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Prediction of functional outcomes 
of schizophrenia with genetic 
biomarkers using a bagging 
ensemble machine learning 
method with feature selection
Eugene Lin1,2,3, Chieh‑Hsin Lin3,4,5* & Hsien‑Yuan Lane3,6,7,8*

Genetic variants such as single nucleotide polymorphisms (SNPs) have been suggested as potential 
molecular biomarkers to predict the functional outcome of psychiatric disorders. To assess the 
schizophrenia’ functional outcomes such as Quality of Life Scale (QLS) and the Global Assessment 
of Functioning (GAF), we leveraged a bagging ensemble machine learning method with a feature 
selection algorithm resulting from the analysis of 11 SNPs (AKT1 rs1130233, COMT rs4680, DISC1 
rs821616, DRD3 rs6280, G72 rs1421292, G72 rs2391191, 5-HT2A rs6311, MET rs2237717, MET 
rs41735, MET rs42336, and TPH2 rs4570625) of 302 schizophrenia patients in the Taiwanese 
population. We compared our bagging ensemble machine learning algorithm with other state‑of‑the‑
art models such as linear regression, support vector machine, multilayer feedforward neural networks, 
and random forests. The analysis reported that the bagging ensemble algorithm with feature selection 
outperformed other predictive algorithms to forecast the QLS functional outcome of schizophrenia 
by using the G72 rs2391191 and MET rs2237717 SNPs. Furthermore, the bagging ensemble algorithm 
with feature selection surpassed other predictive algorithms to forecast the GAF functional outcome 
of schizophrenia by using the AKT1 rs1130233 SNP. The study suggests that the bagging ensemble 
machine learning algorithm with feature selection might present an applicable approach to provide 
software tools for forecasting the functional outcomes of schizophrenia using molecular biomarkers.

Precision psychiatry is a newly-developed interdisciplinary study of precision medicine and  psychiatry1,2, where 
state-of-the-art artificial intelligence and machine learning methods are integrated with molecular biomarkers 
such as genetic variants to provide personalized arrangements during all phases of medical  intervention3–6. For 
instance, studies in precision psychiatry using machine learning algorithms involve the prediction of diagnosis 
of  schizophrenia7,8 and the prediction of treatment response in patients with major depressive  disorder9,10. On 
another note, functional outcomes in schizophrenia, which are normally determined by the tools such as Qual-
ity of Life Scale (QLS)11 and the Global Assessment of Functioning (GAF)  Scale12, may affect the diagnosis and 
treatment of schizophrenia patients. As a result, it is vital to establish potential biomarkers that affect functional 
outcomes in  schizophrenia13. Accordingly, we hypothesized that machine learning algorithms may be capable 
of forecasting probable biomarkers that influence functional outcomes in schizophrenia by using molecular 
biomarkers such as genetic variants.

Genetic variants such as single nucleotide polymorphisms (SNPs) have been a focus of attention in schizo-
phrenia research. Various SNPs have been indicated as potential molecular biomarkers with respect to the devel-
opmental etiology of schizophrenia (Supplementary Table S1), including AKT1 rs1130233, COMT rs4680, DISC1 
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rs821616, DRD3 rs6280, G72 rs1421292, G72 rs2391191, 5-HT2A rs6311, MET rs2237717, MET rs41735, MET 
rs42336, and TPH2 rs4570625. For example, a previous association study by Emamian et al.14 indicated that there 
was a significant association of schizophrenia with the rs1130233 variant in the AKT1 gene. Another study by 
Chen et al.15 also reported that COMT rs4680 contributed to schizophrenia in Irish patents. In addition, a study 
by Callicott et al.16 showed that DISC1 rs821616 significantly influenced hippocampal structure and increased 
the risk for schizophrenia. Moreover, Talkowski et al.17 implicated that DRD3 rs6280 was markedly associated 
with schizophrenia in the U.S. samples. In order to differentiate schizophrenia patients from healthy individuals, 
Lin et al.8 employed machine learning algorithms (such as logistic regression, naive Bayes, and C4.5 decision 
tree) to construct classification models by using G72 rs1421292, G72 rs2391191, and G72 protein. Furthermore, 
a link between 5-HT2A rs6311 and a sensorimotor gating deficit in schizophrenia was observed in schizophrenia 
 patients18. Additionally, Burdick et al.19 detected the association of MET rs2237717, MET rs41735, and MET 
rs42336 with schizophrenia risk and general cognitive ability in schizophrenia patients. The association of TPH2 
rs4570625 with schizophrenia was not statistically significant in Korean schizophrenia  patients20; however, it 
was related with social  cognition21.

