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Visualization and quantification of blood flow are essential for the diagnosis and treatment evaluation of cerebrovascular diseases.
For rapid imaging of the cerebrovasculature, digital subtraction angiography (DSA) remains the gold standard as it offers high
spatial resolution.This paper lays out a methodological framework, named perfusion angiography, for the quantitative analysis and
visualization of blood flow parameters from DSA images. The parameters, including cerebral blood flow (CBF) and cerebral blood
volume (CBV), mean transit time (MTT), time-to-peak (TTP), and 𝑇max, are computed using a bolus tracking method based on
the deconvolution of the time-density curve on a pixel-by-pixel basis. The method is tested on 66 acute ischemic stroke patients
treated with thrombectomy and/or tissue plasminogen activator (tPA) and also evaluated on an estimation task with known ground
truth. This novel imaging tool provides unique insights into flow mechanisms that cannot be observed directly in DSA sequences
and might be used to evaluate the impact of endovascular interventions more precisely.

1. Introduction

Visualization of blood flow inside brain vessels is essential
for the diagnosis and treatment evaluation of cerebrovascular
disorders. First attempts date back to the early years of
angiography [1], a technique that relies on X-ray imaging
of iodinated radioopaque contrast agent previously injected
into the blood stream. Over the years, the technique has
improved and benefited from the appearance of digital cam-
eras, leading to digital subtraction angiography (DSA) [2–4]
which allows for the unwanted elements (e.g., skull) to be
removed by image subtraction. Today, DSA remains a central
and widely used imaging technique to assess blood flow
during neurovascular interventions of stroke, for instance. In
practice, several limitations hinder the use of DSA; images
are qualitative; they are displayed in grayscale and need to be
browsed frame by frame to observe temporal differences.This
paper addresses these limitations by presenting a framework,
perfusion angiography, for the quantitative analysis and
visualization of perfusion and delay parameters from DSA.

The popularity of DSA can be attributed to its good
spatiotemporal resolution which is not easily matched by
other acquisition techniques such as magnetic resonance
imaging (MRI) and computed tomography (CT). Vascular

abnormalities such as narrowing, blockage, ormalformations
can be visualized precisely in DSA. In addition, DSA is
minimally invasive and is readily available in interventional
suites of modern intensive care units (ICUs). Minimal cost,
low risks, and rapid acquisition time are other features in
favor of DSA. Although it may be argued that DSA will
gradually be replaced in the future by CT angiography (CTA)
during neurovascular interventions, DSA remains the gold
standard worldwide.

Over the last three decades, numerousworks have studied
the role of DSA in both diagnosis and treatment evaluation of
cardio- and cerebrovascular diseases. However, most of the
existing studies were based on the visual review of image
sequences by neurologists such that observations were col-
lapsed to a simplified scale describing degree of reperfusion
(Thrombolysis in Cerebral Infarction (TICI)) and recanal-
ization (Arterial Occlusive Lesion (AOL)) after intervention.
These dichotomizations are still a matter of ongoing debate
[5] in the stroke community as their correlation with gen-
eral outcome is limited and may also present interreader
variability. There is a clear need to go beyond these manual
scoring systems to obtain better evaluations for future clinical
trials and endovascular devices. Although automatic TICI
and AOL scores are still beyond the capabilities of current
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methods, automated algorithms for quantitative blood flow
estimation have been developed over the last 20 years (as
reviewed in [6]). They have failed so far to be translated into
meaningful tools that could improve clinical practice and
treatment evaluation.

In addition to its high spatial resolution, DSA holds
temporal information that can be used to track the contrast
agent and compute parametric perfusion parameters, such
as cerebral blood volume (CBV), cerebral blood flow (CBF),
mean transit time (MTT), time-to-peak (TTP), and 𝑇max,
thus providing a quantitative assessment of cerebral hemo-
dynamics. Those parameters are very useful for assessment
of cerebrovascular diseases as they can render the underlying
functional information more easily recognizable. In contrast
with MR and CT perfusion imaging that have been studied
through clinical trials (e.g., DEFUSE [7]), the value of para-
metric imaging fromDSAhas been largely underappreciated.
While the idea of extracting perfusion parameters from DSA
has been introduced since the 1980s in sporadic studies
for CBF [8], MTT [9], TTP [10], and 𝑇max [10, 11], it has
not yet received the attention deserved by the acute stroke
community. This overall lack in interest may be caused by
the difficulty of real-time implementation of those algorithms
on angiographic units, challenges due to the nature of the
images (artifacts, vessel overlap), or perhaps failure to realize
its full potential for quantitative decision support. Drawing
from these observations, the overall goal of this paper is to
describe how these important perfusion parameters can be
extracted from the time-density curve and displayed in color-
coded images that can be readily interpreted by neurologists
and neurointerventionalists. After a brief historical review in
Section 2.1 and a description of the dataset in Section 2.2, the
paper summarizes the theory of densitometry in Section 2.3
and introduces the proposed framework in Section 2.4. The
results of the experiments are presented in Section 3 and
discussed in Section 4.

2. Methods

2.1. Historical and Technical Overview. Since its discovery
[12], the application of X-ray for imaging purposes has greatly
influenced medical diagnosis and interventions as it allows
visualizing moving anatomical structures and endovascu-
lar devices. X-rays are produced by accelerating electrons
emitted from a cathode towards a metal target anode using
high voltage (50 kV). When directed towards the body and
by passing through it, X-rays are partially absorbed and
deflected, which causes attenuation of the incident beam.
Various anatomical structures can be differentiated thanks to
their specific level of absorption.

