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Abstract

Research on enamel matrix proteins (EMPs) is centered on understanding their role in enamel biomineralization and their
bioactivity for tissue engineering. While therapeutic application of EMPs has been widely documented, their expression and
biological function in non-enamel tissues is unclear. Our first aim was to screen for amelogenin (AMELX) and ameloblastin
(AMBN) gene expression in mandibular bones and soft tissues isolated from adult mice (15 weeks old). Using RT-PCR, we
showed mRNA expression of AMELX and AMBN in mandibular alveolar and basal bones and, at low levels, in several soft
tissues; eyes and ovaries were RNA-positive for AMELX and eyes, tongues and testicles for AMBN. Moreover, in mandibular
tissues AMELX and AMBN mRNA levels varied according to two parameters: 1) ontogenic stage (decreasing with age), and 2)
tissue-type (e.g. higher level in dental epithelial cells and alveolar bone when compared to basal bone and dental
mesenchymal cells in 1 week old mice). In situ hybridization and immunohistodetection were performed in mandibular
tissues using AMELX KO mice as controls. We identified AMELX-producing (RNA-positive) cells lining the adjacent alveolar
bone and AMBN and AMELX proteins in the microenvironment surrounding EMPs-producing cells. Western blotting of
proteins extracted by non-dissociative means revealed that AMELX and AMBN are not exclusive to mineralized matrix; they
are present to some degree in a solubilized state in mandibular bone and presumably have some capacity to diffuse. Our
data support the notion that AMELX and AMBN may function as growth factor-like molecules solubilized in the aqueous
microenvironment. In jaws, they might play some role in bone physiology through autocrine/paracrine pathways,
particularly during development and stress-induced remodeling.
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Introduction

The specific properties of mineralized tissues result from their

unique extracellular matrix (ECM) composition. ECM has

multiple effects on the biological behavior of skeletal cells and

extracellular mineralization. As illustrated by the SIBLING family

of proteins [1], ECM proteins not only provide template for

ordered nucleation and crystal growth [2] but also control fate and

activity of cells responsible for odontogenesis and cells regulating

bone formation and turn-over. The organic matrix of bone, dentin

and cementum is based on type I collagen associated with number

of bone/tooth non-collagenous proteins [3]. In contrast, enamel is

composed of specific enamel matrix proteins (EMPs) such as

amelogenin (AMELX) and ameloblastin (AMBN). Contrary to

bone, dentin or cementum ECM proteins, EMPs are ephemeral;

after their secretion in enamel ECM and their aggregation into

nanospheric structures, AMELX and AMBN are subject to

proteolytic processing [4,5].

In recent years, EMPs have been identified in root epithelial

cells [6] and non-enamel dental and bone cells [7–12]. Presence of

EMPs RNA/proteins were also reported during early tooth

development at the pre-mineralization stage [13] and in organs

neither related to ectodermal appendages nor mineralized tissues,

such as brain [14–16]. Based on these observations, AMELX [14]

and AMBN [17] might be functional in non-enamel tissues.

EMPs exhibit cell signaling properties that impact on a wide

range of cell activities. A commercially available enamel matrix

derivative (EMD) is used for periodontal regeneration as well as

epidermal wound healing (for review, [17]). More specifically,

using recombinant AMELX and AMBN and transgenic mice that
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overexpressed EMPs and their splicing forms, previous studies

have demonstrated that EMPs control cell adhesion, proliferation,

polarity, commitment, differentiation and act on key-cellular

pathways [18–22]. To date, nearly all the cells of dental-

periodontal, epidermal and bone compartments have been found

to respond to EMPs (for review, [23]). Transgenic mouse studies

indicated that osteoblast and osteoclast cell activities are influenced

by AMELX and AMBN [7,24,25]. Thus, an extensive number of

investigations have documented in vitro and in vivo cell responses to

under- or over-expression of EMPs, knockdown of EMPs, ectopic

expression or addition of specific recombinants, synthetic peptides

or EMD fractions. Herein we describe the endogenous expression

of both AMELX and AMBN in mandibular bone and soft tissues.

