible gating, or routing, of information has been a long-
standing problem in computational neuroscience48, for which a
number of models have been proposed. Among proposed ideas
are dynamic synaptic weight modulation49, gain modulation48,
synchrony in the input signals18, perfect balance of excitation and
inhibition19,
up/down state-switch in dendrites50, switching between different
neural pools that receive inputs from distinct pathways51 and rule
signalling as a selection vector28. Notably, most of these models
implement a form of soft gating, which modulates the effective
strength of incoming pathways instead of performing a binary
on–off switch on them.

These prior models did not exploit the computational power of
dendrites (except for ref. 50) or the roles of specialized classes of
interneurons. Harnessing dendrites rather than populations of
intermediate neurons saves the number of neurons needed by
manyfold. Only in the limit of one dendrite per pyramidal neuron
does our mechanism become conceptually similar to gating
mechanisms operating on the neuronal level51.

The gating mechanism as studied here is nonlinear but not
binary. Typically, the gating selectivity is 0.5 or lower (Figs 4 and
5), whereas it would be one if gating was perfect. In the
biologically plausible regime of inhibitory strength studied here,
shunting inhibition on a dendritic branch still allows synaptic
input to appreciably elevate the dendritic voltage and thus impact
the soma, which decreases the gating selectivity of the neuron.
Gating selectivity is also limited by the number of dendritic
branches (or more generally, quasi-independent computational
units) on a pyramidal neuron, which is about two dozen. Thus,
the proposed mechanism may be especially suitable for ‘pathway-
specific gating’. Multiple mechanisms may jointly contribute to
gating function, and our proposed mechanism is most likely
compatible with the aforementioned proposals.

A testable prediction of our model is that a behavioural context
or rule guiding routing of information engages top-down
signalling that targets specific classes of VIP and SOM inhibitory
neurons. This is in contrast to the conventional thinking of
executive control as mediated by top-down control signals to
pyramidal cells. The present model suggests that a context signal
can correspond to a top-down input from a brain area presenting
task context onto VIP and SOM cells (leading to effective
excitation or inhibition, respectively, of pyramidal neurons).

To conclude, our findings suggest a microcircuit architecture
that harnesses dendritic computation and diverse inhibitory
neuron types to subserve cognitive flexibility.

Methods
All models. A summary of all types of models used and where they are used can be
found in Supplementary Table 2.

Spiking pyramidal neuron models. For the fully reconstructed multi-compart-
mental pyramidal neuron model (Supplementary Fig. 1a–d), we adapted a
previously developed model based on a layer 2/3 pyramidal neuron in the rat
somatosensory cortex reported by Branco et al.52. We used the passive membrane
parameter set; results are essentially the same with the active membrane parameter
set. Simulations were implemented with the NEURON simulator53.

The reduced multi-compartmental spiking neuron model is comprised of
multiple dendritic compartments and one somatic compartment. All dendritic
compartments are equivalent, not directly coupled to each other, and coupled to
the soma. There are 10 dendritic compartments for all simulations using this model
(Figs 2 and 7). The number of dendrites does not change the results as long as we
normalize the dendrite–soma coupling strength with respect to the number of
dendrites. The soma is modelled as a leaky-integrate-and-fire compartment with
dynamics following:

CS
dVS

dt
¼ � gL;SðVS �ELÞ�

X
i

gcðVS �Vi;DÞþ Isyn;S ð4Þ

where the subscripts S and D correspond to soma and dendrites, respectively. Vi,D

is the membrane potential of the ith dendrite. CS is the membrane capacitance, EL

is the resting potential, gL is the leak conductance and gc is the coupling between
each dendritic compartment and the somatic compartment. We set CS¼ 50.0 pF
and gL,S¼ 2.5 nS, producing a 20-ms membrane time constant for the soma. We
also set EL¼ � 70 mV and gc¼ 40 nS. The somatic spiking mechanism is integrate-
and-fire, with spike threshold � 50 mV, reset potential � 55 mV and refractory
period 2 ms. The dynamics of the dendritic membrane potential (VD) follows

CD
dVD

dt
¼ � gL;DðVD � ELÞ� gcðVD � V̂SÞþ Isyn;D ð5Þ

where V̂S is the somatic shadow potential54, which follows the same equation as VS,
except with no spiking and resetting. We set CD¼ 20.0 pF and gL,D¼ 4.0 nS,
producing a 5-ms membrane time constant55. After a somatic spike, the back-
propagating action potential is modelled as a 3-ms delayed voltage increase of
10 mV in all dendrites56.