One of the decisive milestones of X-ray imaging was
the introduction of angiography [13] which has made the
visualization of blood flowwithin vessels possible.The acqui-
sition of an angiogram relies on X-ray imaging of iodinated
radioopaque contrast agent previously injected into the blood
stream.The blood flow is observed thanks to the high level of
absorption of the contrast agent.

The introduction of the image intensifier television (II-
TV) that converts the incident X-rays into a visible image

was an ingredient to the success of angiography. With the
modernization of computers in the 1980s, it became possible
to record images digitally. This led to digital radiography
[2] which allows for more flexible visualization of digitally
enhanced images. Digital subtraction angiography (DSA)
extends digital radiography [4, 14–17] by subtracting a back-
ground image (obtained before injection of the contrast
agent) from subsequent images. The purpose is to eliminate
the bone and soft tissue images that would otherwise be
superposed on the vessels.

Despite excellent resolution characteristics, DSA has sev-
eral inherent shortcomings. First, DSA images are subjected
to two major types of noise: the quantum noise due to the
random nature of X-ray distribution and the noise resulting
from the electronic components. In addition, the image
subtraction operation amplifies the noise already present in
images. To overcome this problem, noise reduction tech-
niques can be applied. This leads to a second weakness
of DSA: noise reduction algorithms are generally coded
in the hardware and algorithms cannot easily be accessed
or customized. Another limitation is the possible motion
of the patient during the image acquisition that creates
spatial blur and artifacts as the background image is not
aligned to subsequent frames. Finally, visualization of the
temporal information from DSA sequences is challenged by
the fact that images are typically displayed in a video mode
with raw grayscale frames. Only recently have commercial
systems started to introduce colormaps to better visualize the
temporal information held in DSA.

In summary, DSA is technological evolution of digital
radiography to remove unwanted bone and soft tissue from
a set of successive images. Besides the technical limitations
due to the nature of X-ray imaging, DSA is associated with
a computational layer that may also introduce significant
inaccuracies in the presence of even minor patient motion.
Because internal parameters and source images used by
DSA are generally not made available by scanner manu-
facturers, further postprocessing is particularly challenging.
Despite these limiting factors, DSA remains the gold standard
used during endovascular interventions. In this study, we
proposed to extend DSA by introducing a computational
framework for the computation of perfusion parameters.

2.2. Patients Demographics and Data Acquisition. The imag-
ing dataset used in this study to evaluate our framework
was collected from patients evaluated at a single, academic
comprehensive stroke center and identifiedwith symptoms of
acute ischemic stroke.The use of this dataset was approved by
the local Institutional Review Board (IRB). Inclusion criteria
for this study included (1) presenting symptoms suggestive
of acute stroke, (2) last known well time within six hours at
admission, (3) digital subtraction angiography (DSA) of the
brain performed at the end of a thrombectomy procedure,
and (4) final diagnosis of ischemic stroke. A total of 66
patients (median age: 68 years (IQR 53, 79)), including 35
women, satisfied the above criteria. All patients underwent
thrombectomy with various success in revascularization
which was determined using the Thrombolysis in Cerebral
Infarction (TICI) score. The distribution of TICI scores is



Computational and Mathematical Methods in Medicine 3

as follows: TICI 0 (4 patients), TICI 1 (1 patient), TICI 2a
(17 patients), TICI 2b (35 patients), and TICI 3 (9 patients).
Mechanical clot-retrieval devices include Trevo® (7 patients),
MERCI® (17 patients), and Solitaire® (32 patients).Themedian
NIH stroke scale (NIHSS) is 18, IQR 13, 21.TheDSA scanning
was performed on a Philips Allura Xper FD20® biplane using
a routine timed contrast-bolus passage technique. Manual
injection of Omnipaque 300 was performed at dilution of
70% (30% saline) such that 10 cc of contrast was administered
intravenously at an approximate rate of 5 cm3/s. Image acqui-
sition parameters vary across subjects. In the biplane acquisi-
tion setting, frames are acquired in an interleaved fashion at
two standard viewpoints: anterior-posterior (AP) and lateral.
The median number of frames acquired is 20 frames, IQR
17, 22, and the median peak voltage output is 95 kV, IQR 86,
104. Images sizes were all 1024 × 1024 but were acquired with
different field of view.

2.3. Video Densitometric Theory. To derive perfusion param-
eters from DSA sequences by bolus tracking analysis, the
concentration 𝐶 of the contrast agent at any location must
be known. It can be estimated through DSA as the intensity
observed in the image is proportional to the contrast concen-
tration [8, 18]:

𝐼 (𝑡)(𝑥,𝑦) = 𝑘𝜇𝐶 (𝑡)(𝑥,𝑦) 𝜌(𝑥,𝑦), (1)
where 𝐼(𝑡)

(𝑥,𝑦)
is the DSA image intensity value for a given

pixel (𝑥, 𝑦) at time 𝑡, 𝜇 is the mass attenuation coefficient of
the contrast agent which is proportional to the X-ray energy,
𝜌
(𝑥,𝑦)

is the thickness of the vessel, 𝐶
(𝑥,𝑦)

is the contrast con-
centration, and 𝑘 is a constant that accounts for the X-ray
imaging system acquisition and amplification [19].

The vessel thickness 𝜌
(𝑥,𝑦)

can be computed using one
of the previously described frameworks (e.g., [20]) that first
applies a vessel detector based on vesselness filtering and
thresholding. Centerlines are then obtained via skeletization.
Finally, a perpendicular segment (computed along each
point of the centerline) is used to measure the distance to
the edges of the vessel and derive the thickness assuming
cylindrical volume. The thickness is then applied on a cross-
sectional basis to every point within the vessel using bicubic
interpolation.