In a previous study, Lin et al.13 reported that clinical symptoms contribute to the link between cognitive behav-
iors and functional outcomes in schizophrenia by applying the structural equation modeling method. Addition-
ally, it has been suggested that machine learning methods incorporating with feature selection techniques possess 
the advantages of improved prediction in precision psychiatry  studies10,22,23. Here, we employed the same cohort 
of 302 schizophrenia patients and performed the first study on the QLS and GAF functional outcome prediction 
in schizophrenia with 11 aforementioned molecular biomarkers (namely 11 SNPs) by using a bagging ensemble 
machine learning  method24. Moreover, in order to predict functional outcomes with improved performance, 
we utilized the M5 Prime feature selection  algorithm25 to identify a small subset of suitable biomarkers from the 
11 SNPs. We inferred that our bagging ensemble machine learning method would be capable of forecasting the 
QLS and GAF functional outcomes of schizophrenia by utilizing a small subset of chosen genetic variants. To 
the best of our knowledge, no preceding studies have been conducted to assess predictive algorithms for func-
tional outcomes in schizophrenia with molecular biomarkers by utilizing the bagging ensemble machine learn-
ing method with the M5 Prime feature selection algorithm. We chose the bagging ensemble machine learning 
method due to its merits in lower variance and less overfitting; and thereby this method is widely leveraged to 
deal with complicated prediction and classification  studies24,25. This study precisely scrutinized the performance 
of the bagging ensemble machine learning method to other broadly-used machine learning models, includ-
ing support vector machine (SVM), multi-layer feedforward neural networks (MFNNs), linear regression, and 
random forests. The analysis showed that the bagging ensemble machine learning method with the M5 Prime 
feature selection algorithm led to improved performance.

Results
The functional outcomes of the study cohort. The participants encompassed 302 schizophrenia 
patients in the Taiwanese population. Study measures in regard to demographic characteristics and the QLS and 
GAF of schizophrenia were detailed  before13.

Genetic variants. There were 11 genetic variants including AKT1 rs1130233, COMT rs4680, DISC1 
rs821616, DRD3 rs6280, G72 rs1421292, G72 rs2391191, 5-HT2A rs6311, MET rs2237717, MET rs41735, 
MET rs42336, and TPH2 rs4570625. Their genotype frequencies are shown in Table 1. All of them, except G72 
rs1421292, did not deviate from the Hardy–Weinberg equilibrium.

Feature selection using genetic variants. We completed a series of various biomarker combinations 
using the 11 genetic variants (Table 2; the Feature-A–Feature-C sets) to forecast the QLS and GAF of schizophre-
nia. Note that the Feature-A set encompasses the 11 genetic variants.

Table 1.  Genotype frequencies of 11 genetic polymorphisms in 302 schizophrenia patients.

Genetic polymorphisms Genotype frequency P value of Hardy–Weinberg equilibrium

AKT1 rs1130233 AA/AG/GG: 0.31/0.49/0.20 0.899

COMT rs4680 GG/GA/AA: 0.56/0.35/0.09 0.066

DISC1 rs821616 TT/TA/AA: 0.79/0.20/0.01 0.676

DRD3 rs6280 AA/AG/GG: 0.48/0.45/0.07 0.170

G72 rs1421292 TT/TA/AA: 0.41/0.42/0.18 0.040

G72 rs2391191 AA/AG/GG: 0.37/0.49/0.14 0.597

5-HT2A rs6311 AA/AG/GG: 0.36/0.51/0.13 0.133

MET rs2237717 CC/CT/TT: 0.30/0.46/0.24 0.183

MET rs41735 GG/GA/AA: 0.31/0.48/0.21 0.593

MET rs42336 AA/GA/GG: 0.30/0.48/0.22 0.578

TPH2 rs4570625 TT/GT/GG: 0.25/0.51/0.24 0.814
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First, for forecasting the QLS, we utilized the M5 Prime feature selection algorithm (see Methods) to find 
two biomarkers (such as G72 rs2391191 and MET rs2237717) from the 11 genetic variants, where the Feature-B 
dataset comprises these two selected biomarkers (Supplementary Figure S1).

