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Pharmacokinetic drug–drug interactions (in particular at metabolism) may result in fatal

adverse effects in some cases. This basic information, therefore, is needed for drug therapy even

in veterinary medicine, as multidrug therapy is not rare in canines and felines. The aim of this

review was focused on possible drug–drug interactions in dogs and cats. The interaction

includes enzyme induction by phenobarbital, enzyme inhibition by ketoconazole and flu-
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oroquinolones, and down-regulation of enzymes by dexamethasone. A final conclusion based

upon the available literatures and author’s experience is given at the end of the review.
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Introduction

Pharmacokinetic drug–drug interaction in drug metabolism
may result in fatal adverse effects. In human medicine, patients
treated with antihistaminic drug (terfenadine) and antifungal

(ketoconazole or itraconazole) had Torsades de pointes, life-
threatening ventricular tachycardia in 1991. This was resulted
from the fact that ketoconazole and itraconazole inhibited

CYP3A4 and thereby terfenadine accumulated in the body
[1–4]. In 1993, many patients with cancer and herpes zoster,
a viral disease, were died from interactions of an antiviral (sor-
ivudine) with anticancer prodrug, 5-fluorouracil. This was due

to the inactivation of an enzyme catalyzing the metabolism of
5-fluorouracil by co-administration of sorivudine [5–7]. Since
the abovementioned medical accidents, researchers have paid

much attention to pharmacokinetic drug–drug interaction
originated from the alteration in drug metabolism in human
medicine.

Alterations in drug metabolism due to pharmacokinetic
drug–drug interaction are well recognized either as enzyme
induction or as enzyme inhibition. So far, many drugs have

been demonstrated to cause alteration in drug metabolism
in human medicine. Phenobarbital has been used as a CYP

inducer in many studies [8–11] and ketoconazole is well
characterized as a potent CYP inhibitor [12–15].

In veterinary medicine, pharmacokinetic drug–drug inter-

action in drug metabolism is an important subject, because
multidrug therapy is commonly used for treatment of small
animals including dogs and cats. Since there were big differ-
ences in drug metabolism, it is unclear whether the interactions

that have been demonstrated in humans are substantial to ani-
mal species.

Basically, CYP1A1/2, 2C9, 2C19, 2D6, and 3A4 isoforms

played important roles in drug metabolism in humans.
Similar isoforms have been also found in dogs and cats.
Dogs have CYP1A1/2, 2C21, 2D15 and 3A12 isoforms,

whereas, CYP1A1/2, 2D6, 3A131 and 3A132 have been iden-
tified in cats, although they do not have tolbutamide hydrox-
ylation activity, which is related to CYP2C9 activity in
humans. This fact suggests that serious drug–drug interaction

in drug metabolism catalyzed by CYPs can happen in dogs and
cats. Although the information regarding such kind of interac-
tion is not sufficient in veterinary medicine, it is gradually

increasing in dogs and cats.

Scope of the review

This review introduces drug–drug interaction in drug metabo-
lism in dogs and cats as follows: First, enzyme induction of
phenobarbital and other drugs in dogs is described. Then, inhi-

bitory effects of azole antifungals, fluoroquinolones, and other
drugs on CYP activities in dogs and cats were discussed.
Finally, down-regulating effects of dexamethasone on CYP
activities in dogs are evaluated. The literature search was con-

ducted using PubMed.

Enzyme induction

The mechanisms by which enzymes are induced include the fol-
lowing. (1) Medicines (inducers) bound to receptor (known as
receptor-type transcriptional factors located in cytoplasm of

hepatocytes). (2) Then the receptor was activated to allow its
translocation to nucleus. (3) The translocated receptor bound
to its response element of DNA. (4) The level of mRNA was

correlated to enzyme expression. (5) The increase of mRNA
levels results in increases of enzymes [16]. Fig. 1 shows the
mechanism by which CYP1A is induced. In cytoplasm, the

well defined receptors include aryl hydrocarbon receptor
(AhR), constitutive androstane receptor (CAR), and pregnane
X receptor (PXR). The AhR was related to the induction of
CYP1A and CAR and PXR were responsible for induction

of CYP2B, 2C, and 3A subfamilies.
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Fig. 1 Mechanism of CYP1A induction Drugs (inducers) binds

to AhR-heat shock protein complex in hepatocytes cytoplasm.