The main free parameters of the reduced compartmental model, gc and gL,D,
were chosen to match in vitro properties reported by Nevian et al55. Specifically, a
single-synapse dendritic EPSP of 1-mV peak is attenuated to B0.05 mV in the
soma, and a dendritic NMDA plateau potential evokes a somatic depolarization
with the peak B10 mV. We also made several efforts to adapt our model to mimic
physiological in vivo conditions, including excitation–inhibition balanced
background inputs and reduced soma–dendrite coupling. We used an in vivo set of
parameters whenever appropriate (Fig. 2d–g; Fig. 7c,d). The soma–dendrite
coupling is reduced fivefold to gc,vivo¼ 0.8 nS, to achieve the stronger signal
attenuation observed in high-conductance state57. In this regime, the soma also
receives excitatory and inhibitory background inputs, 500 Hz of 2.5-nS AMPAR
input and 150 Hz of 4.0-nS GABAR input, to approximate the excitation–
inhibition balanced background input that gives the neuron a baseline Poisson-like
firing rate B3 Hz. Reduced spiking neuron simulations were implemented with the
BRIAN neural simulator58.

We used four types of synapses, AMPAR, NMDAR, GABAAR and GABABR.
Since GABABRs are only used briefly in (Supplementary Fig. 3), we denote GABAA

simply as GABA. AMPAR and GABAR synapses are modelled as linear:

Isyn ¼ � ~gsynssynðV �EsynÞ ð6Þ

dssyn

dt
¼ � ssyn

tsyn
þ
X

i

dðt� tiÞ; ð7Þ

where ssyn is the gating variable representing the proportion of open channels, ~gsyn

is the maximum synaptic conductance, Esyn is the synaptic reversal potential,
tsyn is the synaptic time constant and ti are pre-synaptic spike times. We set
tAMPA¼ 2 ms, EAMPA¼EE¼ 0 mV, EGABA¼EI¼ � 70 mV and ~gGABA ¼ 4:0 nS.
For dendrite-targeting inhibitory synapses, tGABA,dend¼ 20 ms, whereas
tGABA,soma¼ 10 ms for soma-targeting inhibitory synapses. These are based on the
observations that dendrite-targeting inhibition tend to be slower59,60. In
Supplementary Fig. 1d,h, ~gAMPA ¼ 2:5 nS. In Supplementary Fig. 3, ~gAMPA ranges
from 0 to 2.5 nS. Otherwise ~gAMPA is set as 0 nS (no AMPAR input).

GABABR synapses are post-synaptic. Each spike at time ti increases the gating
variable sGABAB ðtÞ by gGABAB

½exp½ðt� tiÞ=tGABAB ;decay� � exp½ðt� tiÞ=tGABAB ;rise��,
where gGABAB

is a normalizing factor such that the peak of the above expression is
1. Then, the total input current voltage dependent is

IGABAB ¼ � ~gGABAB sGABAB fGABAB ðVÞ ð8Þ

where fGABAB ðVÞ ¼ 33:33mV � ð0:5� 2=ð1þ expððV þ 98:73Þ=12:5ÞÞÞ, as obtained
from ref. 61.

NMDAR synapses include a voltage-dependent magnesium block fMg(V) and
saturating gating variable sNMDA:

INMDA ¼ � ~gNMDAsNMDAðV � EEÞfMgðVÞ ð9Þ

fMgðVÞ ¼ 1þ exp � V �Vhalf

Vwidth

� �� �� 1

ð10Þ

with Vhalf¼ � 19.9 mV and Vwidth¼ 12.48 mV (ref. 62). The NMDA conductance
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~gNMDA ¼ 2:5 nS. The NMDAR gating variable dynamics follow:

dsNMDA

dt
¼ � sNMDA

tNMDA;decay
þ aNMDAxNMDAðtÞð1� sNMDAÞ ð11Þ

dxNMDA

dt
¼ � xNMDA

tNMDA;rise
þ
X

i

dðt� tiÞ ð12Þ

with tNMDA,decay¼ 100 ms, tNMDA,rise¼ 2 ms and aNMDA¼ 0.3 ms� 1. This choice
of aNMDA sets sNMDA to be B0.4 at its peak after a single spike63,64. With this value
of aNMDA, the saturation of NMDA starts to get prominent around firing rate
r¼ 1/(aNMDAtNMDA,risetNMDA,decay)E16 Hz. By default in simulations with the
reduced spiking model, the excitatory inputs are 15 independent NMDAR synapses
with the same rate. Fewer number of excitatory synapses can become insufficient to
elicit NMDA plateau potential. Since GABAR and AMPAR synapses are linear,
their inputs are directly represented by the overall rates.

