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Objectives: To establish and validate a machine learning-based CT radiomics model to
predict metachronous liver metastasis (MLM) in patients with colorectal cancer.

Methods: In total, 323 patients were retrospectively recruited from two independent
institutions to develop and evaluate the CT radiomics model. Then, 1288 radiomics
features were extracted to decode the imaging phenotypes of colorectal cancer on CT
images. The optimal radiomics features were selected using a recursive feature elimination
selector configured by a support vector machine. To reduce the bias caused by an
unbalanced dataset, the synthetic minority oversampling technique was applied to
resample the minority samples in the datasets. Then, both radiomics and clinical
features were used to train the multilayer perceptron classifier to develop two
classification models. Finally, a score-level fusion model was developed to further
improve the model performance.

Results: The area under the curve (AUC) was 0.78 + 0.07 for the tumour feature model
and 0.79 + 0.08 for the clinical feature model. The fusion model achieved the best
performance, with AUCs of 0.79 + 0.08 and 0.72 + 0.07 in the internal and external
validation cohorts.

Conclusions: Radiomics models based on baseline colorectal contrast-enhanced CT
have high potential for MLM prediction. The fusion model combining radiomics and clinical
features can provide valuable biomarkers to identify patients with a high risk of colorectal
liver metastases.

Keywords: tomography, x-ray computed, colorectal neoplasms, neoplasm metastasis, liver neoplasms,
machine learning

INTRODUCTION

Colorectal cancer (CRC) is the third leading type of cancer and the second most common cause of
cancer death worldwide (1). Liver metastasis (LM) is the leading cause of death in patients with CRC
(2). Approximately 50% of patients with CRC will develop LM over the course of their life, and
surgical resection is the only treatment modality with curative intent and has 5-year and 10-year
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survival rates of 40% and 25% (3, 4). LM is a known prognostic
predictor, and as a long-standing challenge in the treatment of
CRC, the early identification of high-risk LM patients is crucial
to improve clinical outcomes.

To the best of our knowledge, clinical parameters, including
age, carcinoembryonic antigen (CEA) level, genetic mutations,
and invasion of adjacent tissues [lymphovascular invasion
(LVI) and perineural invasion (PNI)], are potential biomarkers
to identify patients with a higher risk of distant metastasis
(5-8). However, some predictors can only be obtained after
radical resection and cannot be used as a guide for developing
preoperative treatment strategies. The radiomics analysis
method has the potential to noninvasively evaluate tumour
heterogeneity objectively and quantitatively by analysing high-
throughput information extracted from images (9). Evidence has
gradually accumulated that computed tomography (CT) texture
features are related to parameters such as tumour grade, tumour
cellular processes and genetic mutations (10). In recent studies,
some CT texture features have been linked to prognosis and
clinical outcomes. Most of these features are based on the
analysis of metastatic lesions, and few studies have focused on
primary colorectal lesions. Effective and robust baseline
biomarkers for the prediction of colorectal LMs are still
lacking. The combination of radiomics and machine learning
algorithms might unearth valuable features that can reflect the
tumour heterogeneity of primary CRC and contribute to the
prediction of the risk of metastasis.

The early identification of patients with a distinct likelihood of
metachronous liver metastasis (MLM) may allow the
consideration of different treatment strategies (e.g., neoadjuvant
chemoradiotherapy) and a more intensive follow-up programme
to improve the prognosis of patients. The purpose of this study
was to determine whether the radiomics features of baseline
colorectal contrast-enhanced CT can predict MLM in
CRC patients.

MATERIALS AND METHODS

Patients

This retrospective study was approved by the institutional review
boards of all the participating institutions, and the requirement
for informed consent was waived. We enrolled 323 CRC patients
who underwent contrast-enhanced CT between October 2010
and January 2020. Dataset 1 (for model training, tuning, and
internal validation) included patients enrolled from Fudan
University Shanghai Cancer Centre, and dataset 2 (for
independent external validation, n=75) included patients
enrolled from Nantong Tumor Hospital. Dataset 1 was
composed of a training cohort (n=171) and an internal
validation cohort (n=77). The inclusion criteria were as
follows: (1) histopathologically confirmed CRC; (2)
performance of standard contrast-enhanced CT of the
abdomen and pelvis before any treatment; (3) availability of
clinical characteristics; and (4) availability of complete CT
datasets. The exclusion criteria were as follows: (1) treatment
(including radiotherapy or systemic chemotherapy) prior to

initial CT examination; (2) LM before colorectal radical
surgery; (3) presence of other tumour diseases during the same
period; and (4) unavailable clinicopathologic or follow-up data.