Animal studies [21, 22] of coronary circulation fromDSA
have demonstrated accurate estimation of the flow within
blood vessels. Other studies [23] estimated flow related
parameters from contrast time curves within the pulmonary
parenchyma. In those cases, the vessel diameter within the
parenchyma was too small to be measured on the image and
had to be set to a constant value 𝜌

(𝑥,𝑦)
= 𝑘
𝜌
.

We transpose these estimationmethods of the concentra-
tion-time curve within blood vessels and the brain paren-
chyma to DSA imaging routinely acquired during endovas-
cular treatment of acute ischemic strokes. The goal is to
extract cerebral hemodynamic parameters to quantify degree
of perfusion and delay, as described in the next section.

2.4. Perfusion Parameters from DSA Using Bolus Tracking.
Bolus tracking algorithms [24–27] are well established meth-
ods to determine flow and timing parameters of a bolus

travelling from a source to a target location. This section
describes the extraction process of hemodynamic indices that
will provide a quantitative description of the tissue status
from DSA.

From the contrast concentrations (see (1)), it is possible to
estimate the CBV at any location 𝑢 in the image by calculating
the amount of contrast agent 𝐶

𝑢
that has passed through it

with respect to the total amount of contrast measured at the
feeding arterial vessel 𝐶

𝑎
(i.e., arterial input function (AIF)):

CBV =
∫
∞

𝑡=0
𝐶
𝑢 (𝑡) 𝑑𝑡

∫
∞

𝑡=0
𝐶
𝑎 (𝑡) 𝑑𝑡

. (2)

Assuming no recirculation and therefore unimodality of
the contrast curves, it is common to use the peak of the con-
trast curve as a temporal landmark. The time taken to reach
that maximum is called time-to-peak (TTP).

It can be shown that the temporal relationship between
the concentration at the feeding artery𝐶

𝑎
and the target tissue

𝐶
𝑢
can be written as

𝐶
𝑢
(𝑡) = 𝐶

𝑎
(𝑡) ⊗ ℎ (𝑡) , (3)

where ⊗ is the symbol for the convolution and ℎ is the
distribution of the transit times, as the contrast agent follows
different paths through the vasculature. The transit times are
related to the fraction of injected contrast agent still present in
the vasculature at any given time 𝑡. This measure is described
by the residue function 𝑅(𝑡):

𝑅 (𝑡) = 1 − ∫

𝑡

𝜏=0

ℎ (𝜏) 𝑑𝜏. (4)

From 𝑅, we can establish the relation between the con-
centrations 𝐶

𝑢
and 𝐶

𝑎
:

𝐶
𝑢
(𝑡) = CBF (𝐶

𝑎
⊗ 𝑅) (𝑡) (5)

which indicates that the contrast concentration 𝐶
𝑢
(𝑡) in the

target tissue at a given time 𝑡 is proportional to the amount of
blood passing through per unit time (i.e., CBF).

While the concentrations 𝐶
𝑎
and 𝐶

𝑢
can be estimated

from DSA (see (1)), the residue function 𝑅 and CBF require
more complex computations. In practice, the concentration
curves 𝐶

𝑎
and 𝐶

𝑢
are sampled at discrete time points, 𝑡

𝑗
∈

[0,𝑁 − 1]:

𝐶
𝑢
(𝑡
𝑗
) = Δ𝑡CBF

𝑁−1

∑

𝑖=0

𝐶
𝑎
(𝑡
𝑖
) 𝑅 (𝑡
𝑗
− 𝑡
𝑖
) (6)

which can be rewritten as a matrix-vector notation:

𝐶
𝑢
= Δ𝑡CBF𝐶

𝐴
𝑅, (7)

where 𝐶
𝑢
, 𝑅 ∈R𝑁 and 𝐶

𝐴
is expanded to a Toeplitz matrix:

𝐶
𝐴
=(

𝐶
𝑎
(𝑡
0
) 0 ⋅ ⋅ ⋅ 0

𝐶
𝑎
(𝑡
1
) 𝐶

𝑎
(𝑡
0
) ⋅ ⋅ ⋅ 0

.

.

.
.
.
. d

.

.

.

𝐶
𝑎
(𝑡
𝑛−1
) 𝐶
𝑎
(𝑡
𝑛−2
) ⋅ ⋅ ⋅ 𝐶

𝑎
(𝑡
0
)

). (8)
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Figure 1: Illustration of a tissue concentration-time curve 𝐶
𝑢
(yellow) with respect to an arterial input function (AIF) 𝐶

𝑎
(blue). The

deconvolution of the tissue curve 𝐶
𝑢
with 𝐶

𝑎
removes the dependence on the AIF and produces the residue function 𝑅 (b). CBF is extracted

at the maximum value reached at 𝑇max, while MTT is calculated as CBV/CBF, where CBV is determined as the area under the tissue curve
(yellow). Because of the presence of arterial delays in stroke patients, the residue function is not alwaysmaximal at 𝑡 = 0 butmight bemaximal
after a delay (𝑇max).

One way to recover 𝑅 is to use singular value decom-
position (SVD) of 𝐶

𝐴
into two orthogonal matrices, 𝑈 and

𝑉
𝑇, and a diagonal matrix,𝑊, with singular values ordered

descendingly in the diagonal, 𝐶
𝐴
= 𝑈𝑊𝑉

𝑇. The solution is
then given by

𝑅 = 𝑉�̂�
−1

𝑈
𝑇
𝐶
𝑢
, (9)

where elements of �̂� that are below a threshold are set to zero.
Given that max(𝑅) = 1, CBF is derived as the maximum

of the estimated 𝑅, and 𝑇max is the time to reach this max-
imum. Once CBF has been estimated, MTT can be derived
from the central volume theorem [28], MTT = CBV/CBF.
The list of parameters extracted (CBF, CBV, MTT, TTP, and
𝑇max) is illustrated in Figure 1.