Each excitatory synapse also has a calcium concentration level with arbitrary
unit, which consists of two components, one NMDAR dependent and one voltage-
gated calcium channel (VGCC) dependent: [Ca2þ ]¼ [Ca2þ ]NMDAþ [Ca2þ ]VGCC.
The NMDAR-dependent component is modelled as leaky integration of the
NMDAR current:

tCa;decay
d½Ca2þ �NMDA

dt
¼ � ½Ca2þ �NMDA þkNMDAINMDA; ð13Þ

where kNMDA is a scaling parameter with unit per pA. The VGCC component is
evoked by post-synaptic spikes that back-propagate into dendrites. Each spike
induces a bi-exponential increase:

½Ca2þ �VGCCðtÞ ¼ kVGCCgCa

X
i

exp � t� ti

tCa;decay

� �
� exp � t� ti

tCa;rise

� �� �
: ð14Þ

Here gCa is a normalizing constant so that the peak response to one spike is kVGCC.
And kVGCC is again a scaling parameter. tCa,decay¼ 30 ms is estimated from ref. 37.
tCa,rise¼ 2 ms is used mainly to make [Ca2þ ] continuous.

NMDA plateau potential. The voltage of a dendrite receiving NMDAR and
GABAR inputs follows

CD
dVD

dt
¼� gL;DðVD � ELÞ� gcðVD � V̂SÞ

�
X

j

~gNMDAsNMDA;jðtÞðVD � EEÞfMgðVDÞ�
X

k

~gGABAsGABA;kðtÞðVD � EIÞ;

where j and k are indices of NMDAR and GABAR synapses, respectively. Denote

gNMDAðtÞ ¼
X

j

~gNMDAsNMDA;jðtÞ ð15Þ

as the total NMDA input conductance onto this dendrite. The maximum value of
gNMDA(t) is simply gNMDA;max ¼

P
j

~gNMDA ¼ NNMDA~gNMDA, where NNMDA is the

number of NMDAR synapses. Similarly,

gGABAðtÞ ¼
X

k

~gGABAsGABA;kðtÞ: ð16Þ

If we ignore the coupling between this dendrite and its soma for now, and
consider constant synaptic conductances gNMDA¼ gNMDA(t), gGABA¼ gGABA(t).
Then, we have

CD
dVD

dt
¼ � gL;DðVD � ELÞ� gNMDAðVD � EEÞfMgðVDÞ� gGABAðVD � EIÞ:

ð17Þ
Since we have EI¼ EL, the steady-state dendritic voltage VD,ss satisfies

0 ¼ �ðVD;ss �ELÞ�
gNMDA

gL;D þ gGABA
ðVD;ss � EEÞfMgðVDÞ: ð18Þ

This equation can be solved numerically, resulting in the curve in
Supplementary Fig. 2d.

Pathway-specific gating in a single pyramidal neuron. Gating is performed by
disinhibiting a specific subset of dendrites. Disinhibited dendrites always receive
5 Hz background inhibition. The disinhibition level is defined as the difference
between the rates of inhibition received by inhibited and disinhibited dendrites.

In Fig. 2d–g, each pathway targets two dendrites with 15 NMDAR synapses on
each dendrite. The dendrites targeted by each pathway do not overlap. For each
pathway, the input rate (uE) follows a bell-shaped tuning to the stimulus value (z):
uE¼ 40 exp(� z2) Hz, where z ranges between � 2.4 and 2.4. The disinhibition
level is 30 Hz (from 35 to 5 Hz).

Presented alone, the preferred stimulus (z¼ 0) from one pathway increases the
output firing rate by ron (roff) when the pathway is gated-on (off). The gating

selectivity is defined as

ron � roff

ron þ roff
; ð19Þ

For Fig. 3, excitatory pathways can overlap. In the context with gate 1 open,
Ndisinh dendrites are disinhibited. Excitatory pathway 1 targets these Ndisinh

dendrites, each with strength 25 nS, and similarly for gate 2 and pathway 2. The
Ndisinh dendrites disinhibited for gate 2 are chosen randomly and independently
from the Ndisinh dendrites disinhibited for gate 1. For each Ndisinh and Ndend, ron

and roff are averaged across all possible projection patterns.

