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Abstract

Background: Worldwide, breast cancer is the main cause of cancer mortality in women. Most cases originate in
mammary ductal cells that produce the nipple aspirate fluid (NAF). In cancer patients, this secretome contains proteins
associated with the tumor microenvironment. NAF studies are challenging because of inter-individual variability. We
introduced a paired-proteomic shotgun strategy that relies on NAF analysis from both breasts of patients with
unilateral breast cancer and extended PatternLab for Proteomics software to take advantage of this setup.

Methods: The software is based on a peptide-centric approach and uses the binomial distribution to attribute a
probability for each peptide as being linked to the disease; these probabilities are propagated to a final protein p-value
according to the Stouffer’s Z-score method.

Results: A total of 1227 proteins were identified and quantified, of which 87 were differentially abundant, being mainly
involved in glycolysis (Warburg effect) and immune system activation (activated stroma). Additionally, in the estrogen
receptor-positive subgroup, proteins related to the regulation of insulin-like growth factor transport and platelet
degranulation displayed higher abundance, confirming the presence of a proliferative microenvironment.

Conclusions: We debuted a differential bioinformatics workflow for the proteomic analysis of NAF, validating this
secretome as a treasure-trove for studying a paired-organ cancer type.
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Background
Breast cancer is one of the most common human neo-
plasms, accounting for approximately one quarter of all
cancers in females. Invasive breast cancer is the most
common carcinoma in women [1, 2]. Most cases arise
from epithelial cells of the mammary ductal system. In
non-pregnancy and non-lactating periods, these epithelial
cells produce a secretion that, when collected, is called the
nipple aspirate fluid (NAF) [3]. As a protein-rich
breast-proximal fluid closely related to the tumor micro-
environment in cancer patients, NAF constitutes a valu-
able biological sample to study secreted proteins from

tumor cells without contamination by other interstitial
fluids or cells [4, 5]. Proteomic studies of human body
fluids and tissues are challenging, especially due to the
high biological variability. Since breast is a “paired” organ,
in unilateral breast cancers, the contralateral non-diseased
breast from the same individual can be used as an ideal
negative control of the cancerous breast [6], ultimately in-
creasing the statistical power.
In 2014, we evaluated for the first time 14 paired NAF

samples from seven patients with unilateral breast can-
cer by PAGE, zymography, and DIGE strategies. Our re-
sults have revealed the existence of very distinct
proteomic profiles among patients (i.e., individual differ-
ences). However, NAF profiles from both breasts of the
same woman were very similar in qualitative terms, al-
though important quantitative differences in protein
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spot intensities could be observed. Patients with less ag-
gressive tumors shared a similar homogeneous profile,
with a typical set of proteins identified. In contrast, pa-
tients with more aggressive tumors presented very
unique profiles (i.e., heterogeneous) [7].
DIGE poses as the state of the art method for sample

comparisons by two-dimensional gel electrophoresis.
When using this technique, to perform a statistical ana-
lysis of spot intensity differences between two conditions
(Cy3- and Cy5-labeled), the images are overlaid using
the Cy2-labeled internal standard as the reference image.
This standard is made up of equal amounts of all sam-
ples in the study [8]. Due to the substantial individual
heterogeneity found in NAF samples, it was not possible
to confidently overlay their gel images, therefore ham-
pering the use of statistical tests for pinpointing differen-
tially abundant candidate markers between the cancer
and the control samples. Although the study failed to
provide valuable candidate markers, it was fundamental
to demonstrate that, even though substantial qualitative
individual differences were observed, when comparing
NAF samples from both breast within the same patient,
the electrophoretic patterns were very similar, regardless
of their cancer status [7].
To overcome the limitations imposed by our previous

gel-based analytical strategy, a shotgun label-free prote-
omic approach was applied to further advance the prote-
omic characterization of NAF samples. However,
attempts to use classical data analysis tools (e.g. Prote-
ome Discoverer and Progenesis) [9, 10] were not suc-
cessful in providing differential results. The significant
inter-individual variability of NAF samples confuses
chromatogram alignment, which constitutes an import-
ant first step of many algorithms. Most importantly,
such traditional shotgun proteomic statistical algorithms
do not capitalize on the sample pairing. As
normalization is not trivial across the patients, applying
data analysis strategies that rely on statistically finding
differential abundance by considering the average values
of each group (cancer vs control) for each protein is
simply not applicable for the task at hand; these tools
work considerably better for models with lower bio-
logical variation, such as cell cultures or mouse models
[11, 12].
Taken together, our cumulative experience on various

studies made clear that the substantial individual hetero-
geneity of these clinical samples required further devel-
opment of proteomic data analysis tools. The pairing of
the NAF samples constitutes the core of our strategy
and capitalizes on the subtle variations within the same
patient. Therefore, we developed an extension to the
PatternLab for Proteomics suite that was tailored for the
data analysis challenges at hand, which finally enabled us
to confidently perform a differential proteomic

comparison of breast cancer secretome samples (NAF)
from patients with unilateral breast cancer. In summary,
here we propose a consistent quantitative analysis work-
flow for the evaluation of a heterogeneous biological
fluid that constitutes a valuable source of information
with potential applications in clinical evaluation of
breast cancer patients.

Methods
Sample collection
NAF samples (10 cancerous and 10 control) were col-
lected from both breasts of 10 patients with
biopsy-proven unilateral ductal invasive carcinoma,
yielding a total of 20 biological samples, plus three indi-
viduals with no positive diagnosis of breast disease on ei-
ther breast (providing six more biological samples). All
samples were collected at the Mastology Service of the
Fernandes Figueira Institute (IFF) of Fiocruz or at the
Gynecology Ambulatory of Lagoa Federal Hospital
(Table 1). Eligibility criteria for all subjects were: a) to be
post-menopausal; b) no intake of exogenous hormones
during the previous six months; c) no breast surgery or
chemotherapy; d) no previous clinical evidence of breast
disease or cancer. After obtaining the written informed
consent (IFF Research Ethics Committee, license 0083/
10) and the clinical and imaging confirmation of the
diagnosis status, NAF collection and protein quantifica-
tion were performed as previously described [7]. Briefly,
the breast was gently massaged from the chest wall to-
ward the nipple for 5 min followed by warm compress
for equal time. The nipple fluids were then aspirated
using breast pumps and the fluid droplets were collected
using a 10 μL micropipetter (Gilson, Inc., Middleton,
WI, USA). Immediately, the diluted NAF samples (10
times in phosphate buffered saline pH 7.4) were centri-
fuged at 250 x g for 10 min at 6 °C and the supernatant
was collected and stored at − 80 °C. The NAF protein
concentrations were determined using the bicinchoninic
acid protein assay kit (Sigma-Aldrich, St. Louis, MO,
USA).

Sample preparation
One hundred micrograms of lyophilized NAF proteins
were dissolved in 20 μL of 400 mM ammonium bicar-
bonate/ 8M urea followed digestion as described else-
where [13]. The digested peptide mixture was desalted
by using homemade tip columns packed with Poros R2
resin (Applied Biosystems, USA). Samples were finally
dried in a vacuum centrifuge [14].