Second, for forecasting the GAF, we utilized the M5 Prime feature selection algorithm to identify one bio-
marker (such as AKT1 rs1130233) from the 11 genetic variants, where the Feature-C dataset comprises this 
selected biomarker (Supplementary Figure S2).

Prediction of the QLS and GAF of schizophrenia using genetic variants. We utilized genetic vari-
ants (namely the Feature-A–Feature-C datasets) to create the predictive algorithms for the QLS and GAF of 
schizophrenia, respectively. Table 2 shows the results of repeated tenfold cross-validation experiments for the 
predictive algorithms using genetic variants by the bagging ensemble algorithm with feature selection (Sup-
plementary Figures S1 and S2), the bagging ensemble algorithm (Supplementary Figure S3), SVM (Supplemen-
tary Figure S4), MFNNs (Supplementary Figure S5), linear regression (Supplementary Figure S6), and random 
forests (Supplementary Figure S7). Furthermore, we utilized the RMSE values to assess the performance of the 
predictive algorithms.

As shown in Table 2, to forecast the QLS, the bagging ensemble algorithm with feature selection (Supplemen-
tary Figure S1) obtained the RMSE value of 8.6766 ± 1.0421 using the Feature-B dataset (namely G72 rs2391191 
and MET rs2237717).

Moreover, to forecast the GAF, the bagging ensemble algorithm with feature selection (Supplementary Fig-
ure S2) obtained the RMSE value of 9.6982 ± 1.3354 using the Feature-C dataset (namely AKT1 rs1130233) 
(Table 2).

Benchmarking. We scrutinized the results (Table  2) for forecasting the QLS of schizophrenia among 
machine learning predictive models including the bagging ensemble algorithm with feature selection (Supple-
mentary Figure S1), the bagging ensemble algorithm (Supplementary Figure S3), SVM (Supplementary Fig-
ure S4), MFNNs (Supplementary Figure S5), linear regression (Supplementary Figure S6), and random forests 
(Supplementary Figure S7) using two biomarker datasets (namely Feature-A and Feature-B). We found that the 
bagging ensemble algorithm with feature selection (using Feature-B; Supplementary Figure S1) performed best 
to forecast the QLS. The best RMSE value for forecasting the QLS was 8.6766 ± 1.0421 (Table 2).

In addition, we scrutinized the results (Table 2) for forecasting the GAF of schizophrenia among machine 
learning predictive models including the bagging ensemble algorithm with feature selection (Supplementary Fig-
ure S2), the bagging ensemble algorithm (Supplementary Figure S3), SVM (Supplementary Figure S4), MFNNs 
(Supplementary Figure S5), linear regression (Supplementary Figure S6), and random forests (Supplementary 
Figure S7) using two biomarker datasets (namely Feature-A and Feature-C). We found that the bagging ensemble 
algorithm with feature selection (using Feature-C; Supplementary Figure S2) performed best to forecast the GAF. 
The best RMSE value for forecasting the GAF was 9.6982 ± 1.3354 (Table 2).

Here, we observed that the bagging ensemble algorithm with feature selection using the chosen biomarkers 
from SNPs achieved best outcome forecasting in terms of both QLS and GAF when compared to other state-of-
the-art models, including SVM, MFNNs, linear regression, and random forests. Our analysis suggested that the 
bagging ensemble algorithm with feature selection was well-adapted for predictive algorithms in the functional 
outcomes of schizophrenia.

Table 2.  The results of repeated tenfold cross-validation experiments for predicting the QLS and GAF 
functional outcome of schizophrenia with genetic variants using machine learning predictors such as the 
bagging ensemble model with feature selection, the bagging ensemble model, MFNNs, SVM, linear regression, 
and random forests. The best QLS or GAF score is shown in bold. Feature-A: 11 features (related to 11 SNPs) 
including AKT1 rs1130233, COMT rs4680, DISC1 rs821616, DRD3 rs6280, G72 rs1421292, G72 rs2391191, 
5-HT2A rs6311, MET rs2237717, MET rs41735, MET rs42336, and TPH2 rs4570625. Feature-B: 2 features 
(related to 2 SNPs) including G72 rs2391191 and MET rs2237717. Feature-C: 1 feature (related to 1 SNP) 
including AKT1 rs1130233. GAF Global assessment of functioning, MFNNs Multilayer feedforward neural 
networks, QLS Quality of life scale, RMSE Root mean square error, SNPs Single nucleotide polymorphisms, 
SVM Support vector machine. Data are presented as mean ± standard deviation.