CT Scanning Protocol

All selected patients at both institutions underwent contrast-
enhanced abdominal or pelvic CT with 64-row spiral CT
scanners (Philips Healthcare, Siemens Healthcare) using a
current of 200 mA and a tube voltage of 120 kV. All CT
images were reconstructed with the standard reconstruction
kernel, including 5.0 mm slice thickness, 5.0 mm increment,
1.4 or 0.9 pitch, 512x512 matrix and 4.11 cm field of view. The
CT digital imaging and communications in medicine (DICOM)
images were retrieved from the picture archiving and
communication system (PACS).

CT Radiomics Feature Model
Development

Figure 1 illustrate the flowchart of our proposed prediction
model. To evaluate the intra-class and inter-class agreement
between different radiologists in segmentation process, we
computed the Dice coefficient based on the segmentation results
delineated by different radiologists. We initially chose 50 random
colorectal contrast-enhanced CT images for ROI segmentation
and feature extraction. The ROI segmentation was performed by
two experienced radiologists independently. The Dice coefficients
of inter-/intra-reader were higher than 0.85. To select the
robustness of radiomics features, we calculated the inter-class/
intra-class correlation coefficient (ICC) of each feature. As the
ICC greater than 0.75 was considered good agreement, we just
selected the radiomics features with inter- and inra-reader ICC

Clinical Feature

A 4
Feature Normalization
and Selection

CT Radiomics Model

A 4

Feature Normalization
and Selection

[PPOIAl PAskq 2Injea] [edrul)

SMOTE Oversampling

MLP Classifier

Score-Level Fusion

Prediction Result

FIGURE 1 | The flowchart of our proposed prediction model.
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values higher than 0.75. The boundaries of each tumour were
delineated on CT images in a slice-by-slice fashion. ITK-SNAP
software (version: 3.8.0, http://itksnap.org/) was used to segment
the 3D tumour. Figure S1 showed the diagram of our
segmentation and workflow.

After segmenting the 3D tumour on the CT image, a cubic B-
spline interpolation algorithm was applied to resample the CT
scan with a new spacing of [1 mm, 1 mm, 5 mm]. Then, we
computed the radiomics features by using Python programming
software with the Pyradiomics package. A total of 1288 radiomics
features were computed and extracted to decode the imaging
phenotypes of 3D colorectal tumours. The original CT image and
two types of transformed images, including wavelet images and
Laplacian of Gaussian (LoG) images, were used to calculate image
features. The LoG image filter was configured with & values of 1, 2,
3, 4, and 5. Thus, the initial radiomics features consisted of 105
original image features, 728 wavelet image features and 455 LoG
image features. The radiomics feature calculation progress
following the IBSI (https://theibsi.github.io/) guidelines.

An L2-based normalization method was used to rescale each
type of radiomics feature. Then, the recursive feature elimination
(RFE) method was applied to reduce the dimensionality of
feature spacing and remove the redundant image features. The
linear support vector machine (SVM) classifier was selected as
the estimator to configure the RFE feature selector. After
selecting optimal radiomics features, an optimal imaging
feature pool was selected from the initial radiomics features to
build the classification model. Since our dataset was unbalanced,
synthetic minority oversampling technique (SMOTE) was used
to increase the number of minority samples in the dataset. In the
CT radiomics development process, the SMOTE method was
used to oversample only the training dataset. Finally, the
multilayer perceptron (MLP) classifier was applied to build the
classification model.

Clinical Feature-Based Model
Development

Clinical and pathological features were used to develop a clinical
feature-based model to predict MLM in CRC patients. A min-
max normalization scaler was first used to normalize the feature
to a scale of [0,1]. Then, the optimal clinical features were
selected according to the scores measured by using ANOVA F-
value analysis. The minority samples were also resampled by
using the SMOTE method. The MLP classifier was applied to
build the classification model.

CT Radiomics and Clinical Feature Fusion
Model Development

To improve the model performance, a fusion model was
developed by combining CT radiomics features and clinical
features. A score-level fusion method was used to combine the
prediction scores generated by the CT radiomics model and the
clinical feature-based model. Three score fusion strategies,
namely, the minimum score fusion strategy, maximum score
fusion strategy, and weighted score fusion strategy, were used
to build the CT radiomics and clinical feature fusion model.