Mass spectrometry data acquisition
Desalted tryptic peptides were resuspended in 100 μL of
0.1% (v/v) trifluoroacetic acid. Samples were then ana-
lyzed by nLC-MS/MS using an UltiMate 3000 RSLC
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system (Dionex, USA) coupled to an Orbitrap Elite mass
spectrometer (ThermoFisher Scientific, Germany). Ini-
tially, peptides were loaded (normalized TIC values be-
tween 5 × 108 – 1 × 109, corresponding to 1–4 μL) with
0.1% TFA at 20 μL/min to a 2-cm long (100 μm i.d.) Ac-
claim® PepMap100 NanoViper Trap column packed with
5 μm silica particles, 100 Å pore size, followed by separ-
ation at 250 nL/min on a 50 cm× 75 μm i.d. Acclaim® Pep-
Map100 NanoViper column, both at 60 °C. Peptides were
eluted with a gradient of 3 to 45% of 0.1% (v/v) formic
acid and 84% (v/v) acetonitrile over 187min. The spray
voltage was set to 1.8 kV with capillary temperature of
275 °C and no sheath or auxiliary gas flow. Full MS spec-
tra were acquired with 1 microscan on the Orbitrap
analyzer at a 60,000 resolution (FWHM at m/z 400) with
a target AGC value set to 1 × 106. For each survey scan
(300 to 1500m/z range), up to 10 most abundant precur-
sor ions were sequentially submitted to CID fragmenta-
tion and MS2 analysis in the LTQ using the following
parameters: MSn AGC target value of 1 × 104, normalized
collision energy of 35%, minimum signal threshold of
2000 counts and dynamic exclusion time of 30 s.

Data analysis
Peptide-spectrum matching (PSM) was performed using
the Comet [15] search engine (version 2016.01), which is
embedded in PatternLab for Proteomics (version 4.1,
http://patternlabforproteomics.org) [16]. Sequences from

Homo sapiens were downloaded from UniProtKB/Swis-
s-Prot (containing target 42,402 entries, on September
17, 2018, http://www.uniprot.org/). The final search
database, generated using PatternLab’s Search Database
Generator tool, included a reverse decoy for each target
sequence plus sequences from 127 common contami-
nants, such as BSA, keratin, and trypsin. The search pa-
rameters applied included: fully tryptic and semi-tryptic
peptide candidates with masses between 550 and 5500
Da, up to two missed cleavages, 40 ppm for precursor
mass and bins of 1.0005m/z for MS/MS. The modifica-
tions were carbamidomethylation of cysteine and oxida-
tion of methionine as fixed and variable, respectively.
The validity of the PSMs was assessed using the Search
Engine Processor (SEPro) [16]. Identifications were
grouped by tryptic status, resulting in two distinct sub-
groups. For each result, XCorr, DeltaCN, and Comet’s
secondary score values were used to generate a Bayesian
discriminator. A cutoff score was established to accept a
false-discovery rate (FDR) of 1%. A minimum sequence
length of 6 amino acid residues was required and the re-
sults were further filtered to only accept PSMs with pre-
cursor mass error of less than 6 ppm. Proteins identified
by only one spectrum (i.e. 1-hit-wonders) having an
XCorr below 2.0 were excluded from the identification
list. The post-processing filter resulted in a global FDR,
at the protein level, of less than 1% and was independent
of the tryptic status [17].

Table 1 Reproductive and tumor characteristics of the ten unilateral breast cancer cases and three individuals without breast
disease analyzed

Subject Age
(years)

Birth control
use /
hormonal
replacementa

Parity /
breastfeedingb

Familial
breast
cancer

Bloom-
Richardson
Gradingc

Cancer
stagingd

Immunohistochemistry status

Estrogen receptor Progesterone receptor Human Epidermal
Growth Factor
Receptor 2

Patient 1 64 yes / no 1 / yes no I I Positive Negative Negative

Patient 2 73 no / no 6 / yes no II I Positive Positive Negative

Patient 3 53 yes / no 3 / yes no II I Positive Positive Negative

Patient 4 66 yes / no 7 / yes no III IIB Negative Negative Negative

Patient 5 85 no / no 3 / yes no II I Positive Positive Negative

Patient 6 51 no / no 2 / yes no II IIIA Negative Negative Negative

Patient 7 54 no / no 1 / no no III IIB Negative Negative Negative

Patient 8 60 yes / no 3 / yes no III IIB Negative Negative Positive

Patient 9 51 yes / no 3 / yes no II IIIB Negative Negative Positive

Patient 10 72 yes / yes 2 / yes NDAe II IIB Positive Positive Negative

Individual 1 59 yes / no 4 / yes yes – – – – –

Individual 2 53 yes / no 3 / yes no – – – – –

Individual 3 61 yes / no 1 / yes no – – – – –
aBirth control use/hormonal replacement is defined by whether each woman used or not oral contraceptives/ hormone replacement pills
bBreastfeeding is defined by whether or not the woman feed the baby with milk from the breast for at least 1 month
cBloom-Richardson grading at Bloom and Richardson (1957)
dCancer staging classification according to the Brazilian National Institute of Cancer (2004)
eNDA refers to No Data Available
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Experimental design and statistical rationale
For breast cancer patients, NAF samples were collected
(up to three attempts) in a brief time window between
the diagnosis and surgery. Even though proteomic differ-
ences in NAF due to the activity of ovarian hormones
are believed to be negligible [18–20], we were cautious
to only include post-menopausal individuals. Through a
workflow of only a few steps, a high-resolution and sen-
sitive nLC-MS/MS analysis [21, 22] was carried out for
shotgun evaluation of NAF samples.
PatternLab’s XIC extraction tool was used for obtain-

ing the XICs of peptides confidently identified according
to SEPro. The XIC extraction of precursor intensity
measurements was performed under a tolerance of 9
ppm and acceptable charge states + 2 and + 3. Pattern-
Lab’s XIC Explorer was then used to visually assess the
distribution of intensities of the label-free quantitations,
label each run as control or disease, and tag which sam-
ples were from the same patient for further paired ana-
lysis. Additionally, PatternLab’s TFold module was used
to demonstrate a standard comparison of mean values
between two groups: NAF from diseased breasts versus
non-diseased ones.
The .xic file provided by PatternLab served as input to

a tool named Paired Analyzer (PA), specifically devel-
oped for this study. PA begins by normalizing the XICs
from each peptide according to the total ion current
from each run. The paired analysis of each unique (i.e.
proteotypic) peptide required six or more sequential pre-
cursor intensity measurements and a minimum fold
change of 1.5. Then, for each peptide, the software ex-
tracts a list of values according to one of four possibil-
ities: i) when a peptide’s XIC is obtained from data
originating from both breasts, an XIC ratio (cancer:con-
trol) is recorded; ii) when an XIC is not obtained from
either breast, a “0” (zero) is recorded; iii) when an XIC is
obtained only from the diseased sample, a “+” (plus) is
recorded; iv) when an XIC is obtained only from the
control sample, a “–” (minus) is recorded (Table 2). In
what follows, PA relies on a peptide-centric approach to
assign a p-value to each peptide as being differentially
abundant. For this, we follow a paired binomial ap-
proach. Our model assumes a 50% chance for a ran-
domly selected peptide to be a success relative to each