2.5. Solving Vessel Overlap with Gamma Mixture. Overlap of
the vessels may occur in biplane DSA and is one of the most
challenging aspects of the estimation of perfusion parame-
ters.This issue is illustrated in Figure 2where a selected image
location, shown as a yellow region, presents two contrast pas-
sages that lead to two peaks in the concentration-time curve.
These two distributions correspond to the arterial and venous
phase, respectively. The deconvolution method presented in
Section 2.4 assumes unimodality of the concentration-time
curve. Although it might be possible to use a previously
acquired 3D model of the cerebrovasculature to delineate
the vessels from the 2D projection, the direct processing of
biplane DSA without any prior imaging is of great interest
as other imaging modalities are not always available. To
solve this problem, we suggest representing the concentration
over time by a mixture of Gamma distributions that is
automatically recovered at each point of the image using an
expectation-maximization (EM) algorithm.

2.5.1. Gamma-Variate Fitting. The Gamma-variate function
is the most commonly used prior distribution to represent

concentration-time curves as it has been shown to closely
approximate the true contrast concentration. Drawing from
the formulations present in the literature [29–31], we con-
strain the estimation of the concentration-time curves by
assuming aminimum transit timeΔmin between the injection
site and the brain which ensures that the maximum of the
fitted distribution (which is also its inflection point) lies
within the restricted domain. The density function 𝛾

𝛼,𝛽
is

written as

𝛾
𝛼,𝛽
(𝑥)

=
{

{

{

𝛽
𝛼

Γ (𝛼)
exp−(𝑥−𝜇)𝛽 (𝑥 − 𝜇)𝛼−1 if 𝑥 − 𝜇 ≥ Δmin

0 otherwise,

(10)

where 𝛼, 𝛽, and 𝜇 are the shape, scale, and location parame-
ters, respectively. The Gamma function Γ(𝛼) is written as

Γ (𝛼) = ∫

∞

0

𝑡
𝛼−1exp−𝑡𝑑𝑡. (11)

Themean of the Gamma distribution is 𝛼/𝛽.The shape of the
Gamma distribution is determined by the 𝛼 parameter, which
intuitively relates to the contrast concentration variation.
When 𝛼 > 1, the distribution is bell-shaped, suggesting low
heterogeneity. In the case of 𝛼 < 1, the distribution is highly
skewed which indicates high variation. This flexibility makes
the distribution suitable for accommodating with different
concentration-time curves as observed at different locations
in the image.

2.5.2. Mixture of Gamma-Variate Distributions. To capture
multiple contrast passages at a given image location, we
propose to represent the concentration curve over time as a
mixture of Gamma-variate distributions. This assumes that
the overall distribution is generated from a few Gamma com-
ponents, each with its own 𝛼 and 𝛽 parameters. In our case,
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Figure 2: The bar graph of the contrast concentration-time curve (b) is shown for a specific location in a DSA sequence (shown in yellow
on (a)). Two contrast passages can be observed in the concentration-time curve due to the overlap of the vessels. By applying the proposed
method based on the EM algorithm, we are able to retrieve the individual components (represented by blue and red curves) using a Gamma
mixture representation.

each component can be thought of as one contrast passage
through one of the overlapped vessels at the current image
location. Let𝐾 be the number of Gamma components in the
mixture; the parameters of the 𝑗th component are denoted by
𝛼
𝑗
and 𝛽

𝑗
and associated with the prior probability 𝜏

𝑗
that a

measured concentration was drawn from the current compo-
nent. Parameters of the overall distribution are summarized
as Θ = {𝛼

𝑗
, 𝛽
𝑗
, 𝜏
𝑗
}, 𝑗 = 1, . . . , 𝐾, with ∑𝐾

𝑗=1
𝜏
𝑗
= 1, and the

mixture is written as

M (𝑥, Θ) =
𝐾

∑

𝑗=1

𝜏
𝑗
𝛾
𝛼𝑗,𝛽𝑗
(𝑥) , (12)

where 𝛾
𝛼𝑗,𝛽𝑗
(𝑥) is the Gamma-variate distribution of the 𝑗th

component (see (10)).

2.5.3. Parameter Estimation. The optimization of the param-
eters Θ of the mixture is posed as a maximum likelihood
estimation (MLE). The log-likelihood of parameter set Θ is
obtained by approximation using a weighted sum over dis-
crete time:

L (Θ) =
𝑁

∑

𝑖=1

logM (𝑥
𝑖
, Θ) , (13)

where 𝑖 represents a discrete time point. The parameters
Θ of the model are unknown and are estimated using the
expectation-maximization (EM) algorithm [32] which pro-
vides a convenient approximation in terms of an iterative
maximization problem.

To be able to estimate the parameter setΘ that maximizes
L, the EM algorithm introduces an unobservable matrix

𝑧 ∈ {0, 1}
𝑁×𝐾 to specify which Gamma component the 𝑖th

observation 𝑥
𝑖
comes from. In the original EM algorithm, 𝑧 is

defined as a binary variable that contains 1 for the component
it comes from and 0 for all the others. Here, we use the soft
EM definition where 𝑧 is continuous and can take any value
between 0 and 1, such that 𝑧 ∈ [0, 1]𝑁×𝐾, and where the sum
of the weights of each observed data point 𝑖 is equal to 1,
∑
𝐾

𝑗=1
𝑧
𝑖𝑗
= 1.