The prediction score of the minimum or maximum score fusion
strategy was generated by comparing the prediction scores of
each case yielded by the CT radiomics model and the clinical
feature-based model to select the minimum or maximum score.
The prediction score of the weighted score fusion strategy was
generated by systematically increasing the weighting factor from
0.1 to 0.9 applied to the prediction scores generated by the CT
radiomics model (or 0.9 to 0.1 applied to the prediction scores
generated by the clinical feature-based model). A similar score-
level fusion method was used in our previously reported
study (11).

Statistical Analysis

All data analyses were performed using Python 3.7.6. A P value
of less than 0.05 was considered significant. A L2 based
normalization method was used to rescale each type of the
radiomics feature. The recursive feature elimination (RFE)
method and linear support vector machine (SVM) classifier
were implemented to select the optimal image features. And
the optimal clinical features were selected according to the scores
measured by using the ANOVA F-value analysis. Then, multi-
layer perceptron (MLP) classifier was applied to build the
classification model. The diagnostic performance of the models
was evaluated by receiver operating characteristic (ROC) curves.
The AUC of different models were compared using Delong test.

RESULTS

Patient Characteristics

Based on the inclusion and exclusion criteria, a total of 323
patients were included, and 58.5% were male. The median age of
the patients was 61 years (interquartile range, 53-69 years).
Patients with MLM were defined as liver metastases that
occurred after radical excision of the primary colorectal cancer
(12). In dataset 1, 176 patients (71.0%) developed MLM. To
avoid selection bias and reflect the natural distribution of
morbidity, the patients in dataset 1 were divided into a
training cohort (n=171) and a validation cohort (n=77)
according to the date of the first visit. In dataset 2, 23 patients
(30.7%) developed MLM. The baseline characteristics of the
three cohorts are summarized in Table 1.

Intra-Observer and Inter-Observer
Reproducibility of Radiomics

Feature Extraction

The intra-observer ICC calculated based on two measurements
of reader A was 0.983. The inter-observer ICC was 0.776. An
ICC greater than 0.75 was considered good agreement. The
results indicated stable intra and inter-observer feature
extraction reproducibility.

Selected Features for the Clinical Model

After normalization and ANOVA F-value analysis, clinical
factors including age, mismatch repair (MMR) status,
preoperative TNM stage, tumour markers (CEA and CA19-9),

Frontiers in Oncology | www.frontiersin.org

February 2022 | Volume 12 | Article 861892


http://itksnap.org/
https://theibsi.github.io/
https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles

Lietal

CT Radiomics Predict MLM

TABLE 1 | Patient characteristics.

characteristic Training cohort Validation cohort 1 Validation cohort 2
(n=171) n=77) (n=75)
Age SD [years] 57.7 £12.4 60.9 + 12.6 64.9 £ 10.7
Gender (%) Male 95 (55.6%) 46 (59.7%) 48 (64.0%)
Female 76 (44.4%) 1 (40.3%) 27 (36.0%)
Location (%) Right 71 (41.5%) 9 (37.7%) 25 (33.3%)
Left 100 (58.5%) 8 (62.3%) 50 (66.7%)
MMR (%) pMMR 122 (71.3%) 6 (85.7%) 68 (90.7%)
dMMR 49 (28.7%) 1(14.3%) 7 (9.3%)
KRAS (%) WT 13 (7.6%) 5 (6.5%) 33 (44.0%)
M 3 (1.8%) 4 (5.2%) 8 (24.0%)
NA 155 (90.6%) 68 (88.3%) 24 (32.0%)
NRAS (%) WT 6 (9.4%) 8(10.4%) 0
NA 155 (90.6%) 69 (89.6%) 75 (100.0%)
BRAF (%) WT 6 (9.4%) 9 (11.7%) 17 (22.7%)
M 0 0 31 (41.3%)
NA 155 (90.6%) 68 (88.3%) 27 (36.0%)
Tumor stage (%) T 7 (4.1%) 2 (2.6%) 0
T2 17 (9.9%) 11(14.3%) 5(6.7%)
T3 47 (27.5%) 24 (31.2%) 24 (32.0%)
T4 100 (58.5%) 40 (51.9%) 46 (61.3%)
New tumour stage(%) T1-2 24(14%) 13(13.9%) 5(6.7%)
T3 47 (27.5%) 24 (31.2%) 24 (32.0%)
T4 100 (58.5%) 4 0 (561.9%) 46 (61.3%)
Nodal stage (%) NO 96 (56.1%) 0 (51.9%) 39 (562.0%)
N1 53 (31.0%) 2 (28.6%) 27 (36.0%)
N2 22 (12.9%) 5 (19.5%) 9 (12.0%)
Metastasis stage(%) MO 161 (94.2%) 76 (98.7%) 75 (100%)
M1 10 (5.8%) 1((1.3%) 0
Pre CA-19-9 (%) Normal 150 (87.7%) 62 (80.5%) 68 (90.7%)
Elevated 1(12.3%) 15 (19.5%) 7 (9.3%)
Pre CEA (%) Normal 98 (57.3%) 52 (67.5%) 43 (57.3%)
Elevated 73 (42.7%) 5 (32.5%) 32 (42.7%)
LVI (%) Positive 0 (23.4%) 2 (80.5%) 25 (33.3%)
Negative 131 (76.6%) 5(19.5%) 50 (66.7%)
PNI (%) Positive 40 (23.4%%) 7 (74.0%) 15 (20.0%)
Negative 131 (76.0%) 0 (26.0%) 60 (80.0%)