We also report the potential mobility and diffusibility of AMELX

and AMBN in mandibular bone. This last point is an important

consideration when ascribing growth factor-like or cell signaling

attributes to AMELX and AMBN.

Materials and Methods

Animals and Tissue Sampling
The experimental animal protocol was reviewed and approved

by the French Ministry of Agriculture for care and use of

laboratory animals (B2 231010EA). All experiments were

performed in accordance with the French National Consultative

Bioethics Committee for Health and Life Science, following the

ethical guidelines for animal care. All procedures related to

AMELX KO and their Wild-Type (WT) littermates were

reviewed and approved by The Institutional Animal Care and

Use Committee (IACUC) of the University of Pennsylvania

(Protocol # 803067, ‘‘Enamel Mineral Formation during Murine

Odontogenesis’’).

Figure 1. AMBN and AMELX mRNA expression in mandible tissues from 1 and 15 week old WT mice. A. Illustration of the harvested
zones in mandible. Alveolar bone (AB), basal bone (BB), dental epithelial cells (EP) and mesenchymal cells (ME) were microdissected under a
stereomicroscope (red dotted lines). Soft tissues, erupted (root and crown) and unerupted (dental germ) molars were carefully removed. AB is
composed of bone tissue surrounding extracted molars and, when molars are not erupted, of bone cavity surrounding molar tooth germs (Orange
zone). BB is collected from the mandible angular process (Grey zone). Harvested zones of EP (Yellow zone) and ME (Dark blue zone) from the
continuously erupting incisor are delimited by red dotted lines. B–C. Quantitative PCR reactions were performed on EP, ME, AB and BB tissues from 1
week and 15 week old WT mice with AMBN or AMELX primers (see primer sets in Material and Methods). mRNA expression levels were normalized
against expression of the housekeeping gene GAPDH. Significant differences for each tissue between different stages (MW test) and between tissues
at the same stage (KW test) are indicated on the graphs. Note that the apparent reduction in AMBN and AMELX mRNA expression in enamel
epithelium in older mice might be due to increased proportion of maturation and post maturation stage ameloblasts in the enamel epithelium
harvested from older mice.
doi:10.1371/journal.pone.0099626.g001
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WT Swiss male mice (Janvier, St Berthevin, France) at 1, 8 and

15 weeks of age and 1 and 8 week old AMELX KO mice [26]

were obtained.

As detailed in Fig. 1, alveolar and basal mandible bones and

dental epithelial and mesenchymal cells from 1 and 15 week old

WT mice were microdissected under a stereomicroscope (Leica

MZ FLIII, Leica Microscopy Systems, Ltd., Heerbrugg, Switzer-

land). The molar alveolar bone (AB) was harvested after removal

of the mandibular soft tissues and molars. The exfoliation of

forming tooth germs and formed teeth was performed by careful

observation under stereomicroscope and using miniaturized

Gracey curette. Basal bone (BB) was collected from the mandible

angular process in order to exclude both dental and cartilage

tissues. The harvested bone tissues (AB and BB) were carefully

rinsed in 16 Dulbecco’s phosphate-buffered saline (DPBS,

Invitrogen, Carlsbad, CA, USA) to avoid soft tissue contamina-

tion. Dental epithelial cells (EP) and dental mesenchymal cells

(ME) were dissected as previously described [27]. Briefly,

continuously erupting incisors were carefully extracted and the

dental epithelial cells (EP) were harvested by stripping the entire

epithelium tissue off the incisor buccal surface, excluding the

cervical loop to prevent contamination by dental stem cells (Fig. 1).