individual patient for which an XIC was obtained from
at least one breast, where success is to be understood as
that peptide having a ratio greater than 1 or a “+” for
the patient in question. A peptide’s number of successes
is the random variable X, and we calculate its p-value as
the probability P(X > x), given by a sum of binomials,
where x is the number of patients for which success was
observed. Thus, for the peptide Pa (Table 2), the number
of successes (x) is 3, the number of trials (n, number of
columns not having 0 as a value) is 5, which yields
P(X > 3) = 0.5. For Pb, x = 2 and n = 10, yielding P(X > 2)
= 0.99. For Pc, x = 6 and n = 6, yielding P(X > 6) = 0.02.
In summary, low p-values (e.g. p < 0.025) link a peptide
to the cancer condition; on the other hand, high values
(e.g. p > 0.975) would link the aforementioned peptide to
the control condition.
Finally, multiple p-values originating from the peptides

mapped to a protein are used to perform a meta-analysis
to help determine whether that protein can be consid-
ered differentially abundant. This analysis is the deter-
mination of Stouffer’s Z-score [23] for the data at hand,
denoted by Z and given as a function of the various pep-
tide p-values as

Z ¼

Xk

i¼1

wiZi

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Xk

i¼1

w2
i

vuut
:

In this expression, k is the number of peptides; Zi

=Φ−1(1 − pi), where Φ is the standard normal cumula-
tive distribution and pi the i-th peptide’s p-value; wi is
the square root of the count of individuals in which that
peptide was identified.
Average fold-changes were calculated considering the

logarithms of the ratios to the base 2, allowing for sym-
metry in the expression rates of more (positive values,
Table 2) and less (negative values) abundant proteins in
cancer.
The differentially abundant proteins were categorized

in pathways according to the Reactome v60 (https://
www.reactome.org/) database. The distribution of those
proteins was plotted in a graph from PatternLab’s

Table 2 Theoretical example for the peptide-centric approach in the PA module of the PatternLab tool

Peptidea 1b 2 3 4 5 6 7 8 9 10 p-valuec Avg Log Foldd

Pa 0 + 0 0 0 0.19 0.86 1.37 1.63 0 0.50 −0.36

Pb 0.68 1.15 0.30 0.23 + – 0.18 0.10 0.57 0.42 0.99 −1.53

Pc 0 3.64 + 1.06 + 0 + 0 8.31 0 0.02 1.67
aThe first column refers to three distinct peptides (Pa, Pb, and Pc)
bColumns labeled as 1 through 10 refer to distinct patients
cThe column labeled as p-value refers to the p-value as obtained from the binomial distribution
dThe Avg Log Fold column displays the average logarithm to the base 2 of the values in the corresponding row that are greater than 0
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showing the mean of normalized parent ion intensity
abundance factor (NIAF) [24] of each identified protein
from the NAF samples of the ten patients.

Selected reaction monitoring (SRM)
From the differentially abundant list of proteins, 12 of
them related to glycolysis, complement cascade and
platelet activation pathways were selected for further
validation. The spectral library was built from the shot-
gun analysis described in sections 2.3 and 2.4 and loaded
at Skyline software (https://skyline.ms/project/home/
software/Skyline/begin.view, version 4.1). A total of 87
transitions were selected for SRM according to peptide
uniqueness in the human genome; presence in the spec-
tral library with relatively high intensity of signal; with-
out ragged ends (KK, RR, KR or RK); minimum and
maximum size of 8 and 25 aminoacids, respectively; only
“y” ion types. Six pairs of samples were prepared as de-
scribed above and the dessalted tryptic peptide mixtures
were quantified by Pierce Quantitative Colorimetric Pep-
tide Assay (ThermoFisher Scientific, USA). A total of
0.5 μg of peptides for each sample spiked in 32 fmol of
Pierce Retention Time Calibration Mixture (Thermo-
Fisher Scientific, USA) in 1% formic acid (FA) were
loaded to a 2 cm precolumn of 75 μm i.d. with 3 μm sil-
ica particles and 100 Å pore size (Acclaim PepMapTM
100, Thermo) in 12 μL of 0,1% (v/v) FA and 5% (v/v)
acetonitrile in water, using an EASY II (Proxeon, USA).
Then, separation was performed at 320 nL/min in a
PicoChip column, 75 μm i.d. × 15 μm tip × 10.5 cm of
H354 ReproSil-Pur C18-AQ 120 Å (New Objective,
USA) using an elution gradient of 5 to 45% of 0.1% (v/v)
FA and 5% (v/v) water in acetonitrile over 40 min
followed by 45–95% over 10min. The nLC was coupled
to a TSQ Quantiva mass spectrometer (ThermoFisher
Scientific, Germany). The spray voltage was set to 2.6 kV
with capillary temperature of 280 °C, the 60min acquisi-
tion was done with 2 s cycle time, 0.7 Q1 and Q3 reso-
lution (FWHM 508.2m/z), 1,5 mTorr for collision
induced dissociation (CID) fragmentation, and collision
energy adjusted according to the theoretical equation of
this mass spectrometer. After manual refinement of each
transition for each sample, the areas of 48 transitions
which refer to 9 proteins were exported from Skyline
and imported at Paired Analyzer tool for statistical ana-
lysis as described above.

Results
PatternLab’s TFold comparison of the mean values of
protein abundance between the cancerous group versus
the non-cancerous one showed no protein as being dif-
ferentially abundant (Fig. 1).
The shotgun approach disclosed a total of 1227 pro-

tein entries (Additional file 1: Table S1), of which 87

proteins (Table 3) were differentially abundant between
cancerous and non-diseased breasts from unilateral
breast cancer patients, according to our paired statistical
approach. From these 87 differentially abundant pro-
teins, all of them were quantified with more than 6 pep-
tides and are included in the Plasma Proteome Database
(http://www.plasmaproteomedatabase.org/), proteins ex-
cept for three immunoglobulins forms (Ig heavy con-
stant gamma 2, Ig kappa variable 3–20, and Ig heavy
variable 2–5). Nine differentially abundant proteins were
detected in lower levels in NAF samples originating
from the cancerous breast (Stouffer p-values ≥0.975).
We also performed a differential analysis between sam-

ples from right and left breasts of three women without
breast disease (Table 1, individuals 1–3). From the list of
578 statistically evaluated proteins (Additional file 2: Table
S2), Ig heavy constant alpha-1 (Stouffer’s p-value =
0.0054), alpha-1-antichymotrypsin (Stouffer’s p-value =
0.9888), alpha-1-antitrypsin (Stouffer’s p-value = 0.9943)
were pointed as differentially abundant. Since
alpha-1-antichymotrypsin and alpha-1-antitrypsin were
also found in the comparison between the breasts of can-
cer patients, they were excluded from the following ana-
lyses (Additional file 1: Table S1). Our motivation was to
reduce the chance of false positive identifications as, in
principle, there should be no reason for having differen-
tially abundant proteins between the NAF samples origin-
ating from normal right and left breasts.
Among 87 differentially abundant proteins observed be-