PMMR, proficient mismatch repair gene expressing; dMMR, deficient mismatch repair gene expressing; WT, wild type; M, mutant type; NA, not available; pre CA 19-9, the level of
carbohydrate antigen 19-9 before any treatment; pre CEA, the level of carcinoembryonic antigen before any treatment, LV, lymphatic vascular infiltration; PNI, peripheral nerve invasion.

genetic mutations (KRAS, NRAS, and BRAF) and invasion of
adjacent tissues (LVI and PNI) were significantly different
between the CRC LM (CRLM) group and the non-CRLM
group (P <0.05). The distributions of these features in the
CRLM and non-CRLM groups are shown in Figure 2.

Selected Features for the CT

Radiomics Model

In total, 1288 image features were selected by the SVM-RFE
method. Six features passed the suggestive significance level
(P <0.05), including three original image features, two wavelet
image features and one LoG image feature. The distributions of
radiomics features in the CRLM and non-CRLM groups are
shown in Figure 3.

Model Validation and Comparison

The radiomics feature-based model and clinical feature-based
model had approximate performance in the validation sets
[validation set 1, area under the curve (AUC): 0.70 = 0.07 and
0.69 * 0.08; validation set 2, AUC: 0.64 *+ 0.07 and 0.68 * 0.07].
Using score-level methods, combinations of various features of

the radiomics and clinical models were adopted to validate which
combination of features was more conducive to improving the
prediction performance. No significant improvement in the
prediction performance was found with the different weighted
score fusion strategies (P<0.05). The minimum score fusion
strategy did not contribute to the improvement of prediction
performance. Ultimately, the fusion model using the maximum
score fusion strategy achieved the best performance in validation
set 1 (AUC: 0.79 £ 0.06, 95% CI 0.68-0.87, P<0.05) and validation
set 2 (AUC: 0.72 £ 0.06, 95% CI 0.60-0.82, P<0.05). The detailed
performance of different combinations of radiomics and clinical
features from the respective models is provided in Table 2.

The accuracy, sensitivity, specificity, positive predictive value,
and negative predictive value of the internal and external
validation sets for each model are reported in Table 3, which
shows that the fusion model is the best among all
models (P<0.05).

Overall, the tumour feature model (mean AUC: 0.78)
performed similarly to the clinical feature model (mean AUC:
0.79), and the fusion model outperformed these models (mean
AUC: 0.85). The receiver operating characteristic (ROC) curves
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FIGURE 2 | Box plot of clinical features of CRLM and Non-CRLM sets.
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of the three models are presented in Figure 4. The ROC curves of
the three models in training set are presented in Figure S2.

DISCUSSION

This study aimed to develop and validate a machine learning-
based CT radiomics model by using primary colorectal lesions to
predict MLM. In this study, the fusion model that integrated
radiomics features and clinical features significantly
outperformed the radiomics and clinical models. It achieved
good performance in both internal and external validations
(AUC: 0.79, 95% CI 0.68-0.87; AUC: 0.72, 95% CI 0.60-0.82;
P<0.05). Our results indicate that radiomics features have the
potential to predict LMs and that the fusion model can provide
valuable biomarkers to identify patients with a high risk of
colorectal LMs.

The median survival of untreated patients with colorectal
liver metastases is only 6.9 months, while median survival of
patients undergoing radical resection of liver metastases is 35
months, with 5-year survival rates at around 40% (3, 13). Main
clinical questions concern the ability of tools to accurately
discern liver metastases and select patients for radical surgery.
Our model could alert clinicians to patients with a higher risk of
MLM. By implementing a more intensive follow-up programme

or undergo neoadjuvant treatment for the high-risk MLM group,
opportunities for radical resection of liver metastases can be
offered and result in longer survival (14, 15).