Consequently, dental epithelial cells isolated from incisors of 1

week old mice were mainly composed of enamel-forming cells

harvested from the secretion and maturation stages. Dental

epithelial cells were similarly harvested from 15 week old mice

but samples obtained from these older animals contained

proportionally less tissue from the secretory stage as the proportion

of epithelial cells present in the maturation stage and post

maturation stage (i.e. protective reduced enamel epithelium)

increases with age. Incisors were then cleaned and fractured to

collect dental mesenchymal cells (ME) from dental pulp. Finally, a

panel of non-mineralized tissues (eye, tongue, liver, heart, lung,

kidney, colon, ovary, testicle and striated muscle) were dissected

from 15 week old WT mice and washed in 16 DPBS. All

quantitative experiments were performed in triplicate with at least

three animals for each time point. After dissection, tissues were

immediately frozen and stored at 280uC.

RNA Extraction and RT-qPCR
Tissues were mechanically ground to a fine powder in liquid

nitrogen and RNA was extracted using the TriReagent kit

(Euromedex, Souffelweyersheim, France), following the manufac-

turer’s instructions. In brief, total RNA was precipitated with

isopropanol and centrifuged at 12,000 g at 4uC. Then, the RNA

pellet was washed with 75% ethanol and resuspended in RNase-

free water. The concentration and purity of total RNA in each

sample were determined by the A260/A280 ratio. The integrity of

RNA was confirmed by electrophoresis on an agarose ethidium

bromide gel. One microgram of total RNA from each sample was

reverse transcribed into cDNA using 200 units of Superscript II

(Invitrogen) and 250 ng of random primers according the

manufacturer’s instructions. Real-time PCR reactions were

performed using a MiniOpticon Real-Time PCR Detection

System (Bio-Rad Laboratory, Hercules, CA, USA). According to

manufacturer’s recommendations, a 15 ml volume containing

7.5 ml of IQ SYBR Green Supermix (Bio-Rad Laboratory),

50 ng of cDNA as template and 0.3 mM of the appropriate

primer-pairs (Eurogentec, Liège, Belgium) was used. The final

mixture was subjected to PCR under the following conditions:

denatured at 98uC for 10 s, followed by 40 amplification cycles

(98uC for 10 s, 60uC for 30 s, and 72uC for 20 s). AMBN and

AMELX PCR amplified products were resolved on a 2% agarose

gel and their specificity was confirmed by sequencing (GATCBio-

tech, Mulhouse, France). mRNA levels of genes of interest were

normalized against gene expression of the housekeeping gene

GAPDH. The following specific primers sets were used: AMBN

(F59-agctgatagcaccagatgag-39/R59-tggcctatggaactctgttc-39),

AMELX F59-aagcatccctgagcttcaga-39/R59-actggcatcattggttgctg-39

and GAPDH (F59-gaccccttcattgacctcaacatc-39/R59-aagttgtcatg-

gatgaccttggcc-39).

In situ hybridization using Amelogenin oligonucleotidE
probes

In situ hybridization using digoxygenin (DIG)-labeled oligonu-

cleotidic probes (sequence - gaggtggtaggggcatagcaaaa - Exiqon,

Vedbaek, Denmark) was performed as previously described [28].

Briefly, sections were deparaffinized using Clearene solvent (Leica

Microsystems, Nanterre, France) and rehydrated through ethanol

solutions diluted in in situ hybridization buffer (0.1% Diethyl

pyrocarbonate (DEPC, Sigma-Aldrich Co., St. Louis, MO, USA)

in DPBS). After three washes in in situ hybridization buffer,

sections were subjected to proteinase-K treatment in a humid

chamber. After washing with saline-sodium citrate (SSC) buffers,

sections were blocked using DIG blocking reagent in buffer

containing 10% heat-inactivated sheep serum, and hybridization

detected using alkaline phosphatase-conjugated anti-DIG, in

conjunction with 4-nitro-blue tetrazolium (NBT) and 5-bromo-4-

chloro-39-Indolylphosphate (BCIP) substrate (Roche, Mannheim,

Germany) together with 2 mM Levamisole (Dako, Glostrup,

Denmark). Sections were mounted with mounting resin (Eukit,

Agar Scientific, Freiburg, Germany) and observed using a Leica

DMRB microscope (Leica Microscopy Systems).

