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Abstract

RNA·DNA:DNA triple helix (triplex) formation is a form of RNA–DNA interaction which regulates gene expression but is difficult to
study experimentally in vivo. This makes accurate computational prediction of such interactions highly important in the field of RNA
research. Current predictive methods use canonical Hoogsteen base pairing rules, which whilst biophysically valid, may not reflect
the plastic nature of cell biology. Here, we present the first optimization approach to learn a probabilistic model describing RNA–DNA
interactions directly from motifs derived from triplex sequencing data. We find that there are several stable interaction codes, including
Hoogsteen base pairing and novel RNA–DNA base pairings, which agree with in vitro measurements. We implemented these findings
in TriplexAligner, a program that uses the determined interaction codes to predict triplex binding. TriplexAligner predicts RNA–DNA
interactions identified in all-to-all sequencing data more accurately than all previously published tools in human and mouse and also
predicts previously studied triplex interactions with known regulatory functions. We further validated a novel triplex interaction using
biophysical experiments. Our work is an important step towards better understanding of triplex formation and allows genome-wide
analyses of RNA–DNA interactions.
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Introduction
Numerous regulatory roles have been ascribed to RNAs [1, 2],
which include interactions with both DNA and proteins. The
RNA–protein interface includes functions such as transcription
factor addressing and recruitment [3], scaffolding of transcription

factor machinery [4] and mediation of histone modifications [5].
Various epigenomic consequences have been attributed to RNA–
DNA interactions, including the functional role of the XIST tran-
script in the silencing of the X chromosome during dosage com-
pensation [6]. Other examples of RNA–DNA interactions include
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RNA–DNA hybrid G-quadruplex [7] and R-loop [8] formation. R-
loops consist of interactions between single-stranded DNA and
RNA via Watson-Crick base pairing and have been implicated
in chromatin condensation and tumorigenesis [9, 10]. Alongside
these, there exists another form of RNA–DNA interaction where
DNA structure is maintained and single-stranded RNA binds in
the major groove of the double helix, resulting in the formation of
an RNA·DNA:DNA triple helix (triplex) [11].

Triplex formation represents an area of epigenetics which,
although known of in a biophysical sense for many years [12],
remains incompletely understood. There are several reasons for
this, chief amongst them being the experimental complexities of
studying triplex formation on a genome-wide scale in living cells.
Experimental probing of triplex formation in the cellular con-
text has previously relied upon methods capturing the genomic
interaction sites of single transcripts [13, 14]. However, regula-
tory transcripts have been implicated in epigenetic mechanisms
across many species, tissues and cell types [15–18]. Herein lies the
importance of developing tools which accurately predict points of
RNA–DNA interaction as putative sites of triplex formation.

Previously published computational tools have relied upon
Hoogsteen base pairing rules [19], which are canonically respon-
sible for triplex formation. Tools implementing Hoogsteen rules
include Triplexator/Triplex Domain Finder [20, 21] and LongTarget
[22]. Whilst usage of canonical rules to predict triplex formation
provides insight into putative RNA–DNA interactions, benchmark-
ing of Triplexator and LongTarget using MEG3 ChOP-seq data [13]
revealed substantial room for improvement in this area [23].
These benchmarking data suggest that accurate prediction of
triplex formation in a cellular context may require the imple-
mentation of as yet unknown base pairing rules which go beyond
the currently used Hoogsteen base pairing rules. Related to this,
there has been work on prediction of triplex-forming RNA and
DNA sequences using previously published triplex interactions
[24], although prediction of complete triplex interactions is not
possible with this method.

Accompanying computational methods for genome-wide
prediction of RNA–DNA interaction have been experimental
methods with similar aims. Foremost amongst these, with
regard to triplex formation, is genome-wide isolation of triplexes
followed by sequencing (triplex-seq) [25]. This method permits the
identification of triplex-forming sequences across the genome
(triplexDNA-seq) and transcriptome (triplexRNA-seq) but lacks
information on the pairing of the sequences with one another.
Outside specifically triplex-mediated RNA–DNA interactions,
there have been a number of published methods designed to
identify all-to-all interactions between transcripts and chromatin
[26–29]. However, the methods with most similar nucleotide
processing protocols to triplex-seq are RNA And DNA Interacting
Complexes Ligated and sequenced (RADICL-seq) [30] and RedC
[31]. These methods collectively identify specific interactions
between transcripts and regions of the genome through ligation of
RNA and DNA via a linker sequence in a proximity-based manner.
RADICL-seq and RedC provide rich sources of data on RNA–DNA
interaction but also remain relatively novel and experimentally
complex. The undertaking of such experiments across a range of
steady-state and differential conditions is therefore not feasible
at this juncture. Consequently, the most widely applicable use
for these data may be as input to machine learning algorithms,
which could permit the prediction of RNA–DNA interactions in a
condition of interest.

Here, we present a method for the prediction of RNA–DNA
interactions based on RNA–DNA binding probabilities learned by

expectation-maximization from triplex-forming sequences iden-
tified in triplexDNA-seq and triplexRNA-seq. Applying these bind-
ing rule sets as substitution matrices in local alignment permitted
more accurate recall of RNA–DNA interactions identified from
RADICL-seq and RedC when compared with previously published
tools. Experimentally validated triplex formation between tran-
scripts and genomic loci could also be recapitulated. A predicted
interaction was also subjected to biophysical validation, where
triplex formation could be experimentally verified ex vivo.

Materials and methods
Triplex sequencing data processing
Publicly accessible triplexDNA-seq data and triplexRNA-seq
data [25] (NCBI Short Read Archive accessions SRR7965691,
SRR7965692, SRR7965693, SRR7965694, SRR7965701, SRR7965702,
SRR7965703) were downloaded and aligned against the hg38
genome and transcriptome, respectively, using Bowtie2 (v2.4.4)
with default parameters [32]. Peaks were called from alignments
using HOMER findPeaks (v4.11.1) with default parameters [33].
Sequences underlying identified peaks were then extracted from
the hg38 genome or transcriptome using bedtools getfasta (v2.27.1)
with the peak coordinates per sample as input [34].