Then the complex is activated and enters inside the nucleus. The

complex releases heat shock protein and binds to a transporter

called AhR nuclear translocator. Then the complex binds to its

response element of DNA, and the level of mRNA that relates to

expression of enzymes increases. Finally, enzymes are induced.
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Fig. 2 Antipyrine clearance during phenobarbital treatment in

dogs. Dogs were orally administered phenobarbital at 5 mg/kg

twice a day for 30 days, during which antipyrine was intravenously

injected at 5 mg/kg, and its clearance values were estimated. Each

value and vertical bar represent mean and SD, respectively

(n= 5).
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Enzyme induction by phenobarbital

As shown in Table 1 several drugs have been demonstrated to

induce various CYPs and UDP-glucuronosyltransferase in
humans. Among them, phenobarbital has been found to
induce some CYPs in dogs [17–20]. The drug induces enzyme

through activating CAR. Graham et al. [17] examined induc-
tion of CYP1A, 2B, and 3A after multiple subcutaneous injec-
tion of phenobarbital (14 days, 10 – 30 mg/kg/day) in beagle
dogs. They found 10- and 2-fold increase in CYP2B and 3A

activities in hepatic microsomes, whereas CYP1A activities
were not affected. Hojo et al. [18] determined the effects of
phenobarbital in its clinical dosage regimen (5 mg/kg/day

p.o., bid) on CYP activities in dogs treated for 35 days. The
total body clearance (CL) of a CYP3A substrate, antipyrine,
was thereafter evaluated after intravenous injection. They

found that the CL was increased <3-fold following 9th day
of the treatment, and afterward remains steady (Fig. 2).
They also examined the hepatic microsomal activities of
CYP1A, 2C, 2D and 3A after the same course of treatment

(35th day). While the activities of CYP2C and CYP3A were
increased 2-and 4-fold (compared to control), the activities
of CYP1A and 2D were not affected.

Effects of the oral phenobarbital treatment (5 mg/kg/day
p.o., bid for 30 days) on intravenous pharmacokinetics of
theophylline (a CYP1A substrate), phenytoin (a CYP2C
Table 1 Drug inducing enzyme activities in humans.

Enzyme Inducer

CYP1A2 Omeprazole [81], lansoprazole [81

CYP2C9 Phenobarbital [82], phenytoin [83

CYP2C19 Phenobarbital [82], phenytoin [83

CYP2E1 Phenobarbital [86], rifampicin [86

(ethanol)

CYP3A4 Phenobarbital [82], phenytoin [87

UDP-glucuronosyltransferase Phenobarbital [89], rifampicin [90
substrate) and quinidine (a CYP3A substrate) have been exam-
ined in beagle dogs. The pharmacokinetics of phenytoin and

quinidine were affected by the phenobarbital treatment,
whereas that of theophylline was not affected as shown in
Fig. 3. The intrinsic clearances of phenytoin and quinidine

(calculated from multiplying total body clearance by unbound
fraction in plasma) were increased by 2- and 3-fold,
respectively.

As obvious from the above, the CYP induction by pheno-

barbital was substantial. Therefore, there were high possibili-
ties of drug–drug interaction with medicines that are mainly
metabolized by CY2C or 3A in diseased dogs suffering from

epilepsy.
Phenobarbital also induces UDP-glucuronosyltransferase

in dogs. Oguri et al. demonstrated 3-fold increase in morphine

glucuronidation in hepatic microsomes obtained from dogs
treated with phenobarbital [21]. As NSAIDs were mainly
eliminated from the body by biotransformation via glu-

curonidation, we, therefore, examined the effects of the pheno-
barbital treatment (5 mg/kg/day p.o., bid) on
pharmacokinetics of carprofen after intravenous and oral
administration in dogs. As a result, the total body clearance

of carprofen increased by more than twice, compared to prior
treatment. Although oral bioavailability of the drug was not
affected, the oral AUC was nearly half compared to prior

treatment. These findings indicate that phenobarbital could
]