Algorithm

QLS GAF

RMSE Feature set Number of features RMSE Feature set Number of features

Bagging ensemble with 
feature selection 8.6766 ± 1.0421 Feature-B 2 9.6982 ± 1.3354 Feature-C 1

Bagging ensemble 8.7102 ± 1.0716 Feature-A 11 9.7777 ± 1.3301 Feature-A 11

SVM 8.8799 ± 1.0893 Feature-A 11 10.0754 ± 1.4486 Feature-A 11

MFNNs 8.8675 ± 1.1103 Feature-A 11 10.0625 ± 1.3753 Feature-A 11

Linear regression 8.7839 ± 1.0538 Feature-A 11 9.7011 ± 1.3341 Feature-A 11

Random forests 9.4253 ± 1.1750 Feature-A 11 10.4998 ± 1.3586 Feature-A 11
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Discussion
To our knowledge, this is the first study to date to explore a bagging ensemble machine learning method with 
the M5 Prime feature selection algorithm using molecular biomarkers for constructing predictive algorithms of 
functional outcomes in schizophrenia among Taiwanese patients. In addition, we conducted the first study to 
search probable biomarkers for functional outcomes of schizophrenia by using genetic biomarkers. The findings 
indicated that the bagging ensemble machine learning method with feature selection using two genetic biomark-
ers (G72 rs2391191 and MET rs2237717 SNPs) surpassed other state-of-the-art predictive models in terms of 
RMSE for forecasting the QLS outcome. Moreover, for forecasting the GAF outcome, we observed that the bag-
ging ensemble machine learning method with feature selection using one genetic biomarker (AKT1 rs1130233) 
surpassed other state-of-the-art predictive algorithms in terms of RMSE.

By taking advantage of the genetic biomarkers, we created the predictive algorithms of functional outcomes 
in schizophrenia patients using the bagging ensemble machine learning method with the M5 Prime feature 
selection algorithm. This study is a proof of concept of a machine learning predictive framework for forecasting 
functional outcomes of schizophrenia. The results suggest that the bagging ensemble machine learning method 
may provide a clinically feasible tool for predicting functional outcomes of schizophrenia.

In addition, it is worthwhile to discuss the M5 Prime feature selection algorithm for discovering probable 
biomarkers in this study. We found that the bagging ensemble machine learning method with the selected 
biomarkers of the M5 Prime feature selection algorithm consistently surpassed the bagging ensemble machine 
learning method without using feature selection. For example, the bagging ensemble machine learning method 
with the Feature-B dataset excelled the bagging ensemble machine learning method with the Feature-A in 
forecasting the QLS outcome. Likewise, the bagging ensemble model with the Feature-C dataset surpassed the 
bagging ensemble machine learning method with the Feature-A dataset in forecasting the GAF outcome. In other 
words, the bagging ensemble machine learning method with feature selection inclined to obtain lower RMSE 
values (the better the performance). The findings suggest that the M5 Prime feature selection algorithm may 
have a better potential to single out biomarkers affecting functional outcomes of schizophrenia. In accordance, it 
has been reported that machine learning methods with feature selection outperformed the ones without feature 
selection in predicting the diagnosis and treatment outcome of psychiatric  disorders10,22,23.

Remarkably, we further speculated the synergistic effects of chosen biomarkers (namely the Feature-B data-
set), which were pinpointed by the M5 Prime feature selection algorithm when a biomarker dataset of 11 genetic 
variants was utilized to forecast the QLS outcome. As indicated in “Results” section the Feature-B dataset com-
prised 2 SNPs (namely G72 rs2391191 and MET rs2237717) for the QLS outcome. Subsequently, the bagging 
ensemble machine learning method with feature selection using the Feature-B dataset performed best in predict-
ing the QLS outcome among the predictive algorithms. To our knowledge, scanty studies have been investigated 
to assess causal links between genetic variants. The biological mechanisms of these causal links in the functional 
outcomes of schizophrenia remain to be elucidated. It has been demonstrated that MET rs2237717 was linked to 
 schizophrenia19 and G72 rs2391191 was also associated with  schizophrenia8. Based on the previous  findings8,19, 
it is hypothesized that synergistic interactions between genetic variants may provide a hallmark of molecular 
effects on the functional outcomes of schizophrenia.