Motif enrichment and processing
Peak sequences were used as input to motif enrichment using
MEME-ChIP (v5.0.5) [35]. Shuffled peak sequences were supplied as
negative sequence input, with the maximum number of enriched
MEME motifs restricted to 16, with a maximum motif length of 32
nucleotides. Significantly enriched motifs were considered to be
those with an E < 0.05. Enriched motifs were subjected to motif
comparison between samples using Tomtom (also part of MEME
Suite), and matches were considered to be present when P < 0.05.
FIMO, another tool contained within MEME Suite, was used to
compute the occurrences of enriched triplex motifs across the
breadths of triplex DNA and RNA peaks. Triplex motif occurrence
was also computed separately for peaks lying in distinct genomic
features as defined by the TxDb.Hsapiens.UCSC.hg38.knownGene
annotation package for R, maintained by Bioconductor [36–38].
Triplex RNA motif occurrence was computed per transcript bio-
type, as defined by EnsDb.Hsapiens.v86 and normalized to tran-
script length [39, 40]. Enriched triplex DNA and RNA motifs were
compared against the JASPAR 2020 [41] and ATtRACT [42] motif
databases, respectively, in order to remove any motifs which were
identical to transcription factor-binding or RNA-binding protein
motifs.

An Expectation-Maximization-based method for
RNA–DNA code optimization
Nomenclature
Assume, we are given a DNA motif D of length l, which is a matrix
D4xl, over � = {A, C, G, T} denoting the set of characters in the DNA
alphabet. Also, we have RNA motif matrix R4xl, for simplicity we
assume that the RNA alphabet has been translated to the DNA
alphabet by exchanging U→T. For simplicity, all motifs considered
here have the same length l. Note that a difference in length
between an RNA and DNA matrix can easily be accounted for by
testing all possible shifts of the smaller matrix against the larger
matrix.

We assume that there is a set of DNA motifs D = {D1, . . . , Dn}
and equivalently a set of RNA motifs R = {R1, . . . , Rn}. For nota-
tional simplicity, we assume that they have the same number of
elements n, although in practice this may change.
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We assume that there exists a mapping code C4x4, which is a
matrix that maps nucleotides from RNA to DNA nucleotides. For
example, CA,A denotes the probability to map an A RNA nucleotide
to an A DNA nucleotide. Entries in the row of the matrix sum to
one, and thus, it holds that

∀r ∈ �,
∑

d∈�

Cr,d = 1 . (1)

The interest in this formulation is to learn the code C that is
behind a given set of motifs R and D.

Code objective value
We define the average column-wise mapping error between a
DNA motif D and an RNA motif R–termed code objective value–
given a defined code matrix C as

objective(R, D, C) =
∑

i∈�,j∈1,...,l abs(Di,j − D̂i,j)

l
, (2)

where D̂ is the projected DNA motif after conversion of R using C

D̂i,j, =
∑

a∈�

Ra,j · Ca,i , (3)

where i ∈ �, j ∈ 1, . . ., l.

Obtaining the best code using quadratic programming
Given the two sets of input motifs from DNA D and RNA R
motifs, we are looking for an optimal code C that describes the
conversion of an RNA motif to a DNA motif, as would be done
when a subsequence of an RNA is aligned to a subsequence in a
DNA sequence, a triplex match.

Assume that we had a known pairing P of the RNA to DNA
motifs, then we would be looking for the code matrix C that
minimizes the code objective value (Eq. (2)) for the pairing of RNA
and DNA matrices

argmin
C

= objective(D,R,P , C), C ∈ C , (4)

where objective(D,R,P ,C) denotes the sum of code objective val-
ues for all defined pairs using Eq. (2) and C denotes the space
of all possible code matrices. The term error in Eq. (4) may be
interpreted as the error of a learned code given the pairings of
motifs it describes. Luckily, we can obtain the code matrix C that
minimizes the code objective value using quadratic programming
efficiently.

An Expectation-Maximization algorithm for finding
optimal code sets
While it is straightforward to obtain a code matrix C that mini-
mizes the code objective value for a given pairing of RNA and DNA
motifs, in practice, the true pairing is not known. Furthermore,
it is unknown whether the triplex binding of all RNA–DNA pairs
follows the same code and the possibility of several code matrices
needs to be considered.

Therefore, we have designed an Expectation-Maximization
algorithm for finding a set of code matrices starting from a
given set of RNA and DNA motifs for which the correct pairing is
unknown.

Conceptually, the algorithm performs the three following steps
to find k many code matrices

Input: D,R, k
generate k random code matrices C∗

1, . . . , C∗
k

1. C1 = C∗
1, . . . , Ck = C∗

k

2. obtain the best pairings for elements in D and R using one
of C1, . . . , Ck

3. for each: i=1, . . . ,k
C∗

i = minimize code of all paired DNA and RNA motifs that
used Ci

repeat at 1. if (C1 �= C∗
1, . . . , Ck �= C∗

k)
Output: final code matrices C∗

1, . . . , C∗
k, pairing P

The second step listed above–where the best motif pairings are
obtained–refers to obtaining the best pair for each RNA motif in
R with a DNA motif in D testing all k code matrices. The best
pair are the indices i, j, h where error(Ri,Dj,Ch) is minimal. In this
process, it is allowed that several elements from R are paired with
the same element in D and vice versa.