Some clinical factors, including age, TNM stage, tumour
markers (CEA and CA19-9), and genetic mutations (KRAS,
NRAS, and BRAF), have been reported as risk factors for
colorectal metastasis in previous studies (16-21). Although
these factors have good predictive performance, they are only
available after invasive operations. All of the above clinical
features were also incorporated into our model. It should be
noted that the new T stage mentioned in our clinical model
combined stages T1 and T2 as one stage and compared it with
stage T3 and stage T4. It showed predictive value for MLM in the
study. The underlying mechanism has yet to be explored, and
future validation in larger and more diverse samples is needed. In
addition, this study included other factors, including MMR
status and invasion of adjacent tissues (LVI and PNI).
However, the AUC of clinical model were 0.69 + 0.08 and
0.68 + 0.07 in internal and external validation set, respectively.
And the performance was not satisfactory.

By combining radiomics features including GrayLevel
NonUniformity at GLRLM, GLDM, HLH, LoG filtration with
sigma =2.0 and LALGLE at GLSZM, the predictive performance
was improved to 0.79 and 0.72 in internal and external validation
set, respectively.

le-8

=
£

275

[
PO
PR
s b
g8 & 32

s o =

©x & o
5w
5 3

original_glrlm_GrayLevelNonUniformity

original_gldm_GrayLeveINonUniformity
5
3

e

3
g B
8

original_glszm_LargeAreaLowGrayLevelEmphasis

*

.

°
e
3
3

>
s
>

wavelet-HLH_glrlm_GrayLevelNonUniformity
o=

9

By
n

>
=

©
s
i

=
S S
= >

= =

wavelet-LLH_gldm_GrayLeveINonUniformity
)
P

°
by

CRLM Non-CRLM CRLM Non-CRLM CRLM Non-CRLM

FIGURE 3 | Box plot of radiomics features of CRLM and Non-CRLM sets.

log-sigma-2-0-mm-3D_gldm_GrayLevelNonUniformity
b

CRLM Non-CRLM CRLM Non-CRLM CRLM Non-CRLM

Frontiers in Oncology | www.frontiersin.org

February 2022 | Volume 12 | Article 861892


https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles

Lietal

CT Radiomics Predict MLM

TABLE 2 | The diagnostic performance of different combination of radiomics and clinical features.

Model Validation Dataset 1
AUC 95% ClI

Rad 0.70 £ 0.07 [0.58, 0.80]
Cli 0.69 + 0.08 [0.57, 0.82]
Minimum 0.68 + 0.07 [0.56, 0.81]
Maximum 0.79 = 0.06 [0.68, 0.87]
0.1*Rad+0.9*Cli 0.69 + 0.08 [0.57,0.82]
0.2*Rad+0.8*Cli 0.69 + 0.08 [0.57,0.82]
0.3*Rad+0.7*Cli 0.69 + 0.08 [0.57, 0.82]
0.4*Rad+0.6*Cli 0.69 + 0.08 [0.57,0.82]
0.5*Rad+0.5*Cli 0.69 + 0.08 [0.57, 0.82]
0.6*Rad+0.4*Cli 0.69 + 0.08 [0.57,0.82]
0.7*Rad+0.3*Cli 0.69 + 0.08 [0.57, 0.82]
0.8*Rad+0.2*Cli 0.69 + 0.08 [0.57,0.82]
0.9*Rad+0.1*Cli 0.69 + 0.08 [0.57,0.82]

Validation Dataset 2

AUC

0.64 + 0.07
0.68 + 0.07
0.70 £ 0.07
0.72 + 0.06
0.68 + 0.07
0.68 + 0.07
0.68 + 0.07
0.68 + 0.07
0.68 + 0.07
0.68 + 0.07
0.68 = 0.07
0.68 + 0.07
0.68 + 0.07

95% ClI

[0.53, 0.74]
[0.55, 0.80]
[0.58, 0.82]
[0.60, 0.82]
[0.55, 0.80]
[0.55, 0.80]
[0.55, 0.80]
[0.55, 0.80]
[0.55, 0.80]
[0.55, 0.80]
[0.55, 0.80]
[0.55, 0.80]
[0.55, 0.80]

All data was rounded up to percentile. The prediction performance with the different weighted score fusion strategies differed in four decimal places and was found no significant
improvement. The bold values refer to the diagnostic performance of our final fusion model.