Rate pyramidal neuron model. The rate model is fitted with simulation data from
the spiking model with in vivo parameters (Supplementary Fig. 4). The time-
averaged voltage of a dendritic compartment ðVDÞ is modelled as a sigmoidal
function of total excitatory input conductance (�gE, see below for definition)
following:

VD ¼ fVð�gE; �gIÞ ¼ 30 � 1þ tanh
�gE� g1=2

b

� �� �
þV0 þ EL: ð20Þ

The mid-point g1/2 is proportional to the total inhibitory conductance �gI plus
the leak conductance of the dendrite gL,D, as expected from the constant
conductance scenario (Supplementary Fig. 2c)

g1=2 ¼ bg � gL;D þ �gI
� �

: ð21Þ
On the basis of our observation of the reduced spiking model, we modelled the

width b as an exponentially increasing function of inhibition:

b ¼ k � exp �gI=gð Þ: ð22Þ
This increase of width b as a function of �gI captures the linearization effect of

sparse inhibition on the voltage input function (Fig. 2c). Fit values of the
parameters are bg¼ 5.56, k¼ 9.64 nS, g¼ 6.54 nS and V0¼ 0.78 mV. The model is
fitted to a simulated 10-dendrite spiking neuron model. When simulating dendrites
of the spiking model, somatic shadow voltage is clamped at � 60 mV, and
back-propagating action potential is fixed as a Poisson spike train of 10 Hz. This
phenomenological model allows us to interpolate the dendritic voltage for a large
range of excitatory and inhibitory inputs very rapidly.

The firing rate of the soma is modelled as a power law function of input current
I:

r ¼ frðIÞ ¼ ½maxð0; Iþ 174:86Þ=45:16�2:89 ð23Þ
Here I is the sum of the input current from dendrites and also the somatic
inhibition from PV neurons whenever applicable. The parameters are fitted from
simulation of the reduced spiking model. We assume the somatic voltage fluctuates
around Ereset, and denote the mean dendritic voltage hVDi. Then, the input current
from dendrites is Idend-soma¼Gc � (hVDi�Ereset), where Gc is the total dendrite–
soma coupling of all dendrites. Gc¼ 8 nS. Since we assume Gc is fixed whenever we
vary the number of dendrites (Figs 3 and 4), the somatic function does not depend
on the number of dendrites and need not be re-parametrized. So I¼ Idend-soma

þDIPV-soma, where DIPV-soma is the change in somatic inhibition from PV
neurons.

For inputs to the rate model, �gE and �gI are the time-averaged total conductance
of all excitatory and inhibitory synapses, respectively. For NMDAR-only excitatory
input, the approximated time-averaged gating variable �sNMDA of a single synapse
receiving input rate rE follows,

�sNMDA ¼ 1�ð1þ rEtNMDA;risetNMDA;decayaNMDAÞ� 1: ð24Þ
For NNMDA synapses each with maximal conductance ~gNMDA, the total

excitatory conductance is

�gE ¼ NNMDA�sNMDA~gNMDA: ð25Þ
Therefore, �gE saturates as �sNMDA does. Because the GABAR conductance is

linear in its input rate, the total inhibitory conductance is

�gI ¼ rItGABA~gGABA ð26Þ
where rI is the overall inhibitory input rate onto that dendrite.

Interneuron models. SOM neurons are modelled as simple rate neurons with a
rectified linear f–I curve. The firing rate of a SOM neuron is

rSOM ¼ maxð0; bSOMðIsyn;SOM � Irh;SOMÞÞ; ð27Þ
where max(x,0) is a rectified linear function of x. Irh,SOM¼ 40 pA is the rheobase,
that is, the minimum current required to activate the neuron, and bSOM¼ 90 Hz/
nA is the f–I curve slope for SOM neurons, which we matched to data from ref 65.
SOM neurons typically display adapting responses to constant input and the
synapses of SOM neurons show short-term plasticity. We ignored these aspects of
temporal dynamics because here we are interested in the steady-state response.
SOM neurons receive 150 pA input current in the default state, leading to a baseline
firing of SOM neurons B10 Hz as observed experimentally6,15.

For VIP neurons, we assume that the control input targets
Ncontrol,VIP¼ round(NVIP � Pcontrol,VIP) of them. On average, VIP neurons are
assumed to fire at �rVIP ¼ 5 Hz. Therefore, the VIP neurons non-activated by the
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control input fire at 0 Hz, while those targeted by the control input fire at
(5 �NVIP/Ncontrol,VIP) Hz.