In summary, the above EM procedure determines the best pair-
ing between RNA and DNA motifs and determines k code matrices
as a result of the process. Results are output upon convergence
of the algorithm, when all code objective values have been min-
imized and the code matrices are unchanged. Applications using
both simulated and real motif pairs in the course of this work
have shown that the algorithm converges in a small number of
iterations in practice. However, the solution only constitutes a
local minimum; therefore, we run the algorithm many times with
the same input data, e.g. 11 270 times with the real triplex input
motifs.

The code for the steps described above is publicly available at
https://github.com/SchulzLab/Codefinder.

Code processing and annotation
Learned code models, which were output from the Expectation-
Maximization algorithm, were stratified by their objective values
and the total number of motifs incorporated into the model. These
metrics were also used to subset the models and identify the
most promising candidates for further study (objective < 0.75,
total motifs > 50%). In vitro RNA·DNA:DNA triple helix base triplet
stability data [43] were used to compare the affinities of learned
code models versus a size-matched set of random code models.
In short, the normalized dissociation constant of the RNA:DNA
interaction as reported in [43] was multiplied by the probabilities
of nucleotide interaction contained within the code matrix, and
then summed. The relative affinity values for each code model
with total motifs > 10% were also linearly regressed against the
objective values returned from Expectation-Maximization. Fol-
lowing this, high-scoring code models were subjected to hierar-
chical clustering with Euclidean distances and Ward’s method in
order to control for redundancy [44]. The resulting dendrogram
was then cut to produce eight clusters, and the mean code model
for each cluster was computed.

Formulation of TriplexAligner
To be implemented in TriplexAligner, probabilistic code model
values were converted to log odds scores according to [45]. Sub-
sequent score distributions were computed for each code model
with Biostrings::pairwiseAlignment [46], using simulated DNA and
RNA sequences with matching nucleotide proportions relative
to human promoter sequences and known triplex-forming tran-
script sequences, respectively. Arising scores were fitted using a
generalized extreme value distribution [47] with EnvStats::egevd
[48], using maximum likelihood estimation. The parameter values
K and λ could then be identified for each code model. Using

https://github.com/SchulzLab/Codefinder
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these parameters, bit scores (S′) and corresponding E values could
be calculated from local alignment scores (S) of respective code
models according to the following formulas:

S′ = λS − ln(K)

ln2
, (5)

E = mn 2−S′
. (6)

TriplexAligner computes local alignment scores, bit scores and E
values between supplied DNA and RNA sequences for each code
model using Biostrings::pairwiseAlignment and the above formulae,
with the log odds code model supplied as the substitutionMatrix
parameter.

The code for TriplexAligner is publicly available at https://
github.com/SchulzLab/TriplexAligner, where it is formalized as
an R package which may be downloaded, installed and used by
interested parties.

Computational validation of TriplexAligner using
global RNA–DNA interactions
RNA–DNA interactions arising from either RedC (GSE136141)
or RADICL-seq (GSE132192) were used to benchmark the
performance of TriplexAligner compared with the previously
published tools LongTarget and Triplexator. For RedC data,
interactions between RNAs and 5 kb genomic bins were used
for validation if they were present in two separate replicates.
For the RADICL-seq interactions, significant interactions between
RNAs and 5 kb genomic bins were identified according to [30].
Interactions between RNAs and genomic bins were expanded
to include all possible transcripts of the involved RNA gene,
as annotated in TxDb.Hsapiens.UCSC.hg38.knownGene [49] or
TxDb.Mmusculus.UCSC.mm10.knownGene [50] annotation packages
for R [38]. RADICL-seq interactions were limited to those
involving transcripts expressed in accompanying nuclear RNA-
seq data, quantified using Salmon (v 1.6.0) [51]. For each
interaction, involved RNA and DNA sequences were subjected
to RNA·DNA:DNA triple helix prediction using TriplexAligner,
LongTarget and Triplexator. A corresponding negative dataset was
constructed via shuffling of the transcript sequences. LongTarget
was run with default parameters, and Triplexator with -e 20
-l 5. Maximum metrics (TriplexAligner: − log10(E); LongTarget:
MeanStability; Triplexator: Score) were identified per gene-bin
interaction and used as predictive values in subsequent analyses
with pROC and ROCR [52, 53]. Receiver operating characteristic
curves were computed for each method with binomial smoothing
and statistically compared by bootstrapping (n = 2000).

Electrophoretic mobility shift assay
All hybridization steps were performed in 25 mM HEPES, pH 7.4, 50
mM NaCl and 10 mM MgCl2. DNA oligos, spanning the predicted
triplex DNA sequence (20 pmol), were hybridized to DNA duplex
in a thermocycler by heating up for 5 min to 95◦C followed by a
cool down to 24◦C with a rate of 1◦C/ 30 s. For triplex formation,
10 eq of ssRNA (200 pmol), containing the predicted triplex RNA
sequence, was added to the DNA duplex followed by incubation
at 60◦C for 1 h and a cool down to 24◦C with a rate of 1◦C/ 30 s.
RNase H digestion was performed by adding RNase H to a final
concentration of 375 mU/μL to a triplex sample and incubate it
for 30 min at 37◦C. RNase A was added to a triplex sample with a
final concentration of 5 ng/μL and incubated similarly to RNase
H. Samples were applied on a native 15% Polyacrylamide gel in a

running buffer containing 40 mM Tris-Ac pH 8.3 supplemented
with 3 mM magnesium acetate. The gels ran for 6 h at room
temperature with 160 V.