], carbamazepine [84], rifampicin [85]

], rifampicin [85]

], isoniazid [86]

], carbamazepine [87], rifampicin [87], dexamethasone [87], taxol [88]

]
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Fig. 3 Effects of phenobarbital treatment on intravenous pharmacokinetics of theophylline (CYP1A substrate), phenytoin (CYP2C

substrate) and quinidine (CYP3A substrate) in dogs. Dogs were orally administered phenobarbital at 5 mg/kg twice a day for 30 days or

50 days and then pharmacokinetics of theophylline (5 mg/kg), phenytoin (5 mg/kg) and quinidine (1 mg/kg) were examined following

intravenous injection. Each value and vertical bar represent mean and SD, respectively (n= 5).
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induce UDP-glucuronosyltransferase much enough suggesting
drug–drug interaction for remedies whose main elimination
route is glucuronidation.

Phenobarbital is also a drug of choice for cats with epilepsy
[22–24]. There were, however, few studies on enzyme induction
by phenobarbital in cats. Maugras and Reichart [25] found

slight increase in CYP levels in microsomes from cats treated
with phenobarbital, compared to control ones. Truhaut et al.
[26] found no induction of CYP following phenobarbital
administration. These findings may suggest that phenobarbital

causes minimal cytochrome P450 enzyme induction in cats,
and therefore drug–drug interactions mediated by phenobarbi-
tal are unlikely to occur in cats.

Cochrane et al. [27] compared phenobarbital pharmacoki-
netics at steady state of oral administration with that after sin-
gle oral administration in cats. As phenobarbital is mainly

eliminated from the body via oxidation catalyzed by CYP2C,
the oral clearance at steady state should be higher than that
after single dosing, if induction of CYP2C is substantial.

They, however, found no difference in the clearance between
steady state and single dosing. This may suggest that drug–
drug interactions mediated by phenobarbital are unlikely in
cats.

Enzyme induction by other drugs

Among the medicines in Table 1, the inducing effects of

omeprazole and rifampicin on CYP enzymes in dogs were pre-
viously reported. Nishibe and Hirata [28] examined the induc-
ing effects of omeprazole and rifampicin using primary culture
of dog hepatocytes. They found significant induction of
CYP1A by omeprazole and CYP3A by rifampicin. Graham
et al. [17] demonstrated 3-fold increase in CYP3A activities

in dog microsomes after oral administration of rifampicin.
These results may suggest that drug–drug interaction mediated
by abovementioned remedies can happen in dogs.

Enzyme inhibition

Since drug–drug interaction mediated by enzyme inhibition

increases accumulation of medicines, potent inhibitors may
result in fatal adverse effects of co-administered drugs. It is,
therefore, generally recognized that much attention should
be paid to that type of interaction.

Enzyme inhibition by ketoconazole

Ketoconazole is an azole antifungal drug, which is known to

inhibit CYP3A potently in humans. Its inhibitory effects on
CYP activities have been investigated in vitro and in vivo in
dogs and cats. Kuroha et al. [29] demonstrated that ketocona-

zole could inhibit competitively midazolam 10-hydroxylation
catalyzed by CYP3A with 24 nM of Ki value, using dog hep-
atic microsomes. This Ki value was estimated based on

unbound concentration of ketoconazole in the assay system.
This 24 nM corresponds to 83 nM of its total concentration
[29]. The 83 nM is comparable to those obtained from humans
(32–180 nM [30–35]. This fact suggests that ketoconazole

inducing CYP mediated drug–drug interaction may be serious
in dogs as found in humans [1–4].
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Fig. 4 Effects of ketoconazole treatment on intravenous

pharmacokinetics of midazolam (CYP3A substrate). Dogs were

orally administered ketoconazole at 20 mg/kg twice a day for

30 days, during which midazolam was intravenously injected at

0.5 mg/kg. Each value and vertical bar represent mean and SD,

respectively (n= 5).
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Fig. 4 shows the effects of ketoconazole on pharmacokinet-
ics of midazolam following intravenous injection. Dogs were
treated with ketoconazole (20 mg/kg p.o., bid) for 30 days.

