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Sonosensitizer-mediated sonodynamic therapy (SDT) has emerged as a promising anti-
tumor strategy. However, this strategy of continuous oxygen consumption further
exacerbates the hypoxic tumor microenvironment, which limits its therapeutic efficacy.
In this study, we designed a multifunctional hydrogel (PB+Ce6@Hy) that simultaneously
co-delivers nanozyme prussian blue (PB) and sonosensitizer chlorin e6 (Ce6) for the
realization of photothermal therapy (PTT) and enhanced SDT. When the hydrogel reaches
the tumor tissue through local injection, the 808 nm laser can induce the hydrogel to warm
up and soften, thereby triggering the release of PB and Ce6. PB can interact with
endogenous H2O2 in situ and generate sufficient oxygen to promote the Ce6-mediated
SDT effect. Besides, due to the good encapsulation ability of the hydrogel, the
nanomaterials can be released in a controlled manner by changing laser parameter,
irradiation time, etc. The experimental results show that the PB+Ce6@Hy system we
developed can generate a large amount of reactive oxygen species (ROS), which can be
combined with the photothermal effect to kill tumor cells, as a result, tumor proliferation
has been adequately inhibited. This combined PTT/SDT dynamic strategy provides a new
perspective for Ce6-induced cancer therapy, showing great potential for
clinical application.

Keywords: prussian blue, chlorin e6, oxygen regulation, photothermal therapy, sonodynamic therapy
INTRODUCTION

Due to the limited penetration depth of light, phototherapy is not enough for deep tumors, which
limits the development potential of photothermal therapy (PTT) and photodynamic therapy (PDT)
(1–4). Based on this, Yumita et al. proposed sonodynamic therapy (SDT) based on PTT (5). SDT is a
new treatment method for malignant tumors using a combination of sonosensitizers and low-
intensity ultrasound (US) (6, 7). It has the advantages of high accuracy, deep tissue penetration,
good patient compliance, and few adverse reactions. Ultrasound can penetrate deep tissue and focus
on the tumor area, thereby activating the sonosensitizer, realizing ultrasonic cavitation, reactive
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oxygen species-induced cell damage, apoptosis, and autophagy,
which provide the possibility for targeted non-invasive radical
cure of solid tumors (8, 9). It is generally believed that the one of
the main mechanisms of SDT is the generation of reactive
oxygen species (ROS) through cavitation or cavitation-
activated sonosensitizers (10). ROS can effectively destroy
intracellular proteins, damage DNA, promote intracellular lipid
peroxidation, further induce tumor cell apoptosis, and achieve
the purpose of inhibiting tumor growth (11, 12). However, due to
the malignant growth of tumor cells, solid tumor areas are
usually partially hypoxic, furthermore, SDT could activate
sonosensitizers agent to consume oxygen, thereby exacerbating
local tissue hypoxia (13). Therefore, the tumor hypoxic state and
sustained oxygen consumption during oxygen-dependent SDT
severely affect the therapeutic effect.

Prussian blue nanoparticles (PB) are a class of inorganic
substances assembled from transition metal ions or lanthanides
through cyano bridging ligands (14). Because of its unique safety
and high photothermal conversion efficiency, it has aroused great
interest of researchers. PB have excellent absorption and
photothermal conversion properties in the near-infrared first
(NIR-I) window region (15). It is worth mentioning that
compared with gold nanorods, PB nanoparticles have higher
photothermal conversion efficiency, and PB nanoparticles also
have better photothermal stability than general organic
photothermal conversion agents (16, 17). Recently, PB has also
been found to have a catalase (CAT)-like effect (18). PB can
catalyze endogenous hydrogen peroxide (H2O2) in tumors to
generate oxygen, which is expected to alleviate the hypoxic
microenvironment of tumors. Hu et al. designed a novel
PMPT nanomaterial that not only alleviates hypoxia tolerance
and enhances ROS generation during photodynamic processes,
but also inhibits the MTH1-regulated DNA damage repair
pathway, resulting in aggravated oxidative damage and cell
death (19). It has also achieved good results in animal models.
Therefore, PB, which can alleviate tumor hypoxia levels, is
expected to have a good synergistic effect when used in
conjunction with SDT.