CD spectroscopy and melting curve analysis
Circular dichroism spectra were acquired on a Jasco J-810 spec-
tropolarimeter. The measurements were recorded from 210 to
320 nm at 25◦C using 1 cm path length quartz cuvette. CD spectra
were recorded on 8 μM samples of each DNA duplex, DNA:RNA
heteroduplex and DNA:DNA:RNA-triplex (10 equivalents of RNA
(80 μM)) in 25 mM HEPES, 50 mM NaCl and 10 mM MgCl2 (pH 7.4).
Spectra were acquired with 8 scans and the data were smoothed
with Savitzky–Golay filters. Observed ellipticities recorded in mil-
lidegree (mdeg) were converted to molar ellipticity [�] = deg ×
cm2×dmol−1. Melting curves were acquired at constant wavelength
using a temperature rate of 1◦C/min in a range from 5 to 95◦C. All
data were evaluated using SigmaPlot 12.5. All melting tempera-
ture data were converted to normalised ellipticity and evaluated
by the following equation: f = a/(1 + exp(−(x − x0)/b)) + c/(1 +
exp(−(x − x2)/d)).

Results
Prediction of RNA·DNA:DNA triplex interactions
from captured triplex sequences
In order to predict interactions between DNA and RNA medi-
ated by triplex formation (Figure 1A), we developed TriplexAligner.
TriplexAligner is capable of predicting RNA–DNA interactions with
high accuracy, surpassing currently available methods. Develop-
ment of TriplexAligner (Figure 1B, Supplementary Figure 1) encom-
passed multiple stages and included multiple next-generation
sequencing datasets, alongside machine learning and biophysical
methods. Initially, key sequence elements of triplex-forming RNA
and DNA sequences needed to be identified. For this purpose,
triplexRNA-seq and triplexDNA-seq data from HeLa cells [25]
were analysed and triplex-forming regions were identified by
peak calling. RNA and DNA components of the published triplex
interaction between the MEG3 transcript and the gene locus of
COL15A1 [13] could be clearly identified in the dataset (Figure 1C).
This satisfied the requirement that the input data sufficiently
capture triplex formation taking place in the cellular context.

Identification of short sequences underpinning
triplex formation
The next step in development of TriplexAligner was the identi-
fication of triplex-enriched DNA and RNA regions, along with
associated sequences. Peak calling on triplexDNA-seq data
identified regions most often in intronic areas of the genome
(Figure 2A), although promoter regions were most enriched for
peak occurrence relative to the proportion of the genome covered
(Supplementary Figure 2A). When calling peaks from triplexRNA-
seq data, most peaks were detected in protein-coding transcripts
(Figure 2B). Transcripts with retained introns, followed by
antisense transcripts, were most enriched for triplexRNA-peaks
relative to transcript length (Supplementary Figure 2B).

To identify sequences underpinning triplex-seq peaks, motif
enrichment analysis was performed using MEME-ChIP [35] on
sequences underlying peaks in each sample. Between 22 and 36
significantly enriched motifs were identified per triplexDNA-seq
sample (Figure 2C, left). More motifs were identified in the RNA
samples, which each returned more than 125 enriched motifs
(Figure 2C, right). To investigate the reproducibility of the enriched

https://github.com/SchulzLab/TriplexAligner
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Figure 1. Overview of RNA·DNA:DNA triple helix formation and the
development of TriplexAligner from triplex-seq data. (A) Schematic of
RNA·DNA:DNA triple helix formation and effects on gene expression.
(B) Overview of the development of TriplexAligner. (C) Peak calling
on triplexDNA-seq (blue) and triplexRNA-seq data (red). The displayed
regions reflect the published RNA·DNA:DNA triple helix interaction
between MEG3 and a DNA site in the locus of COL15A1, which results
in the regulation of the downstream gene TGFBR1.

sequences, motifs were compared between samples using Tom-
tom [35]. Both RNA and DNA samples displayed high degrees of
reproducibility, with a minimum of 76% of DNA motifs per sample
having similar motifs in another DNA sample (Figure 2D, top). RNA
motifs were also reproducible, with the minimum percentage of
similar motifs between any two samples being 66% (Figure 2D,
bottom). Individual RNA motifs also exhibited more significant
enrichment than DNA motifs, observable when examining the
five most enriched motifs of each molecule (Figure 2E). The most
enriched RNA motif had an E value of 8.6 × 10−1382, in comparison
to an E value of 4.2 × 10−95 for the most enriched DNA motif.

In order to establish whether enriched triplex motifs reflect
putative regulatory functions of triplex formation, motif occur-
rence in different features and transcripts was compared.
Enriched triplex DNA motifs occurred at higher rates in triplex
DNA peaks residing in promoters, intergenic regions and
introns relative to exonic regions (Figure 2F). Triplex RNA motifs
appeared more often in transcripts lacking open-reading frames–
specifically lincRNAs, antisense transcripts and transcripts with

retained introns–relative to protein coding transcripts (Figure 2G).
Taken together, these findings indicate that triplex formation
between non-coding RNA and non-coding regions of the genome
is best described by reproducible sequence elements. In a
positional sense, triplex motifs did not show any specific pattern
of occurrence within peak regions (Supplementary Figure 2C).

To select triplex motifs to take forward to the next stage of
development, the enriched RNA and DNA motifs were subjected
to several stratification steps. Identical motifs between samples
were removed from the analysis, and motifs previously implicated
in either transcription factor or RNA-binding protein interactions
were excluded in an attempt to isolate sequences of most impor-
tance for triplex formation. Complementary DNA motifs were
also added (Figure 2H), owing to the non-stranded nature of the
analysis. The outcome of these steps were two sets of triplex
motifs, consisting of 192 DNA motifs and 324 RNA motifs, which
were used in the development of TriplexAligner.

Expectation-maximization to learn triplex
formation rules
To learn the putative nucleotide pairing rules which might gov-
ern triplex formation, an Expectation-Maximization (EM) algo-
rithm was used to compute triplex nucleotide pairing probabil-
ities from triplex motifs (Figure 3A). The expectation portion of
the algorithm was formed by pairings of RNA and DNA triplex
motifs. From these pairs, probabilistic models were computed
by quadratic programming, averaged across the pairings and
evaluated for their error per motif pair (here termed the code
objective value). When the objective value was minimized, motif
pairings and probabilistic triplex mapping codes were returned.
Initially, simulated motif sets were used to test the algorithm. The
algorithm was capable of accurately learning nucleotide pairing
probabilities, with an example shown in Figure 3B of the learning
of Watson–Crick base pairing rules from 100 simulated motif
pairs.