The complete discrete log-likelihood becomes

L (Θ) =
𝑁

∑

𝑖=1

𝐾

∑

𝑗=1

𝑧
𝑖𝑗
log 𝜏
𝑗
+ 𝐶,

𝐶 =

𝑁

∑

𝑖=1

𝐾

∑

𝑗=1

𝑧
𝑖𝑗
log 𝛾
𝛼𝑗,𝛽𝑗
(𝑥
𝑖
) .

(14)

EM uses the log-likelihood and iterates between the two fol-
lowing steps.

E-Step. Calculate the expected value 𝑄(Θ,Θ𝑚) of the log-
likelihood given current parameters Θ𝑚, and

𝑄 (Θ,Θ
𝑚
) =

𝑁

∑

𝑖=1

𝐾

∑

𝑗=1

𝑧
𝑚

𝑖𝑗
log 𝜏
𝑗
+ 𝐶, (15)

where

𝑧
𝑚

𝑖𝑗
=

𝜏
𝑚

𝑗
𝛾
𝑗
(𝑥
𝑖
; 𝛼
𝑚

𝑗
, 𝛽
𝑚

𝑗
)

M (𝑥
𝑖
, Θ𝑚)

. (16)
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M-Step. 𝑄(Θ,Θ𝑚) is maximized with respect to Θ using
numerical optimization

Θ
𝑚+1
= argmax
Θ

𝑄 (Θ,Θ
𝑚
) . (17)

The iterative procedure is executed until the convergence
criterion |Θ𝑚+1 − Θ𝑚| < 𝑡EM is satisfied or the maximum
number of iterations reached (100). To avoid local maxima, it
is repeated 5 times. The EM procedure can be performed for
a different number of components 𝐾 ∈ [1, 4], for instance.
The number 𝐾 can be selected so that it minimizes the
Bayesian InformationCriterion (BIC) [33]. To allow for faster
convergence and reduce the risk of falling into local maxima,
the procedure is initialized with 𝑘-means algorithm.

2.6. Experimental Setup. This section describes the exper-
imental protocol used in our study to evaluate the per-
fusion angiography framework. The proposed experiments
will provide valuable insights about the following ques-
tions: Can the multivariate Gamma fitting method delineate
individual contrast concentration curves in the presence
of overlap and noise? How does it compare to a state-of-
the-art fitting algorithm (RANSAC)? Is the computation of
perfusion parameters from routinely acquired DSA feasible
for assessment during endovascular interventions?

These questions are addressed by evaluating the perfusion
angiography framework on two different experiments. The
first experiment focuses on the estimation of the overlapped
contrast concentration curves and identification of the indi-
vidual components using the multivariate Gamma fitting
technique (Section 2.5). To do so, we computed the average
AIF concentration curves 𝐶

𝑎1
from 5 randomly selected

patients from our dataset on which we selected a region of
interest at a similar location on the intracerebral artery (ICA).
The average concentration curve 𝐶

𝑎1
was smoothed using a

Gaussian filter and interpolated to produce a set of𝑁 = 100
values using bicubic interpolation.The overlap was simulated
by duplicating the contrast curve 𝐶

𝑎1
to create a vector 𝐶

𝑎2
,

shifting the duplicated vector 𝐶
𝑎2
, and merging them into a

single vector 𝐶gt, thus creating a simulated overlap between
two similar contrast curves, as written as follows:

𝐶gt (𝑖)

=
{

{

{

𝐶
𝑎1
(𝑖) if 𝑖 − shif t ≤ 0, ∀𝑖 ∈ [1,𝑁]

max (𝐶
𝑎1
(𝑖) , 𝐶
𝑎2
(𝑖 − shif t)) otherwise,

(18)

where the ground truth𝐶gt corresponds to amultimodal con-
trast curve obtained from two contrast curves 𝐶

𝑎1
and 𝐶

𝑎2
,

such that the latter is temporally shifted. In our experiments,
we produced a set of merged concentration curves by varying
the shifting amount from 5 to 100, ranging from almost full
to no overlap. The objective of the experiment is then to
measure how accurately it can fit and retrieve the two original
contrast curves 𝐶

𝑎1
and 𝐶

𝑎2
using a Gamma-variate mixture

𝛾
1
, 𝛾
2
from the merged contrast curve 𝐶gt. In addition to the

evaluation of the robustness to the amount of overlap, various
levels of white Gaussian noise are added to the signal, ranging
from a SNR of 500 to 5.

Alternative methods to fitting Gamma distributions exist
in the literature. Among them, the least squares fitting based
on a discrete formulation would be possible but computa-
tionally costly. A more efficient technique is the random
sample consensus (RANSAC) method [34] that has emerged
as a versatile tool for robust parameter estimation in pattern
recognition. It is typically used in computer vision to retrieve
correspondence between images and estimate the geometric
transformation matrix that relates them. The idea behind
RANSAC is to estimate a large number of minimal-set fitting
hypotheses. For each hypothesis, a robust score is calculated;
this score is based on the alignment of the hypothesis with
all points in the set. The best scoring minimal-set hypothesis
is taken as the final estimate. In our experiments, a total of
300 fitting hypotheses were used and each hypothesis was
made of 15 points. The accuracy of both the Gamma-variate
and the RANSAC models is measured as the coefficient of
determination or 𝑅-squared. For better estimation of the
error, the process is repeated 10 times for each combination
of error and overlap, and the average 𝑅-squared is reported.