Although nanodrugs have greatly improved the toxicity of
chemotherapeutic drugs and enhanced the enrichment of drugs
in tumor sites (20), the drug accumulation in tumor tissues through
nanocarriers is still less than 10% due to the complexity of the body
environment (21–23). It is difficult to efficiently deliver PB
nanoparticles and sonosensitizers to tumor tissues due to the
interference of in vivo biological barriers such as liver and kidney
clearance effects. Traditional drug delivery systems (i.e. intravenous
injection) have a series of problems such as low efficiency of
nanomaterials reaching tumor tissue, premature leakage of cargo,
and profound toxicity caused by the long-term existence of the
carrier in the body (24–26). Numerous studies have shown that
hydrogel delivery system can prolong the sustained release time of
materials, prolong the effect of materials, and improve the effect of
tumor treatment (27). Adding nanomaterials into hydrogel solution
by diffusion or grafting to hydrogel materials can directly hit the
lesion site by implantation or injection to achieve the effect of local
slow-release drugs (28, 29). As one of the popular macroscopic drug
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delivery carriers, light-responsive hydrogels have very broad
application prospects due to their unique properties (30, 31). And
the controlled release of the material can be achieved by changing
the external parameters (laser power, spot size, etc.) (32). For
example, Dong et al. designed a novel MXene hydrogel by
combining photothermal agent MXene nanosheets with low-
melting-point agarose and loading DOX into it to prepare a
smart hydrogel with reversible phase transition, and in vitro cells
experiments verified its good cell killing ability (33). These results
motivate our attempts to realize enhanced SDT treatment
using hydrogels.

In this study, we simultaneously encapsulated the
sonosensitizer chlorin e6 (Ce6) and nanozyme PB into a
lowmelting agarose hydrogel to prepare a multifunctional
nanosystem (PB+Ce6@Hy) for enhanced SDT/PTT (Scheme 1).
PB+Ce6@Hy could reach the tumor site by local injection, and it
could be enriched here after solidification. After being irradiated
by 808 nm laser, PB absorbed light energy and converts it into heat
energy, causing the hydrogel to heat up and soften, then Ce6 and
PB were released on demand. PB would sustainably catalyze
endogenous H2O2 to generate O2 in situ to alleviate the hypoxic
microenvironment, which in turn enhances the subsequent Ce6-
mediated SDT. Both in vitro and in vivo experiments showed that
the prepared PB+Ce6@Hy achieved the synergistic therapeutic
effect of PTT and SDT on tumors. This mutually reinforcing
system overcomes the deficiencies of SDT and significantly
inhibits subcutaneous tumors with negligible toxic side effects.
The convergence of PTT with enhanced SDT strategy provides a
novel insight for Ce6-induced tumor therapy.
RESULTS AND DISCUSSION

We prepared PB according to the previous work (30), and
characterized the morphology of PB by transmission electron
microscopy (TEM), as shown in Figure 1A. Subsequently, hybrid
hydrogel containing PB and Ce6 (PB+Ce6@Hy) was prepared by
simple hydrothermal method. The blue PB+Ce6@Hy loses its
fluidity after solidification and does not flow down with the tube
wall (Figure S1). Scanning electron microscopy (SEM) image
showed that the as-prepared hydrogels had complex three-
dimensional pore morphologies (Figure 1B). Next, its
photothermal conversion ability was verified. As shown in
Figure 1C, the hydrogel will gradually soften and release the
material after being irradiated by 808 nm laser, and the thermal
energy generation ability of PB is verified by the infrared thermal
image. The particle size of PB did not change significantly during
the week storage period, confirming its stability (Figure 1D). This
property is beneficial for long-term sequestration of PB in hydrogels
for subsequent effects. As many unstable nanomaterials are
unsuitable for long-time storage and biological applications (34).
We evaluated the catalase (CAT)-like properties of PB nanozymes
in aqueous solutions containing hydrogen peroxide. The results
showed that PB could induce substantial oxygen production after
incubation with hydrogen peroxide for five minutes (Figure 1E).
This encourages us to use PB for enhancing SDT. UV–vis spectra of
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SCHEME 1 | Nanozyme hydrogels for self-augmented sonodynamic/photothermal combination therapy.
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PB (Figure 1F) exhibited that it has strong absorbance in the NIR-I
region. We prepared PB solutions with different concentration
gradients to verify their photothermal properties, the control
group had almost no heating effect under 808 nm laser
irradiation, while the 50 mg/mL PB solution could achieve a
temperature rise of nearly 15 degrees within three minutes of
irradiation, and the heating effect of PB is positively correlated
with its concentration (Figure 1H). We utilized three consecutive
ON-OFF cycles of laser irradiation, that is, the PB solution was
irradiated with 808 nm laser for 5 minutes and then cooled back to
the initial temperature naturally, and the cycle was repeated three
times. The results are shown in Figure S2, the heating ability of PB
does not fluctuate much, confirming the photothermal stability of
PB, which is also beneficial for the controllable release of PB in vivo
for tumor therapy. Simultaneously, rheological curves of agarose
hydrogel were detected, as the temperature increases (Figure 1G),
the hydrogel will slowly transform from a solid colloidal state to a
liquid state, and the storage modulus gradually decreases.
We continued to study the controlled drug release kinetics of the
PB+Ce6@Hy. Figure 1I shows the drug release curve with or
without laser irradiation. When the laser switch is turned on, the
temperature of the system begins to increase, and the carrier
encapsulated in it is gradually released slowly. After the
irradiation was stopped, the hydrogel slowly solidified and
continued to encapsulate the cargo.