PV neurons are modelled simply as linear rate neurons with a f–I curve slope of
bPV¼ 220 Hz nA� 1, because their activities never reach zero in our model. Since
we are only interested in their change of activities in response to SOM neuron
suppression, the spontaneous activity of PV neurons is irrelevant to our model.

Interneuronal network. The full interneuronal network model contains pyr-
amidal, SOM, VIP and PV neurons. The network model is roughly based on a L2/3
cortical column microcircuit, and contains 3,000 pyramidal neurons, 160 SOM
neurons, 140 VIP neurons and 200 PV neurons66. However, the analysis applies
more generally. Pyramidal neurons are modelled as multi-compartmental rate
neurons as described above. We typically used Ndend¼ 30 dendrites, approximately
corresponding to pyramidal neurons in associative areas67. The number of
pyramidal neurons does not affect our results.

The SOM-to-dendrite connections are set randomly. Instead of drawing each
connection randomly and independently with a fixed probability, we assume that
each dendrite is targeted by precisely NSOM-dend SOM neurons, when NSOM-dend

is an integer, so that each dendrite receives the same amount of net inhibition in
the default state. The identities of SOM neurons targeting each dendrite are
randomly chosen. The total inhibitory conductance received by each dendrite is
denoted and fixed as GSOM-dend¼ 40 nS, then for each SOM–dendrite connection
the conductance is GSOM-dend/NSOM-dend. Each SOM–dendrite connection can
contain multiple synapses, which we are not explicitly modelling here because
GABAergic synapses are linear such that we only need to consider the total
conductance. When NSOM-dend is not an integer, we interpolate. Each dendrite is
targeted by JNSOM-dendn SOM neurons, where all synapses but one have weights
GSOM-dend/NSOM-dend, while one has weight GSOM-dend � (1�INSOM-dendm/
NSOM-dend). Given the connection probability from SOM to pyramidal neurons
PSOM-pyr, the number of SOM neurons NSOM, and the number of dendrites on
each pyramidal neuron Ndend, we set

NSOM!dend ¼ NSOM � ½1�ð1� PSOM!pyrÞNdend �: ð28Þ
This is the mean number of SOM neurons targeting each dendrite if the

SOM-to-pyramidal connections were completely independent and random.
The VIP-to-SOM connections are set in the same way as the SOM-to-dendrite

connections. Since SOM neurons only have one compartment each, we have
NVIP-SOM¼NVIP � PVIP-SOM. When control inputs target both VIP and SOM
neurons, we have PVIP-SOM¼ 0.6. When control inputs only target VIP neurons,
we have PVIP-SOM¼ 0.1. Within 100 mm, the connection probability is measured
to be B0.6 (Supplementary Table 1). However, note that the connection
probability from VIP to SOM neurons on a column scale is unknown. The spatially
restricted axonal arbours of VIP neurons33 suggest that the connection probability
may fall quickly as a function of the VIP–SOM distance. Therefore, on the scale of
a column, the connection probability could still be as low as 0.1. Total inhibitory
connection weight from VIP neurons received by each SOM neuron is
30 pA Hz� 1, and is distributed onto each synapse the same way SOM-to-dendrite
connection weights are set. For NVIP¼ 140 and PVIP-SOM¼ 0.6, the connection
strength of each synapse is B0.4 pA/Hz. This is close to the unitary VIP-to-SOM
inhibitory post-synaptic charge (IPSQ) of 0.7 pA Hz� 1 measured in ref. 5. Notice
here the connection is current-based because SOM neurons are described by
a f–I curve.

The SOM-to-PV, PV-to-PV and PV-to-pyramidal soma connections are all
set similar to the connections above. We set PSOM-PV¼ 0.8, PPV-PV¼ 0.9 and
PPV-soma¼ 0.6 (ref. 5). The total inhibitory connection strength from SOM
neurons to each PV neuron is varied in Fig. 6b. The total inhibitory connection
from PV neurons to each PV neuron is 30 pA Hz� 1, and from PV neurons to each
pyramidal neuron is 30 pA Hz� 1. Denote the resulting connection weight matrix
WSOM-PV, WPV-PV and WPV-soma, then in steady state the change in somatic
inhibition DIpyr across pyramidal neurons is

DIsoma ¼WPV!somaDrPV; ð29Þ
where DrPV is the change in PV activities. And we have

DrPV ¼ ð1=bPV �WPV!PVÞ� 1WSOM!PVDrSOM; ð30Þ
where DrSOM is the change in SOM activities before and after control inputs. 1 is
identity matrix. The precise values of these PV-related parameters do not matter.