In conclusion, we built a bagging ensemble machine learning method with feature selection for predicting 
functional outcomes of schizophrenia in Taiwanese patients by using genetic biomarkers. The analysis reveals that 
the bagging ensemble machine learning method with feature selection may present a plausible tool to construct 
predictive models for functional outcomes of schizophrenia in terms of favorable performance. Nonetheless, it is 
fundamental to further investigate the role of the bagging ensemble machine learning method by more replica-
tion studies. Ultimately, we would expect that the findings of the present study may be generalized in precision 
psychiatry to predict the diagnosis and treatment outcomes for various psychiatric disorders. Furthermore, the 
findings may be presumably leveraged to develop molecular diagnostic and prognostic tools in the near future.

Materials and methods
Study population. The study cohort composed of 302 schizophrenia patients, who were recruited from 
the China Medical University Hospital and affiliated Taichung Chin-Ho Hospital in  Taiwan13. In this study, 
schizophrenia patients were aged 18–65 years and were healthy in the physical conditions. After presenting a 
complete description of this study to the subjects, we obtained written informed consents from a parent and/or 
legal guardian in line with the institutional review board guidelines. Details of the diagnosis of schizophrenia 
were published  previously13. This study was approved by the institutional review board of the China Medical 
University Hospital in Taiwan and was performed in accordance with the Declaration of Helsinki.

Functional outcomes. We assessed functional outcomes by employing the  QLS11 and the GAF Scale of 
the DSM-IV12. The QLS is a clinical tool for assessing the functional outcomes in patients with schizophrenia, 
including anhedonia, aimless inactivity, capacity for empathy, curiosity, emotional interaction, motivation, sense 
of purpose, social activity, social initiatives, and social  withdrawal11. The GAF is a clinical tool for evaluating the 
global psychological, social, and occupational functioning in patients with  schizophrenia12.

Laboratory assessments: genotyping. DNA was extracted from venous blood. In this study, the panel 
of genetic variants consisted of the aforementioned 11 SNPs. Their genotyping methods were detailed previ-
ously: AKT1  rs113023326, COMT  rs468021, DISC1  rs82161627, DRD3  rs628028, G72  rs14212928, G72  rs23911918, 
5-HT2A  rs631129, MET  rs223771726, MET  rs4173526, MET  rs4233626, and TPH2  rs457062521. These 11 genetic 
variants were used to create the predictive algorithms for the QLS and GAF of schizophrenia.
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Statistical analysis. For genetic variants, we assessed the genotype frequencies for Hardy–Weinberg equi-
librium by using a chi-squared goodness-of-fit test with 1 degree of  freedom30. The criterion for failure to achieve 
Hardy–Weinberg equilibrium was set at P < 0.05. Data are presented as the mean ± standard deviation.

Bagging ensemble machine learning method. We applied a key ensemble machine learning method 
called bagging  predictors24 and employed the Waikato Environment for Knowledge Analysis (WEKA) software 
(which is available from https:// www. cs. waika to. ac. nz/ ml/ weka/) 25 to conduct the bagging ensemble machine 
learning method. All the experiments were carried out on a computer with Intel (R) Core (TM) i5-4210U, 4 GB 
RAM, and Windows  77.

In principle, the bagging ensemble machine learning method (Supplementary Figure S3) takes advantage 
of averaging the predictive performance of multiple versions of a base model to obtain a combined model with 
better  performance24. The multiple versions of the base model are generated by bootstrap reproductions, where 
the bootstrap technique is one of the most suitable data resampling approaches employed in statistical analysis. 
In other words, the bootstrap technique produces the multiple versions of the base model, that is, the Model-
version #1 to the Model-version #n (Supplementary Figure S3). Subsequently, the combined model summarizes 
the predictive performance of these base models from 1 to n. The technique of bagging models inclines to lower 
variance and prevent overfitting. The base model we used was linear regression. Here, we utilized the default 
tuning parameters of WEKA, such as 100 for the batch size, 100 for the percentage of the bag size, and 10 for 
the number of  iterations7,10.