Inspired by the well-characterized properties of the prepared
PB+Ce6@Hy, we further explored its in vitro cell killing effect.
Frontiers in Oncology | www.frontiersin.org 3
SDT has a strong ability to penetrate biological tissues (35), it can
concentrate acoustic energy into deeper tissues and activate the
sonosensitizers (such as Ce6 in this study) in tumor tissues,
ultimately playing an anti-tumor effect (36). However, SDT
will continue to consume oxygen, this increased hypoxia, in
turn, affects the effectiveness of SDT. So we constructed
normoxic and hypoxic cell growth environments to verify the
effect of PB+Ce6@Hy in regulating cell death. First, the ability of
PB+Ce6@Hy combined with US and NIR to generate ROS was
explored, and 2′,7′-dichlorofluorescin diacetate (DCFH-DA) was
utilized as a ROS indicator. As shown in Figures 2A, C, the
control, NIR + US, PB+Ce6@Hy and PB@Hy + NIR groups
produced negligible ROS, while Ce6+US could mediate a strong
green fluorescence under normoxic conditions. However,
hypoxic conditions inhibited the effect of Ce6-mediated SDT to
generate ROS.We quantitatively analyzed the ROS intensity under
different conditions. Figure 2B showed that PB+Ce6@Hy + NIR +
US produced bright green ROS fluorescence regardless of
normoxic or hypoxic conditions, as the release of PB nanozymes
upon 808 nm laser irradiation could convert endogenous H2O2

into O2. Since PB+Ce6@Hy has a good effect on regulating the
tumor ecological environment, we continued to use the MTT
experiment to test the killing effect of PB+Ce6@Hy combined
with US and NIR. As shown in Figures 2D, E, the survival
state of cells in the control group was almost unaffected. the
convergence of sonosensitizers Ce6 with US in normoxic
environment could achieve a moderate tumor killing effect, but
July 2022 | Volume 12 | Article 888855
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the effect was adequately reduced in hypoxia. It is worth noting that
PB+Ce6@Hy + NIR + US has achieved a superior therapeutic
benefits and is not affected by the oxygen environment. The results
of live and dead assay in the hypoxic group also fully demonstrated
the killing effect of PB+Ce6@Hy system (Figure S3). This is
attributed to the fact that PB produces O2 to promote SDT, and
PB also has PTT effect. This dynamic oxygen-producing strategy
has achieved good effects.