Control inputs are excitatory. Here we are agnostic about their origin. They
could be locally generated or from long-range projections. Control inputs can
target subsets of SOM and VIP neurons. The mean strength of the control inputs
across the whole population is always kept as a constant. When control inputs
target SOM neurons, Ncontrol,SOM¼ round(NSOM � Pcontrol,SOM) of SOM neurons are
targeted, with current 75 �NSOM/Ncontrol,SOM pA. Therefore, across the whole
population, the averaged current input is 75 pA. When control inputs target VIP
neurons, each of the Ncontrol,VIP targeted VIP neurons fire at (5 �NVIP/Ncontrol,VIP)
Hz. For Fig. 5a–c when control inputs only target VIP neurons, we set
Pcontrol,SOM¼ 0 and Pcontrol,VIP¼ 0.1. Pcontrol,VIP has to be low otherwise the gating
selectivity would be very close to 0. For Fig. 5d–f, when control inputs target both
SOM and VIP neurons, Pcontrol,SOM¼ 0.5 and Pcontrol,VIP¼ 0.5. Setting
Pcontrol,SOM¼ 0.5 does not result in the highest gating selectivity. We did not make
particular efforts to fine-tune these parameters.

Finally, excitatory inputs carrying stimulus information for one pathway target
the corresponding disinhibited dendrites. When we opened the gate for pathway 1,
suppose one dendrite receives averaged inhibitory conductance �gI . Then, the total
excitatory conductance �gE from pathway 1 onto this dendrite is

�gE ¼
ð1� �gI=gI;thÞ � gE;max ; �gIogI;th

0 ; �gI � gI;th

�
: ð31Þ

gI,th is a inhibitory conductance threshold we defined. Therefore, when inhibition is
weak (disinhibition is strong), excitation is inversely proportional to inhibition
level. However, when disinhibition is weak, there will be no excitatory input at all.
Having a cutoff threshold gI,th prevents excitatory inputs from targeting every
dendrite and therefore being overly dense. We set gI,th¼ 4.0 nS. Since we have set
the sum of conductances of all inhibitory synapses to be GSOM-dend¼ 40 nS,
each SOM neuron fires B10 Hz before disinhibition, and tGABA,dend¼ 20 ms,
the time-averaged conductance received by each dendrite in default is
�gI ¼ rItGABA;dendGSOM!dend ¼ 8:0 nS. Therefore, by setting gI,th¼ 4.0 nS, excitatory
synapses only target dendrites that are at least disinhibited by half. We set the
maximum time-averaged excitatory conductance targeting each dendrite to be
gE,max¼ 25 nS. This value is chosen so that excitation is strong enough to excite a
disinhibited dendrite, but not strong enough to excite a strongly inhibited dendrite
(Supplementary Fig. 4).

In Supplementary Table 1, we summarized the raw experimental data used to
constrain the model.

Synaptic plasticity model and learning protocol. The synaptic plasticity model is
calcium-based. The calcium dynamics is described above, and the synaptic weight
change given these calcium dynamics is modelled with the formalism from ref. 36,
restated below for clarity with slightly modified notations.

Over the time of stimulation, the calcium trace spends time ap above the
potentiation threshold yp, and time ad above the depression threshold yd. Then, the
average potentiation is Gp¼ gpap, and the average depression is Gd¼ gdad, where gp

and gd are the potentiation and depression strengths, respectively. Since the
synapse is assumed to be bistable (DOWN or UP states), denote r as the
probability of the synapse staying in the UP state, which evolves over time in
response to the calcium trace crossing thresholds. Then, define �r as the long-term
time average of r, and s2

r as the s.d. of r. Then,

�r ¼ Gp

Gp þGd
ð32Þ

s2
r ¼

s2ðap þ adÞ
Gp þGd

; ð33Þ

where s is the amplitude of noise and t is the time constant of weight change. In
long term, the probability to switch from DOWN to UP state U and from UP to
DOWN states D are given by

U ¼ 1
2

	
1þ erf

	
� 0:5� �rþ �re�ðGp þGdÞ=tffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s2
rð1� e� 2ðGp þGdÞ=tÞ

q ��
ð34Þ

D ¼ 1
2

	
1� erf

	
� 0:5� �rþð�r� 1Þe�ðGp þGdÞ=tffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s2
rð1� e� 2ðGp þGdÞ=tÞ

q ��
ð35Þ

erf( � ) is the s.e. function. For convenience, we set the weight of DOWN state to
w0¼ 0 and the weight of UP state w1¼ 3. Then, following stimulation, the weight
after learning wpost ¼ wpreð1�DÞþ ðw1 �wpreÞU , given the weight before learning
wpre.