As shown in Fig. 4, ketoconazole treatment affected evidently
the midazolam pharmacokinetics. The midazolam total body
clearance was decreased by less than one-third at the end com-
pared to prior treatments. This finding suggests that the inhi-

bitory effect on CYP3A may be quite potent in dogs.
Kukanich et al. have found that 5 day treatment with oral
ketoconazole at 12.25 mg/kg would increase the mean resi-

dence time of midazolam approximately twice [36].
The inhibitory effects of ketoconazole on CYP3A activities

affected also the pharmacokinetics of other drugs that were

eliminated by metabolism and catalyzed by CYP3A. Kuroha
et al. has demonstrated that the total body clearance of quini-
dine was decreased from 8.4 to 2.7 ml/min/kg by ketoconazole

treatment at clinical dosage [37]. They also demonstrated that
the total body clearance of nifedipine was decreased by
approximately 50% compared to prior treatment.
Additionally, they found twice increase in the oral bioavail-

ability of nifedipine [38]. Kukanich et al. [39] found that
Cmax of methadone after oral administration was increased
to more than 30-fold by the co-administered, ketoconazole.

Cyclosporine, an immunosuppressant, was used for treat-
ment of canine atopic dermatitis. The drug was metabolized
by CYP3A and possible drug–drug interaction with ketocona-

zole was evaluated [40–42]. Dahlinger et al. [41] showed that a
3.4 mg/kg dose of cyclosporine with ketoconazole gave similar
blood levels of cyclosporine (400–600 ng/mL) compared to
14.5 mg/kg cyclosporine alone. D’mello et al. [42] found that

the systemic clearance of cyclosporine was decreased from
7.0 ml/min/kg to 2.5 ml/min/kg by ketoconazole. Because of
the inhibitory effect, the co-administrations of ketoconazole

with cyclosporine have been recommended, which in turn
decreases the therapeutic cost [43–45].

CYP3A inhibition by ketoconazole has also been reported

in cats. Shah et al. [46] showed in his in vitro experiment using
feline hepatic microsomes that ketoconazole can inhibit
midazolam 10-hydroxylation in a non-competitive manner.

They estimated the inhibition constant of ketoconazole to be
2 lM. Although this value might be quite low to cause drug–
drug interaction, it is more than 20-fold higher compared to
the estimated value in dogs [29]. Because of this fact,
ketoconazole related drug–drug interaction may occur at smal-
ler extent compared with those in dogs and humans. Shah et al.
[46] have demonstrated that the decrease in quinidine clearance

by ketoconazole treatment was less than a half in cats.
However, they showed a time-dependent decrease in midazo-
lam 10 hydroxylation by pre-incubation of feline microsomes

with ketoconazole. This suggests that ketoconazole has a mode
of mechanism based inhibition in cats, although the mode has
not been reported in dogs and humans. McAnulty and

Lensmeyer [47] showed in his study the inhibitory effects of
ketoconazole on cyclosporine pharmacokinetics, which can
be implied from two times maximum cyclosporine blood con-
centration in cats treated orally with ketoconazole.

Ketoconazole can inhibit CYP activities other than
CYP3A. In this context, Kuroha et al. [48] showed the inhibi-
tion of CYP1A, 2C, and 2D activities using 7-ethoxyresorufin

O-deethylation, tolbutamide methyl hydroxylation, and bufur-
alol 10-hydroxylation, respectively. The drug inhibited CY1A
and 2C activities with 10.6 and 17.0 lM of Ki values, respec-

tively. These values may be small enough to cause drug–drug
interaction, although they are quite higher than that for
CYP3A activities.

Enzyme inhibition by fluoroquinolones

It was reported that fluoroquinolones could inhibit CYP1A
activities [49–53]. Among them, ciprofloxacin, enoxacin, and

norfloxacin can cause drug–drug interaction with xanthine
derivatives and potentiate its toxicity in human medicine
[54–58].