Rad, Radiomics Feature based Model; Cli, Clinical Feature based Model.

TABLE 3 | The accuracy, sensitivity, specificity, positive predictive value, and negative predictive value of the internal and external validation sets for each model.

Model Validation Dataset 1

Validation Dataset 2

Radiomics model Clinical model

Fusion models

Radiomics model

Clinical model

Fusion models

Accuracy (%) 58.4 72.7 74.0 65.3 66.7 72.0
Sensitivity (%) 85.7 52.4 38.1 65.2 69.6 78.3
Specificity (%) 48.2 80.4 87.5 65.4 65.4 61.5
PPV (%) 38.3 50.0 53.3 45.5 471 47.4
NPV (%) 90.0 81.8 79.0 81.0 82.9 86.5
P Value Validation Dataset 1 Validation Dataset 2
Rad vs Fusion 4.8x10° 3.6x10®
Cli vs Fusion 1.3x107 7x10°°
Rad vs Cli 3.80 0.123
PPV, positive predictive value; NPV, negative predictive value.
A B
10 Validation Dataset 1 Validation Dataset 2
. 1.0
0.8 0.8
g 06 ;: 0.6
204 E 0.4
0.2 ; 0.2
Fusion Model (AUC=0.79) Fusion Model (AUC=0.72)
— Tumor Feature Model (AUC=0.70) —— Tumor Feature Model (AUC=0.64)
—— Clinical Feature Model (AUC=0.69) —— Clinical Feature Model (AUC=0.68)
0.0 . : . .
0.0 02 04 0.6 0.8 Lo %0 0.2 04 0.6 0.8 1.0
False Positive Rate False Positive Rate
FIGURE 4 | Comparison of prediction performance among the three models using different features. In the ROCs, the blue, red, green curves show the models
based on fusion features, tumor features and clinical features, respectively. (A) ROCs of internal validation set, (B) ROCs of external validation set.
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There are no studies evaluating the performance of CT
radiomics model based on the primary colorectal cancer to
predict MLM. But several studies have investigated texture
analysis of liver or rectal cancer to predict liver metastases.
Beckers et al. reported texture analysis (uniformity at LoG
filtration with sigma=0.5) of liver could predict patients at
risk of developing early LMs in <6 months but was not robust
enough to identify patients at risk of developing metastases at
later stages (22). In contrast, Lee et al. and Taghavi et al. showed
that a CT radiomics nomogram based on the whole liver can
provide a valuable assessment of the risk of MLM (23, 24). These
findings suggest that radiomics and clinical features are
complementary and mutually authenticated; thus, the
comprehensive evaluation achieved a better prediction
performance. Our study applied primary CRC features rather
than liver features and found an increase in the predictive
performance of the fusion model, which achieved good
performance in the independent external validation. Some
studies have shown that the heterogeneity of primary CRC
tumours is linked to the aggressiveness of CRLMs and can
predict the potential for LM (25-27). Based on similar
inferences, Liu and Shu applied radiomics features of primary
magnetic resonance imaging (MRI) rectal tumour images to
predict synchronous LM (28, 29). Li et al. applied a single slice
that included the largest tumour to predict MLM (30), and Liang
et al. showed that radiomics models based on baseline rectal MRI
had high potential for MLM prediction (31). Our study applied
the assessment of whole primary lesions with CT scans rather
than single slices to predict MLM and improved the model
performance by using a machine learning algorithm.

Compared with previous studies, one strength of this study is
the availability of an external test cohort. Independent external
test cohorts contribute to evaluating the generalizability of
predictive models (32). Another strength is the segmentation
based on the entire 3D volume of the tumour and radiomics
feature extraction using a machine learning algorithm, which can
maximize the potential information underlying the images and
thus identify the features with the highest predictive value.
Moreover, this study focused on the primary lesions. Assessing
the risk of LM using CT scans of primary CRC tends to be
more routine, quick and economical, thus supporting its
future application.

There are some limitations to our study. First, as a retrospective
study with a limited dataset, selection bias and the presence of
unknown confounders were possible. Although the patients were
divided into a training cohort and a validation cohort according to
the date of the first visit to avoid selection bias as much as possible,
the small dataset may limit the generalization performance of the
proposed model. Second, gene sequencing was not routinely
applied, and thus, the genetic profiles were inadequate and
formed a small sample. Third, the use of MLP classifier and
maximum score strategy may be overoptimistic for the task.
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