We fitted the free parameters of the model with experimental data from ref. 37.
In simulation of the plasticity experiment, we modelled the pre-synaptic
extracellular stimulation by 40 NMDAR synapses simultaneously receiving one
spike. This stimulation alone causes a 2.8 mV depolarization on the soma, which is
within the range of observed values (1–3 mV) for that experiment. It also brings the
dendrite close to the NMDA plateau threshold, allowing for strong interaction
between pre- and post-synaptic spikes. As in the experiment, all pairings are
repeated 60 times. The somatic shadow voltage is clamped at � 60 mV.

The model is fitted to data points from Figs 2 and 3d in ref. 37, and is used to
predict the data from Fig. 3b therein. Notice that two data points in the test data set
(their Fig. 3b) are already included in their Figs 2 and 3d. In all of these cases, there
is one pre-synaptic spike, and usually a burst of post-synaptic spikes. The time lag
in Supplementary Fig. 7a is defined as the timing difference between the first post-
synaptic spike in the burst and the pre-synaptic spike. In Supplementary Fig. 7a,b,
there are three post-synaptic spikes. In Supplementary Fig. 7b,c, the pre-synaptic
spike is either 10 ms earlier than the first post-synaptic spike in the burst or 10 ms
later than the last post-synaptic spike. In Supplementary Fig. 7a,c, the post-synaptic
burst, when there is one, has frequency of 50 Hz (inter-spike interval of 20 ms).
The fit parameters are the following. The scaling parameters for calcium traces,
kNMDA¼ 0.371 and kVGCC¼ 0.957. The depression and potentiation rates are
gd¼ 39.9 and gp¼ 177.6. The potentiation threshold for calcium is yp¼ 2.78. In
fitting this particular data set, we found that there is a certain level of redundancy
in parameters; the number of parameters needed to be free is less than the total
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number of potentially free parameters. We therefore fixed two parameters using
values in ref 36, which were fitted to another data set: the amplitude of the noise
s¼ 3.35 and the time constant of synaptic weight change t¼ 346.36 s. The
depression threshold is yd¼ 1. Before the plasticity-inducing experiment, we have
wpre¼ 1 that corresponds to ~gNMDA ¼ 2:5 nS for each NMDAR synapse. So after
learning, the actual synaptic conductances are ~gNMDA ¼ wpost � 2:5 nS.

Just like the spiking pyramidal neuron model, the plasticity model fitted with
in vitro data needs to be recalibrated to behave properly under in vivo-like
conditions68. We reduced the scaling parameters for calcium traces to
k̂NMDA ¼ 0:75kNMDA, mimicking a reduced extracellular calcium concentration,
and to k̂VGCC ¼ 0:2kVGCC, resembling attenuated effect of back-propagating action
potentials in high-conductance in vivo state. These changes also ensure the weights
of non-activated synapses do not change substantially throughout the simulation.
In Fig. 7b, the plasticity-inducing protocol is 300-s long. The post-synaptic firing is
fixed at 10 Hz.

In Fig. 7c–e, inputs from both pathways initially target every dendrite with 15
synapses of the same weight ~gNMDA ¼ 2:5 nS. Each gate is opened by disinhibiting
two distinct dendritic branches. During learning, all synapses from the gated-on
pathway are activated at 50 Hz, whereas the gated-off pathway is not activated. The
post-synaptic rate is set at 10 Hz. To measure gating selectivity before learning, 8 of
the 15 synapses on each dendrite are activated for both pathways. After learning 5
of 15 synapses were activated, the number is chosen so that before and after
learning the total excitatory conductance is the same.

Context-dependent decision-making network. We modelled the context-
dependent decision-making task from ref. 28. In the experimental task, the
stimulus is a mixture of random dots that are leftward- or rightward-moving,
and are red or green. The stimulus can be described by its motion and colour
coherence. Motion coherence for rightward motion can take six values (� 0.5,
� 0.15, � 0.05, 0.05, 0.15 and 0.5). Colour coherence for colour red also takes six
values (� 0.5, � 0.18, � 0.06, 0.06, 0.18 and 0.5). On each trial, the colour and
motion coherence are independently and randomly chosen, resulting in 36 possible
stimuli. In Fig. 8d, the performance with respect to motion coherence is averaged
across all colour coherences. Similarly for Fig. 8e, the performance with respect to
colour coherence is averaged across all motion coherences. In Fig. 8f, the curve
for strong motion coherence is averaged across motion coherence � 0.5 and 0.5.
Similarly for medium and weak coherences.