Enrofloxacin, ciprofloxacin, ofloxacin, orbifloxacin, and
norfloxacin inhibit CYP1A activities in dogs. Regmi et al.
[53] demonstrated that the aforementioned fluoroquinolones

could inhibit 7-ethoxyresorufin O-deethylation in a non-com-
petitive manner in hepatic microsomes obtained from dogs.
The Ki values were ranged from 0.7 for ciprofloxacin to

10 mM for ofloxacin; the values suggest that the inhibitory
effects are quite small. On the other hand, ciprofloxacin, oflox-
acin, and orbifloxacin showed mechanism based inhibition.
Although it was not reported that ciprofloxacin and ofloxacin

could have mechanism based inhibition in humans, and oflox-
acin inhibits CYP1A activities by this manner in hepatic
microsomes obtained from humans [59].

Drug–drug interaction of fluoroquinolones with theo-
phylline has been reported in dogs. Intorre et al. examined
intravenous injection of enrofloxacin on steady stale levels of

theophylline following oral administration in dogs [60]. They
found increases in the steady state blood theophylline concen-
trations; due to enrofloxacin treatment. This could be implied
from the mechanism based inhibition of enrofloxacin metabo-

lite, ciprofloxacin. Enrofloxacin itself does not have this type
of inhibitory mode and reversible inhibition is quite small
[53]. Although ofloxacin shows the mode of mechanism based

inhibition, it does not affect theophylline pharmacokinetics in
dogs [61]. Furthermore, levofloxacin does not affect theo-
phylline pharmacokinetics in humans [62], although some flu-

oroquinolones would affect.
In cats there were no reports describing the inhibitory

effects of fluoroquinolones on CYP1A activities. In our labo-

ratory, we have examined this effect in cats and noticed that
enrofloxacin, ofloxacin, norfloxacin, and orbifloxacin could



Table 2 Drugs inhibiting enzyme activities in dogs.

Enzyme Inhibitor

CYP1A2 Ciprofloxacin [53] orbifloxacin [53], enrofloxacin [60], ketoconazole [48,66], miconazole [66], fluvoxamine [67], ondansetron [66]

CYP2C21 Vincristine [66], fluoxetine [67], clomipramine [67]

CYP2D15 Loperamide [66,67], vincristine [66], fluoxetine [66,67], ketoconazole [48,66], miconazole [66]

CYP3A12 Ketoconazole [29,36,39,66], miconazole [66], loperamide [66], cyclosporine A [66]
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inhibit 7-ethoxyresorufin O-deethylation in a competitive man-
ner, whereas, ciprofloxacin inhibited the enzyme by a non-
competitive manner. The obtained Ki values ranged from

0.12 mM (for norfloxacin) to 1.2 mM (for ofloxacin).
Although these values are smaller than those obtained in dogs,
the reversible inhibitions may not result in a drug–drug inter-
action with other medicines, which are substrates for CYP1A

enzyme. We also found a mechanism based inhibition for
ciprofloxacin and ofloxacin in cats. Similar to dogs [60], enro-
floxacin may cause a drug–drug interaction with theophylline

in cats.
Fluoroquinolones can also inhibit CYP3A activities in

humans [52,63], rats [52], and chickens [64]. Enrofloxacin,

ciprofloxacin, ofloxacin, norfloxacin, and orbifloxacin, how-
ever, did not affect Michaelis–Menten kinetics of 10-hydrox-
ylation of midazolam using dog hepatic microsomes.
Additionally, enrofloxacin and ofloxacin did not affect the

pharmacokinetics of a CYP3A substrate, quinidine, following
intravenous injection in dogs [65]. Although we examined the
effects in cats, the results were almost the same as reported

in dogs [65]. Therefore, fluoroquinolones may not be responsi-
ble for a CYP3A mediated drug–drug interaction in dogs and
cats.