Immunohistochemistry (IHC)
Tissue Preparation. After dissection, mandibles were fixed

for 24 h in 4% paraformaldehyde (PFA, Sigma-Aldrich Co.) in 16
DPBS (Invitrogen) and washed with 16 DPBS for 1 h. Samples

isolated from mice older than one week (i.e. 8 and 15 week old

mice) were then decalcified in buffered 4% ethylene diaminete-

traacetic acid (EDTA) solution at 4uC (under agitation from 1 up

to 15 weeks). Finally, the samples were dehydrated, cleared in

xylene and embedded in paraffin. Then, 8–10 mm sections were

cut.

Immunohistoperoxidase. After deparaffinization and rehy-

dration, endogenous peroxidase was inactivated by treatment with

3% H2O2 (Merck, Darmstadt, Germany) in 16DPBS for 15 min.

Sections from 1 and 8 week old WT and AMELX KO mice were

then rinsed in 16DPBS and blocked overnight at 4uC with ready-

to-use (2.5%) normal horse blocking reagent (ImmPRESS reagent

kit, Vector Laboratories, Burlingame, CA, USA). Sections were

then probed with primary anti-AMBN antibody (1/100) (sc 50534

(M-300), Santa Cruz Biotechnology - rabbit polyclonal IgG to

AMBN - Immunogen: amino acids 108–407 mapping at the C-

terminus of AMBN mouse origin - Reacts with mouse) and anti-

AMELX antibody (1/100) (ab 59705, Abcam, Cambridge, MA,

USA - rabbit polyclonal IgG to AMELX - Immunogen: purified

full length native protein of AMELX cow origin – Reacts with

mouse, rat and cow) for 1 h at room temperature. Tissue sections

were washed three times with 16DPBS for 5 min and incubated

for 30 min with ImmPRESS reagent (ImmPRESS reagent anti-

rabbit Ig Kit, Vector Laboratories, Burlingame, CA, USA). After

three washes in DPBS 1X, immuno cross-reactivity was visualized

using diaminobenzidine peroxidase substrate (Novared, Vector

Laboratories). Sections were dehydrated and mounted in resin

(Eukit, Agar Scientific, Freiburg, Germany). Sections with no

primary antibodies were used as negative controls.
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Immunohistofluorescence. After deparaffinization and re-

hydration, mandible tissue sections from 1 week old WT and

AMELX KO mice were permeabilized for 10 min in 1% Triton

X-100 (Thermo Fisher Scientific Inc, Waltham, MA, USA), then

rinsed with 16 DPBS 3 times for 5 min each under agitation.

Nonspecific binding sites were blocked by 30 min incubation in

1% bovine serum albumin (BSA, Euromedex, Mundolsheim,

France) diluted in DPBS. Sections were incubated overnight at

4uC with primary anti-AMBN antibody (1/200) (sc 50534 (M-

300), Santa Cruz Biotechnology) and anti-AMELX antibody (1/

200) (ab 59705, Abcam). After washes with 16DPBS, Alexa Fluor

594 or 488 Goat Anti-Rabbit IgG antibodies (1/500) (Thermo

Fisher Scientific Inc) were applied for 1 h at room temperature

followed by DAPI nuclear staining (1/100,000) (Sigma-Aldrich

Co.). Sections were mounted using an aqueous mounting medium

(Fluoprep, Biomérieux, France).

Western Blot Analysis
To extract total proteins, mashed tissues from 1 and 15 week old

WT mice were homogenized in 300 mL of commercial protein

extraction reagent T-PER (Thermo Fisher Scientific Inc) which

contains the detergent bicine. Samples were sonicated and tissue

debris, removed by centrifugation for 5 min at 10,000 rpm.

Supernatants were recovered and protein concentration deter-

mined using the BCA protein assay (Thermo Fisher Scientific Inc).

Samples were prepared for SDS PAGE by adding 100 mL of

Laemmli sample loading buffer containing 10% DTT (Bio-Rad

Laboratory). Samples were heated for 15 min at 70uC and stored

at 220uC. Samples were loaded at 10 mg protein per well on 12%

polyacrylamide gels (Prosieve 50, Lonza, Rockland, USA).