For the second experiment, we ran the perfusion angiog-
raphy on our dataset (Section 2.2) composed of DSA sequen-
ces following endovascular thrombectomy recorded on 66
acute ischemic stroke patients with MCA occlusion. The
experiments are formulated such that the distribution of a
given perfusion parameter across the MCA territory is aver-
aged and studied with respect to the TICI score. Statistical
measures of correlation and dispersion are extracted.

During our experiments, source DSA images of each
patient are processed with perfusion angiography. The con-
centration-time curve of the arterial input function (AIF)
𝐶
𝑎
(see (2)) required for the computation of perfusion maps

is obtained by extracting the average of the DSA values
comprised within a region of interest (ROI) at each time
point.This ROIwasmanually selected by aUCLAneurologist
on the source DSA of each patient prior to the processing.
In this study, it was set on the intracerebral artery (ICA) as
an elliptical region fully included in the vessel. Note that,
similar to perfusion MRI, it should be possible to detect or
estimate the AIF automatically using constraints on early
arrival time and maximum contrast values. However, to
minimize possible source of error for the computation of
perfusion parameters in this study, we chose to delineate the
AIF manually. The perfusion angiography was ran using the
BIC criterion to select among a maximum of two Gamma
components to differentiate between the arterial and the
venous phase. After processing, the following parameter
maps are available; CBF, CBVfull, CBV, MTT, TTP, and 𝑇max,
where CBVfull is the cerebral blood flow computed over the
entire cerebral cycle (including arterial and venous phases)
and CBV is computed during the arterial phase only.

In order to evaluate the five perfusion parameters pre-
sented in Section 2.4 (map ∈ {CBF,CBVfull,CBV,MTT,
TTP, 𝑇max}), the parametermaps need to be transformed into
quantitative values 𝑥map that can be used as input to the
statistical analysis. As a preprocessing step, a UCLA neurol-
ogist (blinded to outcome and perfusion maps) delineated
the MCA territory on each DSA using a template scaled
down and rotated to cover the entire territory. Each perfusion
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Figure 3: Illustration of the 𝑅-squared correlation coefficient between the estimated Gamma components and the ground truth for various
levels of Gaussian white noise in terms of signal-to-noise ratio (SNR) and percentage of overlap between the two original components. The
results are reported for the Gamma-variate method (a) and the RANSAC algorithm (b).

parameter is then characterized using the trimmed mean of
the distribution of the values within the ROI. The trimmed
mean computes the average of the values comprised between
the 5th and 95th percentiles:

𝑥map =
∑
𝑖
∑
𝑗
V (𝑖, 𝑗)
𝑁V

, (19)

where 𝑁V is the number of points included in the ROI and
comprised between the 5th and 95th percentiles and V(𝑖, 𝑗) is
the value of the perfusion map at point [𝑖, 𝑗]:

V (𝑖, 𝑗)

=
{

{

{

map (𝑖, 𝑗) ; if 𝑡
5
< map (𝑖, 𝑗) < 𝑡

95
&& ROI (𝑖, 𝑗) == 1

0; otherwise.

(20)

We evaluate the Pearson correlation between the follow-
ing pairs of variables: (CBF, TICI), (CBV, TICI), (TTP, TICI),
(MTT, TICI), and (𝑇max, TICI). To facilitate the statistical
analysis, qualitative TICI scores (“0,” “1,” “2a,” “2b,” and “3”)
are mapped to a continuous space, as follows: (“0,” 0); (“1,”
0.25); (“2a,” 0.5); (“2b,” 0.75); (“3,” 1).

3. Results

The results of the first experiment are reported in Figure 3
with the 𝑅-squared coefficient between the ground truth
and the recovered mixture. It was computed for various
levels of noise and degrees of overlap between two simulated
contrast concentration curves within the ground truth. It
can be observed that the Gamma-variate fitting framework
is able to accurately retrieve the two components of the
mixture in the presence of noise when the overlap is below
55%. When the overlap is greater than 55%, the accuracy

decreases significantly as the noise increases. As expected,
the model fails to accurately recover the two components in
the presence of very high levels of noise (SNR < 8) and high
percentage of overlap (>70%). Fitting results are illustrated in
Figure 4 for four different combinations of overlap amount
and noise levels. RANSAC recovers the components with a
decent accuracy regardless of overlap until a SNR of about
10, and then the error drastically increases in the presence of
higher levels of noise. In comparison, the standard estimation
of TTP (without multimodal fitting) taken at the maximum
of the concentration-time curve would be misplaced in half
of the cases depending on which component is the highest.

In the second experiment, the perfusion angiography
framework processed successfully 89% (59 out of 66) of the
DSA images included in our dataset. Seven cases failed during
processing due to either patient motion, short acquisition
time (i.e., the DSA acquisition did not cover the entire injec-
tion cycle), poor image quality, or low temporal resolution
(i.e., insufficient number of frames).

As a first observation, we noted that most of the patients
included in our dataset (93%; 55 out of 59) had poor outcomes
(mRS greater than or equal to 3). We also noticed that a TICI
score of 2b leads to a slightly better mRS outcome than 2a.
However, patients that reached a TICI score of 3 (i.e., com-
plete reperfusion of the MCA territory) were not associated
with a better outcome than 2b patients. The phenomenon
of futile recanalization is similar to what has been reported
in other studies [35]. Possible explanation may include
increased risk of hemorrhagic transformation. NIHSS at
admission is linearly correlated with mRS outcome (𝑟 =
0.304, 𝑝 < 0.028). In addition, low NIHSSs (i.e., not severe)
are associated with larger variations in terms of outcome.