Figure 1 demonstrates the illustrative diagram of the bagging ensemble machine learning method with feature 
selection. For the feature selection task, we utilized the M5 Prime algorithm (as described below).

M5 Prime feature selection algorithm. In the present study, we used an Akaike information criterion 
(AIC)-based method called the M5 Prime  algorithm25,31 for the feature selection function. The M5 Prime algo-
rithm builds a decision tree with multivariate linear models at the terminal nodes and iteratively eliminates the 
biomarker with the smallest normalized coefficient until no further improvement in the evaluated error specified 
by the  AIC32,33. We chose the M5 Prime algorithm due to its merits in dealing with the large number of biomark-
ers, performing fast during training, and being a straightforward  approach25,31. In addition, the relevant features 
of the M5 Prime algorithm include robustness in handling missing values and enumerated  attributes25,31.

To forecast the QLS and GAF, we utilized the M5 Prime algorithm to choose biomarkers from a biomarker 
dataset, which includes 11 genetic variants (Fig. 1). By using 11 genetic variants, the M5 Prime algorithm gen-
erated the first feature dataset including two genetic variants (Supplementary Figure S1). In addition, by using 
11 genetic variants, the M5 Prime algorithm generated the second feature dataset including one genetic variant 
(Supplementary Figure S2).

Machine learning algorithms for benchmarking. For the benchmarking task in the present study, we 
employed four state-of-the-art machine learning models including SVM, MFNNs, linear regression, and ran-
dom forests (Supplementary Figures S4–S7). We performed the analyses for these four machine learning models 
using the WEKA  software25 and a computer with Intel (R) Core (TM) i5-4210U, 4 GB RAM, and Windows  77.

First, the SVM  model34 (Supplementary Figure S4) is a popular approach for pattern recognition and 
 classification7,35–37. Given a training set, the SVM model applies a kernel function to find a linear relationship 
between input variables and the predicted  output34,38. The SVM model then determines the best predicted output 
by minimizing both the coefficients of the cost function and the predictive  errors34,38. In this study, we utilized 
the WEKA’s tuning parameter for the polynomial kernel with the exponent value of 1.07,10.

Second, an MFNN model (Supplementary Figure S5) comprises one input layer, one or multiple hidden layers, 
and one output layer, where links among neuron nodes actually have no directed  cycles7,39. In the learning stage 
of the MFNN model, the back-propagation  algorithm40 is achieved for the learning task. In the retrieval stage, 
the MFNN model reiterates by way of all the neuron nodes to accomplish the retrieval task at the output layer 
based on the inputs of test  data7,41. In this study, we utilized the architecture incorporating one hidden layer. For 
instance, we utilized the following WEKA’s tuning parameters for training the MFNN model with one hidden 
layer: the momentum = 0.01, the learning rate = 0.01, and the batch size =  1007,42.

Next, the linear regression model (Supplementary Figure S6), the conventional approach for prediction issues 
in clinical studies, was utilized as a basis for the benchmarking  task7,25.

Finally, the random forests model (Supplementary Figure S7) is an ensemble learning approach which consists 
of a group of decision trees throughout training and produces a better prediction by aggregating the predictive 
results among the individual decision  trees7,35–37,43. Here, we utilized the default tuning parameters of WEKA for 
the random forests model; for instance, 100 for the batch size and 100 for the number of  iterations7.

Evaluation of the predictive performance. In this study, we employed one of the most popular stand-
ards, the root mean square error (RMSE), to examine the performance of predictive  algorithms22,38,44. The RMSE 
estimates the difference between the measured values and the predicted values by a predictive algorithm. The 
better the prediction algorithm, the lower the  RMSE22,44. In addition, we applied the repeated tenfold cross-
validation method to assess the generalization of predictive  models45. Firstly, the whole dataset was randomly 
fragmented into ten individual partitions. Secondly, the predictive model was trained using nine-tenths of the 
partitions and was tested using the remaining tenth of the partitions to estimate the predictive performance. 
Next, the previous step was repeated nine more times by choosing different nine-tenths of the partitions for 
training and a different tenth of the partitions for testing. Lastly, the final estimation was evaluated by averaging 

https://www.cs.waikato.ac.nz/ml/weka/)25
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the aforementioned ten runs. In the present study, we reported the performance of all predictive models using 
the repeated tenfold cross-validation method.

Data availability
All data generated or analyzed during this study are included in this published article.
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