tween cancerous and non-diseased paired breasts, it is
worth mentioning the frequent identification of proteins
associated with the glycolysis pathway, the complement
cascade and the platelet activation/degranulation systems
(Additional file 3: Table S3). Furthermore, having as refer-
ence the average value of NIAF plotted for each protein
ordered by abundance, the 87 differentially abundant pro-
teins were among the more abundant ones (Fig. 2).
We also performed an additional differential analysis be-

tween NAF samples from a subgroup of patients bearing
estrogen receptor-positive tumors (ERpos) (Table 1). From
the 873 statistically evaluated proteins (Additional file 4:
Table S4), 14 proteins (Table 4) were classified as differen-
tially abundant; 10 of them (alpha-1B-glycoprotein, ceru-
loplasmin, alpha-2-macroglobulin, serotransferrin,
immunoglobulin heavy constant mu, alpha-1-acid glyco-
protein 1, ferritin heavy chain, proteinS100-A8, and serum
albumin) were also found as differentially abundant in the
total set of breast cancer patients. All differentially abun-
dant proteins found in both datasets, ERpos cancer NAF
and total cancer NAF, presented the same abundance ten-
dencies. Among the proteins found as more abundant in
ERpos samples, representatives of the protein metabolism
and the platelet degranulation system were frequently
identified (Additional file 3: Table S3).
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To validate the results obtained from the cancer ver-
sus nondiseased comparison, 12 differentially abundant
proteins were selected according its overall high MS sig-
nal and their presence in the well represented Reactome
pathways here described. By Selected Reaction Monitor-
ing (SRM), 4 proteins of glycolysis (pyruvate kinase,
glyceraldehyde-3-phosphate dehydrogenase, triosepho-
sphate isomerase, and fructose-bisphosphate aldolase A),
4 proteins of complement cascade (complement C5,
complement C3, complement factor B, and complement
factor H), and 4 proteins of platelet activation and sig-
naling (alpha-2-macroglobulin, apolipoprotein A-I, fibro-
nectin, and annexin A5). From the initial 87 inicial
transitions, 48 were successfully monitored with a CV
lower then 15% among replicates, after normalization
using global standards. The normalized areas were sta-
tistically analyzed by our paired setup and the higher
abundance in cancer samples were confirmed to pyru-
vate kinase, alpha-2-macroglobulin, and complement
factor B (p-value < 0.05). Although the proteins
fructose-bisphosphate aldolase A, complement C5, com-
plement C3, complement factor H, apolipoprotein A-I,
and annexin A5 did not reach lower p-values, fold
changes were corroborated with the higher abundance
in cancer samples (Additional file 5: Table S5).

Discussion
Differential analysis performed with individually paired
NAF samples from unilateral breast cancer patients

(using the contralateral non-diseased breast sample as
negative control) is a powerful strategy for discrimin-
ation of which proteins are related to the disease as it
helps overcoming the challenge of individual heterogen-
eity observed between patients [7, 25]. We applied Pat-
ternLab’s TFold analysis as a representative of a widely
adopted proteomic approach to demonstrate the effect-
iveness of these methods on datasets with a high bio-
logical variation; no proteins were found as differentially
abundant. Thus, to quantitatively analyze proteins by
label-free shotgun, individual pair-by-pair analysis was
performed by the new Paired Analyzer tool of the Pat-
ternLab for Proteomics software [26]. As aforemen-
tioned, our software performs a quantitative
peptide-centric approach that relies on the binomial dis-
tribution to attribute a p-value to each peptide as being
related to the disease or not. In what follows, these
p-values are rolled up to the protein level, converging to
the Stouffer’s Z-score via a widely adopted meta-analysis
procedure which enables combining independent statis-
tical tests bearing upon the same hypothesis to establish
a single score. The tool also allows quickly verifying
whether individual peptides belonging to the same pro-
tein followed the same trend in differential abundance
across the breast cancer NAF samples (Additional file 6:
Graphical abstract).
Our shotgun approach revealed proteins presenting

higher abundances in breast cancer samples that were
previously known as related to cancer progression.

Fig. 1 PatternLab’s TFold pairwise analysis of the two biological conditions Each dot represents a protein mapped according to its log2 (fold-change) as
the ordinate and its -log2 (t-test p-value) as the abscissa. White dots indicate proteins that do not satisfy either the fold-change cutoff or the FDR cutoff α
(0.05). Grey dots depict protein entries that satisfy the fold-change cutoff but not FDR α. Dashed dots indicate proteins that satisfy both fold-change and
FDR α, but present low fold-changes. Vertical lines filled dots would represent protein entries that satisfy all statistical filters. Since no dashed or vertical
lines filled dots are visible, the result interpretation is that no protein was considered differentially abundant between the biological conditions
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Table 3 List of 87 found as differentially abundant after paired comparison of NAF samples from breast cancer patients
Accession number Stouffer’s p-valuea # of unique peptidesb Sequence coveragec Protein descriptiond