The algorithm was subsequently implemented with enriched
triplex motifs as input, across 11 270 separate random initia-
tions (Figure 3C). Results were then probed for several metrics,
including the final objective values and proportion of total motifs
included in the final motif pairings. Results with objective values
less than 0.75 and containing more than 50% of total triplex motifs
represented the most promising results and were subset, resulting
in 801 putative codes. These subset conditions reflect the inten-
tion to find a balance between incorporating as much of the input
data as possible, along with discarding low-scoring codes which
may reflect aberrant starting points of the algorithm (Supple-
mentary Figure 3). High-scoring codes resulting from these steps
were annotated with published in vitro triplex nucleotide disso-
ciation equilibrium constants [43]. The relative binding strengths
were calculated for each code and its reverse complement, with
the maximum then being taken as the value for that code. The
high-scoring mapping codes presented significantly (W = 415474,
P < 2.2 × 10−16, Mann–Whitney U test) greater relative binding
strengths than an identically sized set of randomly generated
codes (Figure 3D). When regressing code objective values from all
results containing more than 10% of all motifs versus relative in
vitro binding strengths, a negative correlation could be seen (R2 =
0.394, P < 2.2 × 10−16, Figure 3E). This correlation suggested that
the code objective values reflect experimental data, making them
appropriate to stratify the codes by. Given that the algorithm used
here minimizes the code objective value, a negative correlation
between this value and in vitro stability directly supports the
approach. Collectively, these data suggest that the probabilistic
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Figure 2. Identification of enriched and reproducible RNA·DNA:DNA triple helix-forming motifs. (A) Distribution of triplexDNA-seq peaks across intronic
regions (I), intergenic regions (IG), exonic regions (E) and promoter regions (p) as annotated in the hg38 genome build by NCBI. (B) Distribution of
triplexRNA-seq peaks across antisense transcripts (AS), long non-coding RNAs (lnc), protein-coding transcripts (PC) and transcripts with retained introns
(RI). (C) Total significantly enriched (E < 0.01) triplexDNA and triplexRNA motifs identified per replicate of triplexDNA-seq and triplexRNA-seq. (D)
Proportions of motifs per replicate with similar (P < 0.05, Tomtom) motifs in accompanying replicates of triplexDNA-seq (blue) or triplexRNA-seq (red).
(E) The five most enriched motifs across all replicates of triplexDNA-seq (left) and triplexRNA-seq (right). (F) Occurrence of triplexDNA motifs per
kilobase of triplexDNA-seq peaks appearing in exonic (E), promoter (P), intergenic (IG) and intronic (I) genomic regions. (G) Occurence of triplexRNA
motifs per kilobase of protein-coding (PC), retained intron (RI), long non-coding (lnc) and antisense (AS) transcripts. (H) Schematic of motif processing
steps, including removal of identical motifs, removal of known protein-binding motifs and inclusion of reverse-complement triplexDNA motifs, which
resulted in the final sets of triplexRNA (red) and triplexDNA (blue) motifs.

codes learned using an expectation-maximization algorithm from
triplex motifs have biophysical relevance in triplex formation.

In order to stratify the codes to be taken forward and imple-
mented in TriplexAligner, high-scoring results (objective value <

0.75, total motifs utilised > 50%) output from the expectation-
maximization algorithm were hierarchically clustered and sub-
jected to tree cutting, resulting in eight distinct code clusters
(Figure 3F–G). Amongst these were partially redundant pairs of
codes (clusters 1 and 2, clusters 3 and 4), resulting from the prob-
abilistic nature of the outputs. Complementary codes (clusters 5
and 7) were also present, reflecting the non-stranded nature of
the input sequencing data. Amongst these codes were canonical
Hoogsteen base pairing rules (C·G:C, U·A:T, G·G:C, A·A:T) [21] along
with previously unreported RNA·DNA:DNA base pairings. The
learning of potentially novel base pairings is a key point of the
naive, unbiased approach taken herein. To determine the poten-
tial worth of these base pairings, an assessment of the returned
codes in the prediction of published RNA–DNA interactions was
carried out.

In order to perform the validation of the stratified codes
returned by the expectation-maximization algorithm, the codes
were implemented as scoring matrices in a new software called
TriplexAligner. TriplexAligner is a local alignment program which
uses Karlin–Altschul statistics [54] to determine subsequences of
triplex formation between RNA and DNA.

TriplexAligner recalls RNA–DNA interactions and
known triplexes
Genome-wide validation of TriplexAligner was carried out using
published RNA–DNA interactions as detected by RADICL-seq [30]
and RedC [31]. Significant interactions between transcripts and 5
kb genomic bins were decomposed to RNA and DNA sequences
and constituted the positive data set. RADICL-seq interactions
were further refined using accompanying nuclear RNA-seq data
[30]. Transcript sequences were shuffled in order to generate a
negative interaction set whilst maintaining nucleotide frequen-
cies. Triplex formation between sequences was then predicted
using TriplexAligner, Triplexator [20] and Long Target [22]. Maximum
scores for each method were computed per RNA–DNA interaction
(Figure 4A) and used as predictive values. All three tools were
able to positively classify RADICL-seq and RedC interactions, with
TriplexAligner returning the greatest area under the receiver oper-
ating characteristic (ROC) curve for both assays (Figure 4B and C,
Supplementary Figure 4A). In both cases, the area under the ROC
curve was significantly greater for TriplexAligner compared with
the other tools (P < 0.05, bootstrapping n = 2000) (Figure 4D).