In situ injection of hydrogels can greatly increase the content
of nanomaterials in tumor tissues. Light-responsive hydrogels
are ideal biomaterials for various biomedical applications (37).
The PB+Ce6@Hy we prepared has a three-dimensional cross-
linked structure and good biodegradability. and biocompatibility
and sensitive response to light stimuli, showing great potential in
cancer therapy.We continue to explore its photothermal conversion
effect in vivo. As shown in Figure 3A, PB+Ce6@Hy can achieve a
good local heating effect of tumor tissue under the cooperation of
808 nm laser. PB+Ce6@Hy (10 min irradiation, 0.5W/cm2) could
raise the tumor temperature to nearly 48 degrees. A large number of
basic researches and clinical applications have proved that when
tumor tissue is continuously heated for a certain period of time, the
growth of tumor cells is blocked, disintegrated, and even leads to
death (38). The formation of tumor thermotherapy is based on two
Frontiers in Oncology | www.frontiersin.org 4
characteristics of tumor tissue: First, there are abnormal blood
vessels in tumor tissue so its heat dissipation is extremely poor
(39). Local heating by appropriate methods can easily make the
temperature of tumor tissue 5% to 15% higher than that of
surrounding normal tissue; second, the temperature resistance of
tumor tissue is significantly lower than that of normal tissue, and
tumor tissue will occur at a temperature of 42°C irreversible damage
(40, 41). Inspired by this result, we aimed to investigate the
synergistic antitumor ability of PB+Ce6@Hy and NIR + US in
4T1 tumor mice.100 mL of 4T1 cell suspension (1×106 cells per mL)
were subcutaneously injected into each mouse to establish the
tumor models. Subsequently, tumor growth was monitored every
2 days to assess the primary effect of the treatment system. As
shown in Figure 3B, the injected PB+Ce6@Hy alone remained in
the tumor tissue for a long time, but did not produce any tumor-
toxicity, and the tumor volume growth curve was hardly inhibited.
In this regard, PB@Hy containing only PB combined with laser
irradiation produced a certain photothermal treatment effect. The
tumor ablation effect induced by PB+Ce6@Hy plus NIR and US is
the best. First, PB achieves precise hyperthermia effect, and then the
softening of the hydrogel promotes the release of PB and Ce6 into
the tumor site. PB can improve TME in situ and generate O2, which
greatly strengthens Ce6-induced ROS production effect, tumor
A B
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FIGURE 1 | Characterization analysis of PB+Ce6@Hy. (A) TEM image of PB. (B) SEM image of agarose hydrogel. (C) The morphology of the prepared PB+Ce6@Hy
before (i) and after (iii) 0.5 W/cm2 808 nm laser irradiation for 10 min and infrared thermal images (ii, iv) of the prepared PB+Ce6@Hy following irradiation. (D) Hydrodynamic
diameter of PB at different time points. (E) Oxygen generation in different conditions as measured by a dissolved oxygen meter. (F) UV–vis–NIR absorbance spectra of PB.
(G) Rheological curves of agarose hydrogel. (H) Temperature elevation curves with the different concentration of PB at 808 nm laser irradiation. (I) In vitro Ce6 release profile
in the presence and absence of 808 nm laser irradiation, with arrows being used to indicate irradiation time points.
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growth was greatly inhibited. Figure S4 also showed that the tumor
mass and volume curves are consistent. After treatment, the average
tumor weight was only 0.12 g. It is worth noting that the weight of
mice in each group did not increase or decrease sharply during the
treatment cycle, and showed a normal growth trend, which also
indicated that our treatment regimen was safe (Figure 3C).
Hypoxia-inducible factor 1a (HIF-1a) was highly expressed
under hypoxia, tumor cells under hypoxic conditions strongly
expressed HIF-1a in the form of green fluorescence. We verified
in an in vivo model that both PB@Hy and PB+Ce6@Hy systems
could alleviate the hypoxic microenvironment (Figure 3D). In
addition, PB+Ce6@Hy combined with NIR and US can also
generate a large amount of ROS (Figure 3E) in an in vivo tumor
model, and simultaneously increase the level of tumor cell apoptosis
(Figure 3F). After the treatment cycle, mice in all groups were
euthanized, followed by collection of major organs for further
analysis and blood for biochemical analysis (Figure 4). The
relevant results of both the experimental group and the
conventional control group showed that the mice functioned
Frontiers in Oncology | www.frontiersin.org 5
normally after treatment, and our treatment method did not
show short-term toxic and side effects.
CONCLUSION

In conclusion, a biocompatible hydrogel containing both
nanozyme PB and Ce6 sonosensitizer was constructed to
achieve cooperative PTT/SDT against tumor. PB+Ce6@Hy can
controllably deliver the loaded material to the tumor site and
simultaneously realize on-demand release. After the hydrogel
was irradiated by laser, photothermal heating was triggered,
and the released PB catalyzed H2O2 to generate oxygen in situ,
which promoted SDT. In vitro and in vivo experiments showed
that PB+Ce6@Hy induced a large number of apoptosis and
inhibited tumor growth without any physiological toxicity.
This study provides a new mode of combination therapy and
expands the application of PB nanozymes in sonodynamic
therapy. Based on the fact that a single treatment method is
A B
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FIGURE 2 | Results of in vitro experiments. Fluorescence microscopy images of DCFH-DA to detect intracellular ROS with various treatments under normoxic
(A) and hypoxia (C) condition. Scale bar = 20 mm. (B) DCFH-DA fluorescence intensity after the indicated treatments. (D) Cell viability of 4T1 cells cultured in the
presence of various formulations under normoxic condition. (E) Cell viability of 4T1 cells cultured in the presence of various formulations under hypoxia condition.
***P < 0.005; Student’s t-test.
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FIGURE 3 | Results of in vivo experiments. (A) Temperature increases in mice implanted with 4T1 tumors following 808 nm laser irradiation (0.5 W/cm2) for 10 min
in the indicated treatment groups. (B) Tumor volume change over time in groups treated as indicated. (C) Time-dependent body-weight curves of mice in different
groups. (D) HIF-1a, (E) ROS and (F) TUNEL stained tumor sections from the indicated treatment groups Scale bar = 100 mm. ***P < 0.005; Student’s t-test.
A

B

FIGURE 4 | Result of in vivo safety experiments. (A) Histopathological analysis results (H&E stained images) of the major organs, heart, lung, liver, kidneys, and
spleen, of mice that were exposed to different treatments 16 days post-injection. Scale bars: 100 mm. (B) Liver, kidney and blood function markers: AST, ALT, ALP,
CRE and BUN after various treatments.
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difficult to suppress tumor cell proliferation for a long time, we
will continue to develop new and safe nanozymes for multimodal
treatment in the future.
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