P01023 « 0.05 171 69% Alpha-2-macroglobulin

P04114 « 0.05 233 48% Apolipoprotein B-100

P02768 2.89E-15 535 92% Serum albumin

P02751 5.00E-14 116 51% Fibronectin

P00450 4.61E-10 138 66% Ceruloplasmin

P01008 7.85E-10 49 56% Antithrombin-III

P01024 5.75E-09 293 79% Complement C3

Q14624 7.30E-08 66 53% Inter-alpha-trypsin inhibitor heavy chain H4

P02647 7.97E-08 65 79% Apolipoprotein A-I

P69905 1.77E-06 80 89% Hemoglobin subunit alpha

P01031 1.86E-06 64 45% Complement C5

P02787 5.85E-06 233 79% Serotransferrin

P19823 1.72E-05 40 39% Inter-alpha-trypsin inhibitor heavy chain H2

P04075 2.11E-05 20 56% Fructose-bisphosphate aldolase A

P06733 2.772E-05 22 45% Alpha-enolase

P00751 3.486E-05 62 53% Complement factor B

P02763 5.823E-05 23 33% Alpha-1-acid glycoprotein 1

P04217 6.358E-05 39 59% Alpha-1B-glycoprotein

O43707 8.867E-05 25 32% Alpha-actinin-4

P02743 8.875E-05 7 28% Serum amyloid P-component

P63104 0.0001746 17 49% 14–3-3 protein zeta/delta

P08603 0.00018 78 51% Complement factor H

P62937 0.0001889 7 32% Peptidyl-prolyl cis-trans isomerase A

P01859 0.00026 41 41% Immunoglobulin heavy constant gamma 2

P02748 0.0002745 33 57% Complement component C9

P05109 0.000281 10 65% Protein S100-A8

P01871 0.000404 76 70% Immunoglobulin heavy constant mu

P04003 0.00059 49 60% C4b-binding protein alpha chain

P51884 0.0007103 10 28% Lumican

P02671 0.0007129 85 53% Fibrinogen alpha chain

P35579 0.0008537 27 18% Myosin-9

P00558 0.0009974 13 28% Phosphoglycerate kinase 1

P62258 0.0012498 9 36% 14–3-3 protein epsilon

P37802 0.0014134 11 42% Transgelin-2

P01857 0.0014264 44 24% Immunoglobulin heavy constant gamma 1

P19827 0.0014914 26 33% Inter-alpha-trypsin inhibitor heavy chain H1

P02652 0.0016813 44 71% Apolipoprotein A-II

P06744 0.0020099 11 19% Glucose-6-phosphate isomerase

P31946 0.0020626 11 43% 14–3-3 protein beta/alpha

P60174 0.0023591 21 63% Triosephosphate isomerase

P02656 0.0023949 7 56% Apolipoprotein C-III

P01619 0.0024969 13 42% Immunoglobulin kappa variable 3–20

P13671 0.0031513 34 44% Complement component C6

P02766 0.0035804 27 69% Transthyretin

P00338 0.003773 18 45% L-lactate dehydrogenase A chain

P13639 0.0038429 20 32% Elongation factor 2

P46940 0.0040271 24 22% Ras GTPase-activating-like protein IQGAP1

P23528 0.004225 10 40% Cofilin-1
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Among these proteins are members of the glycolysis
pathway, components of the platelet activation/degranu-
lation systems, and proteins associated with the comple-
ment cascade [27]. By SRM, at least 2 proteins per
pathway corroborated the higher abundance in cancer
samples. Increased levels of glycolytic enzymes have

been previously related to higher glucose consumption,
oncogene activation and loss of function of tumor sup-
pressor genes, promotion of metastasis, angiogenesis
stimulation, chemotherapy resistance, and immune eva-
sion [28, 29]. Another known pathway related to tumor
progression is the complement cascade that mediates

Table 3 List of 87 found as differentially abundant after paired comparison of NAF samples from breast cancer patients (Continued)
Accession number Stouffer’s p-valuea # of unique peptidesb Sequence coveragec Protein descriptiond

P00738 0.0043519 57 52% Haptoglobin

P29401 0.0044629 15 28% Transketolase

P01019 0.0046976 26 37% Angiotensinogen

P02679 0.0048135 76 68% Fibrinogen gamma chain

P43652 0.0048791 33 44% Afamin

P04406 0.00503 19 55% Glyceraldehyde-3-phosphate dehydrogenase

Q13228 0.0052836 10 27% Methanethiol oxidase

P06702 0.005869 16 82% Protein S100-A9

P05546 0.0059243 21 46% Heparin cofactor 2

P02794 0.0069928 15 40% Ferritin heavy chain

O14791 0.0071293 16 36% Apolipoprotein L1

P04196 0.0102909 37 53% Histidine-rich glycoprotein

P31151 0.0123024 6 32% Protein S100-A7

P01817 0.0127189 13 52% Immunoglobulin heavy variable 2–5

Q99497 0.0143139 6 34% Protein/nucleic acid deglycase DJ-1

P61981 0.0148811 7 36% 14–3-3 protein gamma

P14618 0.0158523 31 51% Pyruvate kinase PKM

P01042 0.0159025 35 41% Kininogen-1

Q96PD5 0.0166293 30 58% N-acetylmuramoyl-L-alanine amidase

P02792 0.0180461 20 66% Ferritin light chain

P02750 0.0183273 18 44% Leucine-rich alpha-2-glycoprotein

P00734 0.0186734 46 54% Prothrombin

P15311 0.0199674 21 25% Ezrin

P08758 0.0203289 25 60% Annexin A5

P32119 0.0204951 13 57% Peroxiredoxin-2

P02747 0.0210238 6 44% Complement C1q subcomponent subunit C

P04083 0.0212142 14 41% Annexin A1

P07900 0.0226553 6 11% Heat shock protein HSP 90-alpha

P04040 0.022793 33 52% Catalase

P05543 0.0228794 8 22% Thyroxine-binding globulin

P08582 0.9849647 41 54% Melanotransferrin

P19835 0.9915665 74 48% Bile salt-activated lipase

P08294 0.9923999 19 62% Extracellular superoxide dismutase [Cu-Zn]

P15144 0.9945681 100 53% Aminopeptidase N

Q86UK0 0.9954266 16 5% ATP-binding cassette sub-family A member 12

P12273 0.9980643 104 77% Prolactin-inducible protein

P22897 0.9986817 81 45% Macrophage mannose receptor 1

P05090 0.9998501 105 93% Apolipoprotein D

P02788 1 422 89% Lactotransferrin
aThe Stouffer’s p-value obtained from the independent peptide p-values mapping to the respective protein
bThe # of peptides refers to the number of peptides considered for the calculation of the Stouffer’s p-value
cThe Sequence coverage was calculated considering all peptides mapping to the respective protein
dThe Protein description reflects the UniProt description
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the innate immune system activation, resulting in in-
flammatory cell and fibroblast recruitment to the tumor
microenvironment, which sustains the extracellular
matrix remodeling and, consequently, supports cancer
progression [30, 31].
In this work we were able to identify 20 representatives

of platelet degranulation, activation, signaling or aggrega-
tion as more abundant in NAF cancer samples, showing a
typically coagulant tumor microenvironment. Several stud-
ies report that cancer progression and metastasis (specific-
ally angiogenesis promotion, apoptosis suppression, and
extracellular matrix degradation) can be supported by ele-
ments of the hemostatic system, such as platelets, coagula-
tion, and fibrinolysis [32]. Therefore, our approach seems
to be suitable for more detailed analysis of coagulation cas-
cade proteins, eventually providing further information on
its mechanistic relation with breast cancer progression.
Although proteins related to glycolysis and platelet func-

tion are commonly found in cancer differential proteomic
data [32, 33, 34], their putative roles as moonlighting pro-
teins [35] have been largely overlooked. According to the
MultitaskProtDB [36], glucose-6-phosphate isomerase,
triosephosphate isomerase, and phosphoglycerate kinase
1, glycolytic proteins which we have found more abundant
in the cancer samples, may show moonlighting functions

in differentiation/ stimulation of cell migration (as a cyto-
kine or a growth factor) [37], thrombosis/homeostasis
[38], and angiogenesis (as a disulphide reductase) [39], re-
spectively. Additionally, the peptidyl-prolyl cis-trans isom-
erase, an enzyme related to platelet degranulation found
more abundant in cancer NAF, presents a proinflamma-
tory cytokine function when located in the extracellular
space [40]. Interestingly, our comparative evaluation of
the paired breast secretion in unilateral cancer cases
showed the presence of these cancer-related proteins ex-
tracellularly, which may add important new information
to the understanding of the human functional proteome.
Characteristically, ERpos breast tumors are a well

differentiated type of cancer and present better treat-
ment response and overall survival [41]. This group
of samples showed increased levels of proteins re-
lated to the regulation of IGF transport and to the
platelet degranulation system. Although some find-
ings about the role of IGF system in breast cancer
are conflicting, many components of this system are
known to be altered during breast cancer establish-
ment and progression regardless the expression pat-
terns of receptors (ER, PR and HER2) [42]. Overall,
proliferation mechanisms which are present in these
tumors were observed in this work.