Upon assessing the performance of each of the individual
mapping codes, which constitute TriplexAligner, it became clear
that code performance varied between both individual codes and
assays. Notably, Code 5 displayed the lowest performance on
both RADICL-seq and RedC data and was only marginally better
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Figure 3. Learning RNA·DNA:DNA triple helix nucleotide pairing rules from motifs using expectation-maximization. (A) Schematic of the expectation-
maximization algorithm used to learn RNA·DNA:DNA triple helix base pairing probabilities from pairings of enriched triplexRNA and triplexDNA motifs.
(B) Example use-case of the expectation-maximization algorithm on simulated sets of motifs (n = 100) which were paired by Watson–Crick base pairing
rules, with corresponding objective values and number of incorrect motif pairs displayed per iteration of the algorithm. (C) Output from the expectation-
maximization algorithm when run on enriched triplexDNA and triplexRNA motifs identified from triplex-seq, displaying the mean objective values
across all code models learned per initiation of the algorithm and the corresponding proportion of motifs included. (D) Correlation between code model
objective values and in vitro RNA·DNA:DNA binding affinities as reported in [43]. Objective values and affinities were subjected to linear regression,
with corresponding coefficient of determination (R2) and P-value displayed on the plot. (E) Comparison in code model affinities between high-scoring
subset (objective value < 0.75, total motifs > 50%) expectation-maximization results and a size-matched set of randomly generated code models (P <

0.001, Wilcoxon signed-rank test). (F) High-scoring expectation-maximization results subjected to hierarchical clustering and tree-cutting (k = 8), with
corresponding clusters, code model affinities, objective values and total motifs assigned displayed. (G) Mean probabilistic code models per cluster of
expectation-maximization results.

than random code performance (Figure 4E, Supplementary Figure
4B). Different transcripts also showed different preferences for
codes. For instance, the two most prevalent lncRNAs in the RedC
dataset–MALAT1 and NEAT1–showed completely different code
preferences. RedC interactions involving MALAT1 were most often
best-predicted by code 3, compared with interactions of NEAT1
which were more heterogeneously predicted, with a tendency
towards code 7 (Supplementary Figure 4C).

Where the above results showcase the ability of TriplexAligner
to recall genome-wide RNA–DNA interactions, we also sought
to demonstrate that TriplexAligner could predict previously
published triplex interactions. Triplex interactions between the
lncRNA SARRAH and a number of cardiac gene promoters (ITPR2,
PARP8, PDE3A, SSBP2 and GPC6) have been reported [55]. When
using TriplexAligner to predict the triplex formation between
SARRAH and these genomic regions, triplex formation at the
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cardiac promoters was predicted with greater − log10(E) values
compared with the control promoter used in the experiment
(GAPDH) (Figure 4G). Of the promoters considered, the best
alignment returned by TriplexAligner was between SARRAH
and ITPR2 (Supplementary Figure 4D). Other published triplex
interactions, between HOTAIR and the promoter region of PCDH7
[56] (Figure 4H, left), as well as the triplex formed between
NEAT1 and the CYP4F22 promoter [25] (Figure 4H, right) returned
− log10(E) values of 5.84 and 18.0, respectively.

If implemented in a genome-wide manner, TriplexAligner could
also be used to identify regulatory regions of RNAs which are
important to triplex formation. Here, triplex formation between
an exemplary RNA (Neat1) and promoter sequences of genes
differentially expressed after Neat1 knockout [57] was predicted
using TriplexAligner. It was evident that a specific region of the
Neat1 transcript was implicated in predicted triplex formation
(Figure 4I), indicating a region of putative regulatory importance
in the transcript.

TriplexAligner code models are biophysically
valid
To assess the biophysical validity of the code models used in
TriplexAligner, maximal RADICL-seq pair alignments of each code
were computed. The alignment with the greatest − log10(E) value
was that implementing code 7. RNA and DNA oligonucleotides
representing maximally scoring subsequences of this interaction
(Figure 5A) were submitted for analysis by electrophoretic mobil-
ity shift assays (EMSA), circular dichroism (CD) spectroscopy and
melting curve analysis.

When the double-stranded DNA was incubated with single-
stranded RNA and subjected to an EMSA, an RNaseH-resistant
band could be observed in the gel separate from the double-
stranded DNA alone (Figure 5B). RNaseH resistance indicates that
the formed structure was not an R-loop [58] and could therefore
be an RNA·DNA:DNA triple helix. When subjected to CD spec-
troscopy, a distinct negative peak at 230 nm was present when
RNA and DNA were mixed, along with a shifted and prominent
main peak at 270 nm (Figure 5C). These shifts were not visi-
ble when double-stranded DNA alone or mixed single-stranded
DNA and single-stranded RNA (heteroduplex) were tested. In
melting assays, two melting points could be assigned to the
curve obtained from the mixed double-stranded DNA and single-
stranded RNA (Figure 5D). In contrast, only single melting points
could be assigned to double-stranded DNA alone and heterodu-
plex inputs.

These results indicate that RNA–DNA interactions positively
predicted by TriplexAligner have the potential to be biophysically
valid triplexes, even when only a small portion of the predicted
triplex is tested.

Discussion
Unlike previously published tools for the prediction of triplex for-
mation, TriplexAligner uses probabilistic nucleotide pairing models
learned from sequencing of triplex-forming DNA and RNA to pre-
dict triplexes. Compared with discrete and canonical Hoogsteen
base pairing rules, this resulted in the improved recall of all-to-
all RNA-DNA interactions. This demonstrates that formation of
RNA–DNA interactions is more complex than simple base pairing
rules, and therefore, prediction of such interactions requires more
malleable models such as those proposed here.