The context-dependent decision-making circuit model contains two
components. The first is a mixed-selective sensory network, which uses the
VIP–SOM–pyramidal neuron circuit model described above. The mixed-selective
sensory neurons receive motion and colour inputs from the sensory stimulus. Here
the motion and colour inputs do not signal the actual motion and colour of the
stimulus, but rather the motion and colour evidence for a particular target. For
convenience, the motion direction corresponding to target 1 is denoted left, and the
colour corresponding to target 1 is denoted red, and similar for motion right and
colour green. This treatment follows the analyses and modelling of ref. 28.
There are four pools of neurons in this network. Each pool prefers a particular
combination of motion and colour, for example, left and red. Each neuron pool is
modelled exactly as those in Fig. 5d, where the circuit connectivity is random and
control inputs target both VIP and SOM neurons, using the base parameter set
described above. The input to each dendrites is 15 NMDAR synapses with rate
determined by the coherence (coh) of their preferred motion and colour input, as
40 � (1þ coh) Hz (refs 38,69). For example, a neuron that prefers left and red inputs
would receive 40 � (1þ cohleft) Hz input on its dendrites targeted by motion
pathway, and 40 � (1þ cohred) Hz on its dendrites targeted by colour pathway. Note
that cohleft¼ � cohright. The excitatory input for each pathway is set the same way
as it is above, however now the maximum conductance of these input synapses gsen

is one free parameter.
The second component of the network is a decision network. This network is a

two-pool rate model38, using the parameter set therein with no recurrent AMPAR
current. The pool representing choice 1 receives input from a subset of the left-red
neuron pool in the mixed-sensory network. Sensory neurons are sorted according
to their gating selectivity, and only the top Pproject fraction of these sensory neurons
project to the decision networks. Pproject is also a free parameter. The right-green
pool projects to the choice 2 pool. The other two pools do not project to the
decision network because only the left-red and the right-green pools have
congruent preferences for choice 1 and choice 2, respectively, based on the how
colour and motion evidence are defined. To fit experimental behavioural choice
data efficiently, we further approximated the decision network with a decision
function. We assumed that the probability of selecting choice 1 (P1) is determined
by the difference DIdec (pA) between the input currents to the two choice pools. We
fitted this function by simulating the decision network with mean input current
15.6 pA to both pools, yielding

P1 ¼ 1þ exp
�DIdec

s

� �� �� 1

ð36Þ

with s¼ 0.99 pA. The second free parameter of the model is the projection strength
Jdec of the mixed-sensory input, such that DIdec¼ Jdec(rleft,red� rright,green). rleft,red is
the average firing rate of the left/red-preferring pool.

The three free parameters gsen, Pproject and Jdec are fitted to behavioural data of
each monkey in ref. 28. The fit parameter values are gsen¼ 1.21 nS, Pproject¼ 0.36
and Jdec¼ 15.0 pA Hz� 1 for monkey F, and are gsen¼ 1.80 nS, Pproject¼ 0.083 and
Jdec¼ 4.37 pA Hz� 1 for monkey A. Importantly, the data used to fit the model are
far from being sufficient. Also, our circuit model is simplistic. Therefore, these
fitted parameter values do not reflect our estimates of these quantities in the brain.
Rather, these fittings demonstrate that the proposed circuit architecture can
potentially capture behavioural performance. As shown in Supplementary Fig. 8,
if neural gating is strongly degraded, then no set of these fit parameters can capture
behavioural performance.

Model fitting in general. Model parameters are fitted to experimental or simu-
lation data in various contexts. These fitted models include the rate pyramidal
neuron, the calcium-based plasticity model and the context-dependent decision-
making network. In all these cases, parameters are chosen to minimize the squared-
error between the model and data using sequential least squares programming
method from the SciPy library (scipy.optimize.minimize, with method ‘sequential
least squares programming’).

Data availability. Code that supports the findings of this study is publicly available
on Github: https://github.com/gyyang/DisinhibitoryCircuit2016. All other data can
be found within this article and its Supplementary Material.
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