Fig. 2 Graph demonstrating the (− 1*10^7) * Log of the average of the normalized ion abundancy factor (NIAF) of all the proteins identified in
the NAF For each protein, a number was given as an identifier, and the abscissa is representing these numbers in descending order of
abundance. Gray, Black, and White dots represent proteins with no differential abundancy, more abundant in the contralateral non-diseased
breasts, and in the breasts with cancer, respectively
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Conclusions
In NAF cancer samples, the higher abundances of proteins
involved in cell-stroma communication, glycolysis (War-
burg effect), and immune system activation (to maintain a
stimulated stroma) corroborate previous breast cancer data
from the literature. Additionally, this paired comparative
proteomic strategy of analysis presents valuable information
on the mechanisms described above that are known to be
related to the disease, even with the inter-individual hetero-
geneity characteristic of NAF samples. Although, we per-
formed an SRM experiment and confirmed the higher
abundance of 3 proteins in cancer samples, further verifica-
tion/confirmation of higher levels of glycolytic enzymes,
complement components, and platelets activators in a lar-
ger cohort (> 20 NAF paired samples per cancer subtype,
throughout the entire pathways) using the targeted prote-
omic strategy may contribute to new advances in breast
cancer evaluation. Taken together, these results demon-
strate that protein analysis of NAF, a clinical sample easily
obtained, could compose a pillar in precision medicine,
guiding a protein-based prognosis.

Additional files

Additional file 1: Table S1. Result summary of the protein and
peptide identifications from the NAF samples from breast cancer patients.
a) Protein Report: List of all 1227 proteins statistically evaluated after
paired comparisons of NAF samples from breast cancer patients; b)
Peptide Report: List of all 1227 proteins and the respective peptides
statistically evaluated after paired comparisons of NAF samples from
breast cancer patients. (XLSX 1245 kb)

Additional file 2: Table S2. Result summary of protein and peptide
identifications (NAF samples from control women). a) Protein Report:

Complete list of 578 proteins statistically evaluated after paired
comparisons of non diseased breast NAF samples from control women;
b) Peptide Report: Complete list of 578 proteins and the respective
peptides statistically evaluated after paired comparisons of non diseased
breast NAF samples from control women. (XLSX 364 kb)

Additional file 3: Table S3. Functional analysis of differentially
abundant proteins (NAF samples from breast cancer patients). a)
Cancer_vs_Nondiseased: Reactome pathways categorization of the
proteins found as differentially abundant after paired comparison of NAF
samples from breast cancer patients; b) ERpos_vs_Nondiseased:
Reactome pathways categorization for differentially abundant proteins
according to the paired comparison of NAF samples from ERpos breast
cancer patients. (XLSX 26 kb)

Additional file 4: Table S4. Summary result of protein and peptide
identifications (NAF samples from ERpos breast cancer patients). a)
Protein Report: List of all 873 proteins statistically evaluated after paired
comparisons of NAF samples from ERpos breast cancer patients; b)
Peptide Report: List of all 873 proteins and the respective peptides
statistically evaluated according to the paired comparisons of NAF
samples from ERpos breast cancer patients. (XLSX 639 kb)

Additional file 5: Table S5. Summary result of the proteins monitored
by SRM (NAF samples from breast cancer patients). a) Protein Report: List
of the 9 proteins monitored by SRM and statistically evaluated after
paired comparisons of NAF samples from breast cancer patients; b)
Peptide Report: List of the 9 proteins and the respective peptides
monitored by SRM and statistically evaluated according to the paired
comparisons of NAF samples from breast cancer patients. (XLSX 17 kb)

Additional file 6: Graphical abstract. This study introduced a paired-
proteomic shotgun strategy that relies on NAF analysis from both breasts
of patients with unilateral breast cancer. The differential analysis of the
quantitative data was performed by the “Paired Analyzer”, a newly devel-
oped module that works together with the “PatternLab for Proteomics”
software. Using a peptide-centric approach, the software applied the bi-
nomial distribution to attribute a probability for each peptide as being
linked to the disease; these probabilities were propagated to a final
protein p-value, according to the Stouffer’s Z-score method. (TIF 195 kb)

Abbreviations
AGC: automatic gain control; ERpos: estrogen receptor positive; FDR: false
discovery rate; FWHM: full width at half maximum; HER-2: human epidermal

Table 4 List of 14 non-redundant proteins by maximum parsimony criteria found as differentially abundant after paired comparison
of NAF samples from ER positive breast cancer patients
Accession number Stouffer’s p-valuea # of peptidesb Sequence coveragec Protein descriptiond

P02768 1.22E-08 352 87% Serum albumin

P01023 6.57E-06 113 59% Alpha-2-macroglobulin

Q6YHK3 0.000399054 32 24% CD109 antigen

P02787 0.000477172 126 76% Serotransferrin

P01871 0.002477974 58 70% Immunoglobulin heavy constant mu

P04217 0.00467967 22 48% Alpha-1B-glycoprotein

P15086 0.008832761 37 66% Carboxypeptidase B

P02763 0.012584332 15 33% Alpha-1-acid glycoprotein 1

P06312 0.014788016 9 36% Immunoglobulin kappa variable 4–1

P02794 0.02097625 14 40% Ferritin heavy chain

P00450 0.02154448 94 58% Ceruloplasmin

Q08380 0.022181763 59 51% Galectin-3-binding protein

P05109 0.024051217 9 63% Protein S100-A8

P02788 0.997617412 414 88% Lactotransferrin
aThe Stouffer’s p-value obtained from the independent peptide p-values mapping to the respective protein
bThe # of peptides refers to the number of peptides considered for the calculation of the Stouffer’s p-value
cThe Sequence coverage was calculated considering all peptides mapping to the respective protein
dThe Protein description reflects the UniProt description
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growth factor receptor 2; LTQ: linear trap quadrupole; NAF: nipple aspirate
fluid; nLC: nano liquid chromatography; PA: paired analyzer; PRM: parallel
reaction monitoring; PSM: peptide spectrum match; SEPro: Search Engine
Processor; SRM: Selected Reaction Monitoring; TIC: total ion current;
TNBC: triple negative breast cancer; XIC: extracted ion chromatogram/current

Acknowledgements
We would like to acknowledge Julio César da Paixão, Luis Claudio Belo
Amêndola, Rafael Henrique Szymanski Machado and Napoleão Leão Jr. for
their assistance during sample collection, and the Laboratory of Proteomics
(LabProt) - LADETEC, Institute of Chemistry, Federal University of Rio de
Janeiro for their assistance in the SRM analysis. This study was supported by
Fundação do Câncer, Coordenação de Aperfeiçoamento de Pessoal de Nível
Superior, Rede Proteômica do Rio de Janeiro, Fundação Carlos Chagas Filho
de Amparo à Pesquisa do Estado do Rio de Janeiro, Fundação Oswaldo
Cruz/ Programa de Desenvolvimento Tecnológico em Insumos para Saúde,
the Ministerium für Innovation, Wissenschaft und Forschung des Landes
Nordrhein-Westfalen, the Senatsverwaltung für Wirtschaft, Technologie und
Forschung des Landes Berlin, and the Bundesministerium für Bildung und
Forschung.