Enzyme inhibition by other drugs

Many drugs other than ketoconazole and fluoroquinolones

may inhibit CYP activities in dogs and cats, same as in
humans. Aidasani et al. [66] evaluated the CYP reversible inhi-
bition of many drugs used in veterinary medicine using canine
hepatic microsomes. As a result, they found that ondansetron

and miconazole were potent inhibitors for CYP1A; vincristine
is a potent inhibitor for CYP2C; and loperamide, vincristine,
clomipramine, and fluoxetine were potent inhibitors for

CYP2D. On the other hand, they reported that loperamide,
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miconazole, and cyclosporine A were potent CYP3A inhibi-
tors. The inhibitory effect of erythromycin and cimetidine
was not so strong, although they are potent inhibitors in

humans. Mills et al. [67] have found that fluvoxamine could
inhibit canine CYP1A activities with Ki value = 3 lM.
Additionally, they declare that fluoxetine and clomipramine
were potent inhibitors for CYP2C and 2D. Table 2 shows

those medicines that could inhibit canine CYP activities.
In cats Shah et al. [46] examined the inhibitory effects of the

aforementioned drugs. They demonstrated that both drugs

inhibited non-competitively 10-hydroxylation of midazolam
with Ki value of approximately 3 mM. This value suggests that
the inhibitory effects of erythromycin and cimetidine on

CYP3A activities were quite small and hence may not cause
drug–drug interaction with CYP3A substrates in cats.

Medical herbs may also inhibit CYP activities in dogs. Liu
et al. [68] and Abd El-Aty et al. [69] have found that the vola-

tile extracts from Nigella sativa seeds and decursin and decursi-
nol angelate can inhibit CYP1A activities in hepatic
microsomes obtained from dogs.

Drug induced down-regulation of enzymes

It is well known that CYPs are down-regulated by diseases,

including renal failure [70,71], infection [72,73] and inflamma-
tion [74,75]. However; down-regulation induced by drugs was
not known well and only few reports were recorded. Zhang

et al. [76] examined the Michaelis–Menten kinetics of reactions
catalyzed by CYPs using hepatic microsomes obtained from
dogs treated with oral dexamethasone at clinically relevant

doses (0.25 and 0.75 mg/kg) for 5 days. They found dose-de-
pendent decreases in the reaction of bufuralol hydroxylation
(catalyzed by CYP2D) and midazolam 4-hydroxylation (cat-
alyzed by CYP3A), and the decreases were due to a decrease

in maximal velocity but not Km values as shown in Fig 5.
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They also examined the inhibitory effects of dexamethasone on

midazolam 4-hydroxylation and showed a small competitive
inhibition with Ki value of 200 lM. From these data, Zhang
et al. concluded that the decreases in CYP2D and 3A activities

in dogs are due to down-regulation caused by dexamethasone,
although steroids are well known as CYP3A inducer [77–79].
In the same study, the effects of dexamethasone treatment

on Michaelis–Menten kinetics of midazolam 4-hydroxylation
were also examined in rats. Maximal velocities of the reaction
were increased by the treatment schedule set at a high dose
(48 mg/kg for 5 days), suggesting CYP3A induction.

However, the maximal velocities of the reaction were
decreased by treatment at a low dose regimen (0.75 mg/kg
for 5 days), suggesting down-regulation of CYP3A. These data

may suggest that dexamethasone down-regulates CYP3A at a
clinically relevant dose in various animal species.

The down regulating effects of dexamethasone may result

in drug–drug interaction with substrates metabolized by
CYP2D or CYP3A. Zhang et al. [80] examined the effects of
dexamethasone treatment (0.25 and 0.75 mg/kg/day for

5 days) on intravenous pharmacokinetics of quinidine in dogs.
Since dexamethasone decreased plasma levels of alpha 1-acid
glycoprotein (the main binding protein for quinidine) they ana-
lyzed the unbound concentration–time curves. As obvious

from Fig. 6, the elimination of quinidine became slower in a
dose-dependent manner. Intrinsic clearance was approximately
a half, compared to prior treatment. This indicates that the

down-regulating effect of dexamethasone can cause drug–drug
interaction with quinidine in dogs.

Conclusions

So far, many drugs have been demonstrated to cause alteration
in drug metabolism in human medicine. In veterinary medi-

cine, however, only some drugs have been investigated as
described in this review. More advanced medical care is recom-
mended to be used in dogs and cats. This may accelerate mul-
tidrug therapy in these animal species, using many kinds of

drugs like in humans. This may result in increased possibilities
of drug–drug interaction that induces fatal toxicity of the drug.
The author expects much more investigations on this area in

future.
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