Extraction of proteins present in the fluid phase of the tissues

was carried out as previously described [29]. Briefly, dissected

samples were immersed in 30 mL of TRIS solution (50 mM,

pH 7.4), crushed and centrifuged for 4 min to 20 000 g. Then, the

supernatant was recovered, diluted in 1:1 Laemmli buffer (v/v)

and stored at 280uC. Protein concentration in extracts was

determined using a ready-to-use assay compatible with samples

containing Laemmli SDS sample buffer, according to the

manufacturer’s instructions (Pierce 660 nm Assay, Thermo Fisher

Scientific Inc). Protein samples were thawed and heated 5 min at

100uC, before loading at 10 mg protein per wells on a 10%

polyacrylamide gel.

Electrophoresis was carried out for 75–90 min at 180–200 V

prior to transfer onto PDVF membranes (Thermo Fisher Scientific

Inc) for 45–60 min at 100 Volts. Membranes were stained to

check the efficiency of the electro-transfer (Novagen RedAlert,

EMD Millipore, Billerica, MA, USA). Membranes were blocked

overnight using 5% milk powder in 16 DPBS, then washed and

incubated 1–2 h with anti-AMBN antibody (1/400) (sc 50534 (M-

300), Santa Cruz Biotechnology) or anti-AMELX antibody (1/

400) (sc 32892 (FL-191), Santa Cruz Biotechnology - rabbit

polyclonal IgG to AMELX - Immunogen: amino acids 1–191

representing full length AMELX isoform of human origin - Reacts

with mouse, rat and human). After rinsing, membranes were

incubated with a horseradish peroxidase (HRP)-conjugated goat

anti-rabbit IgG antibody (Sigma-Aldrich Co.) at 1/2,000 dilution.

Finally, immunocross-reactivity was visualized by chemilumines-

cence using HRP substrate (Luminata Crescendo, Millipore Co.,

Billerica, USA) and a LAS 4000 Bioimager (ImageQuant,

Uppsala, Sweden).

Statistical analysis
Data are presented with values expressed as the mean 6

standard error of the mean (m 6 SEM). Statistical analyses of the

Q-PCR data were performed using Prism 5 statistical software

(GraphPad Software Inc., San Diego, CA). Non-parametric two-

tailed tests were used to compare EMP expression; Mann-Whitney

(MW) test to investigate the EMP expression in each tissue

between different stages (1 week vs 15 week old mice) and Kruskal-

Wallis (KW) test to compare the difference between tissues (EP,

ME, AB, BB) at one specific stage. The overall risk was fixed at p,

Table 1. Ameloblastin and amelogenin mRNA expression in murine tissues.

Tissues AMBN mRNA AMELX mRNA

Dental epithelial cells ++ ++

Dental mesenchymal cells ++ ++

Mandibular alveolar bone ++ ++

Mandibular basal bone ++ ++

Eye + +

Tongue + +/2

Testicle + +/2

Heart +/2 +/2

Colon +/2 +/2

Ovary - +

Kidney - +/2

Liver - -

Lung - -

Striated muscle - -

Tissues were dissected from 15 week old WT mice (n = 6 with n = 3 females and n = 3 males) and subjected to RT-PCR (see Materials and methods). Resulting products
were resolved on a 2% agarose gel. AMBN positive tissues show one amplicon band at 287 bp and AMELX positive tissues show at least one of the three amplicon
bands at 415 bp, 373 bp and 303 bp corresponding to transcript variants encoding different isoforms of AMELX described in the literature; at 415 bp (M217 [67]–M194
[68]), 373 bp (M203 [69]–M180 [70]) and 303 bp (M179 [69]–M156 [70]). +, PCR products were repeatedly obtained; +/2, not all samples were positive; -, no PCR
products were visible. The overall high signal in mRNA levels (++) in mandibular mineralized tissues led to perform additional RT-qPCR analyses.
doi:10.1371/journal.pone.0099626.t001
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0.05 (*p,0.05, **p,0.01 ***p,0.001 (KW test), #p,0.05, #

#p,0.01 # # #p,0.001 (MW test), NS; not significant).