The nature of the input data originating from triplexRNA-seq
and triplexDNA-seq [25], and the fact that we wanted to integrate

triplex codes into local alignment methods, has led us to our for-
mulation using RNA-to-DNA matrices. We showed that optimiza-
tion of the code matrices and the corresponding motif pairs can
be formulated as a code mixture problem using an expectation-
maximization algorithm [59]. The use of this algorithm permitted
the estimation of triplex motif pairings, and subsequently RNA–
DNA base pairing probabilities whose error (objective) could be
minimized. In practice, the algorithm converged in few itera-
tions. The drawbacks of expectation-maximization [60] either had
a minimal impact (quick convergence) or could be effectively
overcome (many initiations to cover the search space). Thus,
the algorithm provided useful information for implementation
in TriplexAligner. Notably, if more complex formulations of RNA-
to-DNA interaction would be considered, the optimization would
likely become more challenging and a straightforward integration
into existing local alignment approaches may become impossible.
Here, we were able to use the established Karlin–Altschul statistic
to directly generate E-values for the triplex alignments, which is a
novel contribution compared with established tools. Nevertheless,
more complex formulations of RNA-to-DNA interaction would
require alternative machine learning approaches, such as neural
network-based approaches.

The naive, unbiased manner in which the expectation-
maximization algorithm used herein was formulated meant that
the returned code models are a heterogeneous mix of known,
canonical Hoogsteen base pairings [21] along with previously
unreported RNA–DNA base pairings. Due to the probabilistic
nature of the code models, it was initially challenging to
determine whether these putative novel base pairings were
genuinely interesting, or artefacts. In the validation carried
out in the course of this work, it could be shown that these
unconventional pairings are also good predictors of RNA–DNA
interaction. The question remains, however, whether these base
pairings are involved in true biophysical interaction between RNA
and DNA molecules, or whether their roles are more complex.
For example, seeing as the roles of proteins in triplex formation
remain unknown, it could be that these non-canonical base
pairings are important for the recruitment of co-factors important
for stabilization of the triplex structure.

Interestingly, it could be demonstrated that different tran-
scripts may have different preferences for the code with
which their interactions were predicted. The examples given
here–MALAT1 and NEAT1–are both lncRNAs which have been
previously shown to interact with chromatin [61]. However, when
their RNA–DNA interactions are predicted by TriplexAligner, they
are best-predicted with different codes. These two lncRNAs have
been proposed to carry out functions at similar genomic loci–
namely actively transcribed genes–but to bind at distinct sites in
these regions. Therefore, interactions underpinned by different
codes would facilitate this process. Inferring functional roles of
different types of triplex formation would constitute an exciting
and important future research area.

When investigating the relative performance of each of
the codes learned by the expectation-maximization algorithm
described herein, we could observe differences in performance
of codes between datasets. For example, code 1 was the
highest performing code in prediction of RADICL-seq RNA–DNA
interactions but was outperformed by codes 4, 2 and 3 in recall of
RedC interactions. Given the distinct nature of the methods used
to identify these RNA–DNA interactions, it is difficult to establish
whether these are true differences in performance or merely
reflect the subtle differences between the wet-lab methodologies.
For instance, it may be that one of the methods enriches trans
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Figure 4. Computational validation of TriplexAligner using RNA–DNA interaction data and published RNA·DNA:DNA triple helix interactions. (A)
Schematic outlining the computational validation of TriplexAligner, using global RNA–DNA interactions identified by either RADICL-seq or RedC and
subjecting the corresponding RNA and DNA sequences to prediction of RNA·DNA:DNA triplex formation with TriplexAligner, Triplexator and LongTarget.
Negative interaction data were generated by shuffling of RNA sequences. (B) ROC curves summarizing performance of TriplexAligner (orange), Triplexator
(blue) and LongTarget (grey) in prediction of RADICL-seq RNA–DNA interactions. (C) ROC curves summarizing performance of TriplexAligner (orange),
Triplexator (blue) and LongTarget (grey) in prediction of RedC RNA–DNA interactions. (D) Comparison of area under the ROC curves displayed in B and C
(Non-sign. P > 0.05, * P < 0, 05, *** P < 0.001, bootstrapping (n = 2000)). (E) Area under the ROC curves of individual TriplexAligner code models for RADICL-
seq and RedC RNA–DNA interactions. (F)TriplexAligner ROC curves for cis (RNA gene locus and interaction site on the same chromosome, solid line) and
trans (RNA gene locus and interaction site on different chromosomes, dashed line) RNA–DNA interactions arising from RADICL-seq (purple) and RedC
(orange) data. (G)TriplexAligner -log10(E) values for predicted interactions between lncRNA SARRAH and published interacting promoters ITPR2, PARP8,
PDE3A, SSBP2 and GPC6, in comparison to the negative control promoter of GAPDH. (H)TriplexAligner predictions of published RNA·DNA:DNA triplex helix
formation between the lncRNAs NEAT1 and HOTAIR and the promoter regions of CYP4F22 and PCDH7, respectively. (I) Schematic of the lncRNA Neat1
showing most commonly predicted sites of RNA·DNA:DNA triple helix formation in the lncRNA against multiple gene promoters dysregulated after
Neat1 knockout.

interactions more so than the other or fails to effectively remove
interactions arising from nascent transcription. Another aspect
to consider is species differences, given that the RADICL-seq data
used here arise from murine cells, and the RedC from human
material. Naively, we would not expect this to make a difference.
However, so little is known about the conditions which facilitate
triplex formation; there could be unknown species-specific co-
factors which favour different triplex base pairings.