Linear regression analysis between CBF and CBV values
revealed an overall strong correlation (𝑟 = 0.736, 𝑝 < 10−12).
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Figure 4: Illustration of theGamma fitting process to recover two components for 4 different combinations of noise and overlap. Components
𝛾
1
and 𝛾

2
are shown in blue and red and were estimated using the EM-based Gamma-variate fitting (Section 2.5) based on the noisy input

depicted by the dashed line.

Both values are estimated with perfusion angiography and
averaged over the entire MCA territory. CBV was computed
during the arterial phase of the cycle. This is an expected
result that has been shown in previous MR and CT studies
of perfusion [36] and could in principle be used to identify
infarcted areas from penumbra [37].

Scatter plots representing the CBV and CBF perfusion
angiographymaps versusTICI score are illustrated in Figure 5
where each patient is depicted by a circle. The plots include
CBF versus TICI (a) and CBV versus TICI (b). When plotted
versus TICI, CBF shows a sign of positive correlation (𝑟 =
0.292, 𝑝 < 0.064). However, low CBF is not always synonym
of poor TICI score as slower flow might still lead to good
revascularization and therefore a high TICI score. This may
explain why larger TICI variations are observed for cases
associated with low CBF. When CBV is studied with respect
to TICI (Figure 5(b)), it shows weaker correlation (𝑟 = 0.218,

𝑝 < 0.170). Significantly higher delays in terms of TTP were
measured in the MCA territory for patients with no revas-
cularization (TICI = 0). For other TICI grades, there was no
correlation with TTP. Absence of equivalence between TICI
and CBF/CBV estimated with perfusion angiography does
not imply superiority of onemeasure to the other but rather it
implies that they provide a different, perhaps complementary
set of information.

The parametric maps computed for 8 patients are dis-
played in Figures 6(a) and 6(b). For each patient, the per-
fusion parameters are illustrated, including CBF, CBVfull
(computed over the entire arteriovenous cycle), CBV (com-
puted over the arterial phase), MTT, and TTP. For display
purposes, each parametric map is normalized and color-
coded to facilitate visualization. Red is used to show high
value (↑ flow for CBF, ↑ volume for CBV, and ↑ delay for
MTT and TTP), and blue is used to represent low values. In
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Figure 5: Scatter plots representing the perfusion angiography CBV and CBF versus TICI score. Average and standard deviation for specific
TICI values are depicted by red lines.

addition, the source DSA on which perfusion angiography
was performed is shown on the bottom row of each case. For
matter of space, a subset of seven frames were sampled and
displayed for each DSA sequence.

One of the particularities of the perfusion maps is to
be bidimensional; therefore, a single image region may
represent different anatomical structures that overlap across
that region. Despite this limitation, these maps provide fine
detail as theymatch the original spatial resolution of the DSA
(1024× 1024 in our dataset).When reviewed side by side, CBF,
CBF, and TTP maps may help the expert eye to differentiate
between antegrade and collateral flow and identify risk of
hemorrhage, perfusion deficit, delay, and flow stagnation.The
computation of the perfusion parameters for a single patient
took 21 seconds. In principle, faster execution times can be
obtained as the estimation of the perfusion parameters can
be parallelized.

4. Discussion

There is an overt need to provide imaging-based decision
support to better guide and accelerate endovascular inter-
ventions in acute stroke. Among the available imaging tech-
niques, DSA is a method of choice to visualize blood flow
and guide endovascular interventions. Biplane DSA pro-
vides high-resolution spatiotemporal images that havemostly
been used qualitatively through the manual review of raw
grayscaled video. The interpretation of DSA images could
benefit from color-coded perfusion parameters that would
enable the visualization of hemodynamic features that are not
directly visible on source angiograms and allow for refined
decisions without any delay in care, added X-ray exposure, or
higher dose of contrast agent.

We have introduced in this paper a computational frame-
work for the extraction of quantitative perfusion parame-
ters from routine DSA. Similar to CT/MR perfusion, our

approach uses a deconvolution technique to derive CBF, CBV,
MTT, TTP, and 𝑇max. A novel computational solution based
on multimodal fitting was introduced to deal with overlap
of the vessels. This study has demonstrated that routinely
acquired DSA can be used to derive perfusion parameters
that are similar in spirit to the ones obtained from CT/MR
perfusion. However, the interpretation perfusion DSA is
different due to the nature of the view (frontal or lateral) and
the overlap of several brain structures within a given location.

Taking a step back, it is clear that neuroimaging provides
neurologists and neurointerventionalists with an immense
source of information for guidance in clinical decision-
making. Yet, perhaps because of the abundance of informa-
tion held in those images, their use remains suboptimal. At
UCLA, for example, the followingmodalities can be acquired:
magnetic resonance imaging/angiography (MRI/MRA), dif-
fusion/perfusion-weighted MRI, computed tomography/
tomographic angiography (CT/CTA), perfusion CT, and dig-
ital subtraction angiography (DSA). Broadly speaking, these
images offer different insights andmirror different steps of the
therapy.Neuroimaging is used before treatment to classify the
stroke using lesion size, tissue at risk, and involved vascular
territory.This allows identifying stroke patients who can ben-
efit the most from a specific treatment strategy and outweigh
its potential risks. DSA images are acquired during therapy
for decision-making. These iterative landmarks can be used
to evaluate the degree of reperfusion and recanalization by
visual scoring. Beyond the acute phase, neuroimaging is help-
ful in evaluating recovery and guiding other management
strategies such as the augmentation of cerebral perfusion
and reduction of mass effects from hemorrhage. Validation
of perfusion angiography for estimation of hypoperfusion
volume or degree of recanalization and reperfusion during
endovascular interventions would be of great interest.