Funding
GVFB received a Ph.D. fellowship from CAPES (2010) and Programa de
Doutorado Sanduíche no Exterior (PDSE, grant 8259-13-5) (2013). AGCNF and
JP are CNPq fellows (grants 311539/2015–7 and 312311/2013–3, respectively).
VCB and JP are FAPERJ-CNE fellows (grants E-26/201.444/2014 and E-26/
202.960/2015, respectively). RPZ acknowledges funding support from the
Ministerium für Innovation, Wissenschaft und Forschung des Landes
Nordrhein-Westfalen, the Senatsverwaltung für Wirtschaft, Technologie und
Forschung des Landes Berlin, and the Bundesministerium für Bildung und
Forschung.
The funding sources played no role in the design of the study and
collection, analysis, and interpretation of data nor in the writing of the
manuscript.

Availability of data and materials
The PatternLab for Proteomics, Paired Analyzer data generated are made
available at www.proteomics.fiocruz.br/supplementaryfiles/Brunoro2018. Mass
spectrometry proteomics data have been deposited to the
ProteomeXchange Consortium via the PRIDE [53] partner repository with the
dataset identifier PXD005157.

Authors’ contributions
GVFB, CVMG, RPZ, and AGCNF conceived and designed the experiments;
GVFB, RPZ, and AGCNF performed the analytical work; DP recruited the
patients; PCC and VCB designed analysis tools; GVFB and PCC analyzed the
data; RPZ, JP, RHV, and AGNCF contributed reagents/materials; GVFB, PCC, JP,
RHV, AGCNF wrote the paper. All authors have read and approved the final
version of the manuscript.

Ethics approval and consent to participate
All procedures performed in this study were in accordance with the 1964
Helsinki declaration and its later amendments or comparable ethical
standards. A written informed consent was obtained for each individual
under the license 0083/10 of the Fernandes Figueira Institute Research Ethics
Committee.

Consent for publication
A written informed consent for publication was also obtained for each
individual under the license 0083/10 of the Fernandes Figueira Institute
Research Ethics Committee.

Competing interests
The authors declare that they have no competing interests.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Author details
1Laboratory of Toxinology, Oswaldo Cruz Institute, Fiocruz, Av. Brasil 4365,
Manguinhos, Rio de Janeiro 21040-360, Brazil. 2Laboratory for Proteomics and
Protein Engineering, Carlos Chagas Institute, Fiocruz, Rua Prof. Algacyr
Munhoz Mader 3775, CIC, Paraná 81350-010, Brazil. 3Systems Engineering
and Computer Science Program, Federal University of Rio de Janeiro, Caixa
Postal 68511, Ilha do Fundão, Rio de Janeiro 21941-972, Brazil. 4Laboratory of
Applied Molecular Biology, Gynecology Department, Fernandes Figueira
Institute, Fiocruz, Av. Rui Barbosa 716, Flamengo, Rio de Janeiro 22250-020,
Brazil. 5Laboratory of Molecular Biology of Tumors, Department of Genetics,
State University of Rio de Janeiro, Rua São Francisco Xavier 524, Maracanã,
Rio de Janeiro 20550-900, Brazil. 6Leibniz-Institut für Analytische
Wissenschaften-ISAS-e.V, Otto-Hahn-Straße 6b, 44227 Dortmund, Germany.
7Segal Cancer Proteomics Centre, Lady Davis Institute at the Jewish General
Hospital, McGill University, 3755 Chemin de la Côte-Sainte-Catherine,
Montréal H3T 1E2, Canada.

Received: 7 May 2018 Accepted: 28 March 2019

References
1. Bray F, Jemal A, Grey N, Ferlay J, Forman D. Global cancer transitions

according to the human development index (2008-2030): a population-
based study. Lancet Oncol. 2012;13:790–801.

2. Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo M, et al.
Cancer incidence and mortality worldwide: sources, methods and major
patterns in GLOBOCAN 2012. Int J Cancer J Int Cancer. 2015;136:E359–86.

3. Djuric Z, Visscher DW, Heilbrun LK, Chen G, Atkins M, Covington CY.
Influence of lactation history on breast nipple aspirate fluid yields and fluid
composition. Breast J. 2005;11:92–9.

4. Alexander H, Stegner AL, Wagner-Mann C, Du Bois GC, Alexander S, Sauter
ER. Proteomic analysis to identify breast cancer biomarkers in nipple
aspirate fluid. Clin Cancer Res Off J Am Assoc Cancer Res. 2004;10:7500–10.

5. Varnum SM, Covington CC, Woodbury RL, Petritis K, Kangas LJ,
Abdullah MS, et al. Proteomic characterization of nipple aspirate fluid:
identification of potential biomarkers of breast cancer. Breast Cancer
Res Treat. 2003;80:87–97.

6. Kuerer HM, Coombes KR, Chen J-N, Xiao L, Clarke C, Fritsche H, et al.
Association between ductal fluid proteomic expression profiles and the
presence of lymph node metastases in women with breast cancer. Surgery.
2004;136:1061–9.

7. Brunoro GVF, Ferreira AT da S, Trugilho MR de O, de OTS, Amêndola LCB,
Perales J, et al. Potential correlation between tumor aggressiveness and
protein expression patterns of nipple aspirate fluid (NAF) revealed by gel-
based proteomic analysis. Curr Top Med Chem. 2014;14:359–68.

8. Alban A, David SO, Bjorkesten L, Andersson C, Sloge E, Lewis S, et al. A
novel experimental design for comparative two-dimensional gel analysis:
two-dimensional difference gel electrophoresis incorporating a pooled
internal standard. Proteomics. 2003;3:36–44.

9. Gonzalez-Galarza FF, Lawless C, Hubbard SJ, Fan J, Bessant C, Hermjakob H,
et al. A critical appraisal of techniques, software packages, and standards for
quantitative proteomic analysis. Omics J Integr Biol. 2012;16:431–42.

10. Qi D, Brownridge P, Xia D, Mackay K, Gonzalez-Galarza FF, Kenyani J, et al. A
software toolkit and interface for performing stable isotope labeling and top3
quantification using Progenesis LC-MS. Omics J Integr Biol. 2012;16:489–95.

11. Nie S, McDermott SP, Deol Y, Tan Z, Wicha MS, Lubman DM. A quantitative
proteomics analysis of MCF7 breast cancer stem and progenitor cell
populations. Proteomics. 2015;15:3772–83.

12. Di Luca A, Henry M, Meleady P, O’Connor R. Label-free LC-MS analysis of
HER2+ breast cancer cell line response to HER2 inhibitor treatment. Daru J
Fac Pharm Tehran Univ Med Sci. 2015;23:40.

13. Brunoro GVF, Carvalho PC, Ferreira AT da S, Perales J, Valente RH, de Moura
Gallo CV, et al. Proteomic profiling of nipple aspirate fluid (NAF): exploring
the complementarity of different peptide fractionation strategies. J
Proteome. 2015;117:86–94.

14. Larsen MR, Trelle MB, Thingholm TE, Jensen ON. Analysis of
posttranslational modifications of proteins by tandem mass
spectrometry. BioTechniques. 2006;40:790–8.