When compared with Triplexator, the most widely used tool
for prediction of triplex formation, outputs from TriplexAligner

differ in a number of aspects. Most notable is that triplexes
predicted by TriplexAligner tend to be far broader than those
predicted by Triplexator. There are several potential reasons for
this observation, all of which are figurative, given the lack of wet-
lab data. From a technical perspective, the implementation of
TriplexAligner as a local aligner using Karlin–Altschul statistics [54]
means that the score metric is highly dependent on the width of
the alignment, and thus, broad alignments are more likely to be
reported as interacting regions. Triplexes predicted by Triplexator
are - by default - a minimum length of 20 base pairs. During
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Figure 5. Biophysical validation of interacting DNA and RNA sequences as predicted by TriplexAligner. (A) Maximal scoring DNA (blue) and RNA
(red) subsequences across RADICL-seq interactions as predicted by TriplexAligner, which were synthesized in vitro and used in subsequent biophysical
experiments investigating RNA·DNA:DNA triple helix formation. (B) EMSA using combinations of DNA and RNA (shown in A), as either double-stranded
DNA (dsDNA), double-stranded DNA and single-stranded RNA (dsDNA + ssRNA) and single-stranded DNA in combination with single-stranded RNA
(heteroduplex). RNA·DNA:DNA triple helix formation was investigated in RNase-free conditions (- RNase), in combination with RNaseH or in combination
with RNaseA. (C) CD spectroscopy of double-stranded DNA and single-stranded RNA (Triplex, black), double-stranded DNA (dsDNA, blue) and single-
stranded DNA with single-stranded RNA (Heteroduplex, red). (D) Melting analysis DNA and RNA molecules (described in C), with melting points labelled
and annotated.

prediction of RADICL-seq and RedC interactions, the widths of
Triplexator-predicted interactions did not exceed 30 base pairs. In
comparison, the alignments reported by TriplexAligner exceeded
100 base pairs on a number of occasions. Due to technical and
financial restraints, it is challenging to experimentally determine
whether these alignments are reflected in biological systems.
However, longer tracts of triplex formation could permit increased
specificity of interactions between transcripts and genomic loci,
thereby mediating more precise regulatory relationships between
RNAs and target genes. Alongside this, longer tracts of interaction
could result in increased stability, increasing the robustness of the
regulatory mechanism. Alternatively, the long tracts of interaction
predicted by TriplexAligner may provide the conditions for RNA–
DNA interaction to take place along the length of the tract in a
dynamic manner. This would entail that the entire length is not
interacting at any one time, and instead, sub-tracts of RNA and
DNA interact when spatio-temporal conditions are favourable.

Whilst TriplexAligner recalls RNA–DNA interactions more accu-
rately than previously published tools, it remains imperfect. There
exist a variety of reasons for this. In TriplexAligner, the assumption
is made that triplex formation takes place between two linear
molecules, consequently disregarding the influence of higher
order structures. Whilst TriplexAligner does not consider chro-
matin state, it was previously shown that triplexDNA-seq data
isare enriched in regions of open chromatin [25]. It is therefore
likely that motifs used to develop TriplexAligner arose from open
chromatin, in spite of the previously reported repressive functions
of triplex formation [62–64]. Consequently, triplexDNA-seq and
therefore TriplexAligner could be biased towards triplex formation
with activatory functions. Validating the effects of chromatin con-
formation on triplex formation would require non-steady-state
data, where both differential chromatin states and differential
triplexDNA-seq regions could be identified, and these data do not
currently exist.

Beyond chromatin conformation, it is also possible that triplex
formation is influenced by more complex 3D structures of both
RNA and DNA. Sites of predicted triplex formation are correlated
with 3D genome structure [65], but it is unclear when triplexes
form relative to the establishment of 3D genomic structures. It
is also likely that the secondary structures of triplex-forming
transcripts affect on the formation of triplexes. Transcripts can
fold into complex structures, resulting in regions with divergent
accessibility [66]. This would restrict regions of RNA which are

free to interact with DNA, alongside forming new interfaces which
are irrecoverable from linear molecules. Integration of features
beyond linear RNA and DNA sequences therefore represents an
important future research topic. Experimental methods to exam-
ine high-resolution 3D structures of nucleic acids, such as RNA
SHAPE [67], remain complex and challenging. However, progress
in this field would provide further insight into the 3D require-
ments for RNA–DNA interactions to successfully form. Here again,
the roles of proteins in the facilitation of RNA–DNA interactions
are unclear, but likely highly important. The incorporation of
2D RNA structure prediction, such as tools available from the
ViennaRNA package [68], into TriplexAligner could be a useful
addition to the tool. In addition, the use of RNA aligners which
consider secondary and tertiary structures [69–71], could be con-
sidered as a downstream analysis option, in order to compare
triplex-forming RNA structures and identify important regulatory
structures, which may facilitate triplex formation.

TriplexAligner was developed with the aim of providing
researchers with a method of predicting RNA–DNA interactions
which is grounded in data. By leveraging of triplex-forming
sequences captured in next-generation sequencing experiments,
TriplexAligner reports predictions with a basis in data, and which
extend beyond canonical and discrete base pairing rules. As such,
TriplexAligner is a unique tool with the potential to direct wet-lab
research on regulatory RNA networks and thereby further clarify
the role of RNA–DNA interactions in epigenetics.

Key Points

• Short, reproducible sequence motifs can be identified
from triplexRNA- and triplexDNA-seq data.

• Expectation-Maximization can be used to learn RNA–
DNA base pairing rules from enriched motifs.

• Both canonical Hoogsteen base pairing rules and previ-
ously unreported base pairing rules were identified by
this approach and could be positively correlated with
previous in vitro work.

• Implementation of the learned RNA–DNA base pairings
in a local alignment program permitted the more accu-
rate prediction of RNA–DNA interactions than previously
published gold-standard tools.
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• An RNA–DNA interaction predicted in the course of this
analysis could be shown to be a biophysically valid
RNA·DNA:DNA triple helix in vitro.

Data availability
Accession numbers for published data used in this study are
detailed in Materials and Methods.
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SchulzLab/TriplexAligner. The code used in the learning of prob-
abilistic RNA-DNA mapping codes is available at https://github.
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