The need for neuroimaging insight is triggered by the
complexity of personalized treatment and variability of stroke
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Figure 6: (a) Parametric maps computed for 4 patients. For each patient, the perfusion parameters are illustrated, including CBF, CBV (full)
(computed over the entire arteriovenous cycle), CBV (arterial) (computed over the arterial phase), MTT, and TTP.The source DSA is shown
on the bottom row of each patient. (b) Parametric maps computed for 4 patients. For each patient, the perfusion parameters are illustrated,
including CBF, CBV (full) (computed over the entire arteriovenous cycle), CBV (arterial) (computed over the arterial phase), MTT, and TTP.
The source DSA is shown on the bottom row of each patient.
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outcomes. The patient population in acute ischemic stroke
is incredibly heterogeneous; it presents a wide variety of
outcomes and responses to treatment. For example, although
the degree of recanalization correlates favorably with out-
come, the risk of death remains stable. In addition, while
the time from symptoms onset also correlates with outcome
on average, it is not rare to observe that late recanalizers do
better than early ones.These paradoxical observations can be
linked to several factors such as blood pressure, NIH Stroke
Scale (NIHSS), or age, but their individual predictive value
is too weak for supporting prospective clinical decisions.The
presence of collateral circulation beyond the site of occlusion
may also be decisive as it could sustain tissue viability
until recanalization occurs; however, its presence largely
varies across patients. Therefore, careful patient selection
for endovascular intervention based on collateral circulation
and tissue status is key to tailor interventions and improve
outcomes. Currently, collateral flow is evaluated on DSA
but remains challenged by the lack of quantitative measure.
Automatic evaluation of collateral flow and revascularization
may be possible from perfusion angiography and should be
considered for future studies.

4.1. Challenges and Limitations. The proposed framework
holds several limitations due to the bias existing in the dataset
studied, the nature of the source images, and other technical
challenges related to the computation and acquisition. We
discuss in this section these limitations and how they might
affect the results obtained and could potentially be tackled in
future studies.

A limiting factor of the study is that the dataset used in
our experiments was rather small and not evenly distributed
across degree of revascularization. Only five patients had
poor TICI scores of 0 or 1. Conversely, mRS outcome was
poor for most of the patients. Four patients fell within the
range of mRS ∈ [0, 2]. Although the study of such a data-
set can provide a proof of concept and applicability of
the techniques, drawing conclusions or guidelines from the
statistical analysis and the generalization power of specific
perfusion parameters at the population level would require a
larger, multicenter dataset. Such a study could provide more
reliable estimates and possible relationship with outcome.

On the technical side, phantom calibration would in
principle be required to obtain contrast curves that are
generalizable across patients and hardware configuration.
Because the study proposed in this paper was performed
retrospectively on routinely acquired DSA, calibration values
were not available. This lack of normalization has likely
introduced errors in the estimated parameters. A prospective
animal study with phantom calibration would be appropriate
to test the accuracy of the parameter maps (especially CBF).
In addition, vessel thickness was not considered during the
computation of the perfusion maps. Because of this, it is
likely that flow may have been incorrectly estimated in large
vessel area. It should be possible to solve this problem by
coupling the computation of the perfusion parameters with
an automatic vessel detector that could extract the vessel
diameter along the cerebrovasculature.

The time resolution of the DSA sequence (i.e., frame rate
of the acquisition) has a great impact on the quality of the
perfusion parameters. When the number of frames is too
low, it becomes very difficult to delineate the different vessels
when an overlap occurs. In addition, the estimation of CBV
and TTP becomes approximative. Unlike CT andMRI where
the time interval between each acquisition is kept constant,
DSA sequences are acquired with a varying frame sampling
rate. Therefore, the set of points of the contrast curve needs
to be resampled and interpolated. In our framework, cubic
spline interpolation was used and the interval was chosen as
the minimum time interval observed between two successive
frames in the current acquisition. Systematic tests should be
performed to evaluate the sensitivity of the estimation of the
perfusion parameters with respect to the frame rate.

There is a margin for improvement of the perfusion
angiography framework by tackling these limitations. One of
themost promising research directionswould be to perform a
comparative analysis to test equivalence of perfusion param-
eters estimated fromDSA using perfusion angiography to the
one obtained via MR or CT perfusion.

5. Conclusion

We have introduced in this paper perfusion angiography, a
methodological framework for the quantitative analysis and
visualization of blood flow parameters fromDSA images.The
parameters, including cerebral blood flow (CBF) and cerebral
blood volume (CBV), mean transit time (MTT), time-to-
peak (TTP), and 𝑇max, were reliably estimated using a bolus
tracking method based on the deconvolution of the time-
density curve on a pixel-by-pixel basis.

Although further study on a larger dataset would be nec-
essary to establish statistical correspondence with outcome
and TICI score and to provide comparative analysis with
estimated parameter maps obtained with MR and CT perfu-
sion, the proposed imaging tool provides unique insights into
flow mechanisms that cannot be observed directly in DSA
sequences and may be used to quantify perfusion impact of
endovascular interventions.

Competing Interests

The authors declare that they have no competing interests.

Acknowledgments

This work was supported by a Beginning Grant-in-Aid
award from the American Heart Association (AHA) no.
16BGIA27760152 to Professor F. Scalzo.

References

[1] A. Moniz, Diagnostic des Tumeurs Cérébrales et Épreuve de
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