15. Eng JK, Jahan TA, Hoopmann MR. Comet: an open-source MS/MS sequence
database search tool. PROTEOMICS. 2013;13:22–4.

Brunoro et al. BMC Cancer          (2019) 19:365 Page 11 of 12

http://www.proteomics.fiocruz.br/supplementaryfiles/Brunoro2018


16. Carvalho PC, Lima DB, Leprevost FV, Santos MDM, Fischer JSG, Aquino PF, et
al. Integrated analysis of shotgun proteomic data with PatternLab for
proteomics 4.0. Nat Protoc. 2015;11:102–17.

17. Barboza R, Cociorva D, Xu T, Barbosa VC, Perales J, Valente RH, et al. Can the
false-discovery rate be misleading? Proteomics. 2011;11:4105–8.

18. Chatterton RT, Geiger AS, Khan SA, Helenowski IB, Jovanovic BD, Gann PH.
Variation in estradiol, estradiol precursors, and estrogen-related products in
nipple aspirate fluid from normal premenopausal women. Cancer Epidemiol
Biomark Prev Publ Am Assoc Cancer Res Cosponsored Am Soc Prev Oncol.
2004;13:928–35.

19. Huang Y, Nagamani M, Anderson KE, Kurosky A, Haag AM, Grady JJ, et al. A
strong association between body fat mass and protein profiles in nipple
aspirate fluid of healthy premenopausal non-lactating women. Breast
Cancer Res Treat. 2007;104:57–66.

20. Noble J, Dua RS, Locke I, Eeles R, Gui GPH, Isacke CM. Proteomic analysis of
nipple aspirate fluid throughout the menstrual cycle in healthy pre-
menopausal women. Breast Cancer Res Treat. 2007;104:191–6.

21. Gilar M, Olivova P, Daly AE, Gebler JC. Orthogonality of separation in two-
dimensional liquid chromatography. Anal Chem. 2005;77:6426–34.

22. Michalski A, Damoc E, Lange O, Denisov E, Nolting D, Müller M, et al. Ultra
high resolution linear ion trap Orbitrap mass spectrometer (Orbitrap elite)
facilitates top down LC MS/MS and versatile peptide fragmentation modes.
Mol Cell Proteomics MCP. 2012;11:O111.013698.

23. Whitlock MC. Combining probability from independent tests: the weighted
Z-method is superior to Fisher’s approach: combining probabilities from
many tests. J Evol Biol. 2005;18:1368–73.

24. Zhang Y, Wen Z, Washburn MP, Florens L. Improving label-free quantitative
proteomics strategies by distributing shared peptides and stabilizing
variance. Anal Chem. 2015;87:4749–56.

25. Kuerer HM, Goldknopf IL, Fritsche H, Krishnamurthy S, Sheta EA, Hunt KK.
Identification of distinct protein expression patterns in bilateral matched pair
breast ductal fluid specimens from women with unilateral invasive breast
carcinoma. High-throughput biomarker discovery. Cancer. 2002;95:2276–82.

26. Carvalho PC, Fischer JSG, Xu T, Yates JR, Barbosa VC. PatternLab: from mass
spectra to label-free differential shotgun proteomics. Curr Protoc Bioinforma
Ed Board Andreas Baxevanis Al. 2012;Chapter 13:Unit13.19.

27. Dvorak HF. Tumors: wounds that do not heal. Similarities between tumor
stroma generation and wound healing. N Engl J Med. 1986;315:1650–9.

28. Jang M, Kim SS, Lee J. Cancer cell metabolism: implications for therapeutic
targets. Exp Mol Med. 2013;45:e45.

29. El Sayed SM, Mohamed WG, Seddik M-AH, Ahmed A-SA, Mahmoud AG,
Amer WH, et al. Safety and outcome of treatment of metastatic melanoma
using 3-bromopyruvate: a concise literature review and case study. Chin J
Cancer. 2014;33:356–64.

30. Byun JS, Gardner K. Wounds that will not heal: pervasive cellular
reprogramming in cancer. Am J Pathol. 2013;182:1055–64.

31. Mueller MM, Fusenig NE. Friends or foes - bipolar effects of the tumour
stroma in cancer. Nat Rev Cancer. 2004;4:839–49.

32. Lal I, Dittus K, Holmes CE. Platelets, coagulation and fibrinolysis in breast
cancer progression. Breast Cancer Res BCR. 2013;15:207.

33. Martinez-Outschoorn U, Sotgia F, Lisanti MP. Tumor microenvironment and
metabolic synergy in breast cancers: critical importance of mitochondrial
fuels and function. Semin Oncol. 2014;41:195–216.

34. Calderón-González KG, Valero Rustarazo ML, Labra-Barrios ML, Bazán-
Méndez CI, Tavera-Tapia A, Herrera-Aguirre ME, et al. Determination of the
protein expression profiles of breast cancer cell lines by quantitative
proteomics using iTRAQ labelling and tandem mass spectrometry. J
Proteome. 2015;124:50–78.

35. Jeffery CJ. Moonlighting proteins. Trends Biochem Sci. 1999;24:8–11.
36. Hernandez S, Ferragut G, Amela I, Perez-Pons J, Piñol J, Mozo-Villarias A, et

al. MultitaskProtDB: a database of multitasking proteins. Nucleic Acids Res.
2014;42:D517–20.

37. Chaput M, Claes V, Portetelle D, Cludts I, Cravador A, Burny A, et al. The
neurotrophic factor neuroleukin is 90% homologous with phosphohexose
isomerase. Nature. 1988;332:454–5.

38. Liu Q-Y, Corjay M, Feuerstein GZ, Nambi P. Identification and
characterization of triosephosphate isomerase that specifically interacts with
the integrin αIIb cytoplasmic domain. Biochem Pharmacol. 2006;72:551–7.

39. Lay AJ, Jiang XM, Kisker O, Flynn E, Underwood A, Condron R, et al.
Phosphoglycerate kinase acts in tumour angiogenesis as a disulphide
reductase. Nature. 2000;408:869–73.

40. Jin Z-G, Lungu AO, Xie L, Wang M, Wong C, Berk BC. Cyclophilin a is a
proinflammatory cytokine that activates endothelial cells. Arterioscler
Thromb Vasc Biol. 2004;24:1186–91.

41. Barcellos-Hoff MH. Does microenvironment contribute to the etiology of
estrogen receptor-negative breast cancer? Clin Cancer Res Off J Am Assoc
Cancer Res. 2013;19:541–8.

42. Christopoulos PF, Msaouel P, Koutsilieris M. The role of the insulin-like
growth factor-1 system in breast cancer. Mol Cancer. 2015;14:43.

Brunoro et al. BMC Cancer          (2019) 19:365 Page 12 of 12


	Abstract
	Background
	Methods
	Results
	Conclusions

	Background
	Methods
	Sample collection
	Sample preparation
	Mass spectrometry data acquisition
	Data analysis
	Experimental design and statistical rationale
	Selected reaction monitoring (SRM)

	Results
	Discussion
	Conclusions
	Additional files
	Abbreviations
	Acknowledgements
	Funding
	Availability of data and materials
	Authors’ contributions
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Publisher’s Note
	Author details
	References