Results

AMBN and AMELX RNA expression in mineralized and
non-mineralized tissues

Screening of AMBN and AMELX gene expression in murine

tissues revealed the expression of transcripts coding for matrix

enamel proteins in tooth, bone and soft tissues (Fig. 1 and Table 1).

Quantitative analysis of AMBN and AMELX mRNA expression

in the mandible tissues from 1 week old and 15 week old mice was

performed using RT-qPCR (Fig. 1). In mice of both age groups

AMBN and AMELX mRNA expression was not only detected in

dental epithelial cells (EP) and mesenchymal cells (ME) but also in

alveolar bone (AB) and basal bone (BB) (Fig. 1B-C). Overall,

AMBN and AMELX genes had similar expression patterns, with

RNA levels highly dependent on the investigated tissue and the

age of the donor mouse. In 1 week old WT mice, AMBN and

AMELX mRNA levels were significantly enhanced in EP when

compared to ME and BB (p,0.05–0.001), whereas mRNA levels

in EP and in AB remained comparable (NS). In 15 week old mice,

however, AMBN and AMELX mRNA levels were significantly

higher in EP when compared to the three other tissues (p,0.05-

0.001). Finally, when compared to 1 week old mice, AMBN and

AMELX mRNA expression was significantly decreased in 15 week

old mice in all investigated tissues (p,0.01), except in BB where

mRNA levels remained comparable (NS). A series of non-

mineralized extra-dental tissues from adult WT mice (15 week

old) were also screened for AMBN and AMELX mRNA

expression. Soft tissues were dissected and RNA was prepared

for RT-PCR. Dental epithelial cells (EP) harvested from incisors

were used as positive control tissue. RT-PCR results for these

tissues are listed in Table 1. It is important to note that, when

detected in soft tissues, AMBN and AMELX showed low mRNA

levels when compared to mandibular tissues. Among the 10 soft

tissues screened, only liver, lung and striated muscle showed no

AMBN and AMELX mRNA expression; identifying these tissues

Figure 2. AMELX mRNA and protein distribution in mandible from 8 week old WT and AMELX KO mice. A-B. In situ hybridization was
performed using AMELX oligonucleotidic probes. B. WT mouse shows strong AMELX mRNA level in ameloblasts (Ambl) and odontoblasts (Odb).
AMELX mRNA is also detected in bone-lining cells (red arrows) and, with an apparent lower level, in dental follicle (DF) area. C–D.
Immunohistodetection was performed using anti-AMELX antibody. D. AMELX protein expression in WT mouse was detected in ameloblasts,
odontoblasts and bone-lining cells (red arrows). Strong and diffuse protein signal was also observed in dental follicle. B–D. No AMELX RNA and
protein signal is detected in striated muscle (Myo), a negative control tissue (see Table 1). A–C. Neither AMELX mRNA nor protein expression is
detected in AMELX KO mice.
doi:10.1371/journal.pone.0099626.g002
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as reliable negative controls for expression of these two EMP

genes. Based on these results, striated muscle tissue was

subsequently used as negative control tissue for both AMELX

and AMBN gene expression in in situ hybridization and

immunohistochemistry (IHC) performed on jaws.

Spatiotemporal localization of AMBN and AMELX
Based on RT-PCR data (Fig. 1 and Table 1) and a range of

primary antibody dilutions tested against sections of mandible

containing EMPs-expressing ameloblasts (positive control tissue),

jaw bones and striated muscle (negative biological control, as

evidenced by RT-PCR described above - Table 1), we determined

two dilution thresholds for detection of EMPs; one for enamel and

one for bone (Fig. S1). Additionally, to avoid non-specific staining

we used a ‘‘triple negative-control system’’ including: 1- sections of

dental epithelium where primary antibody was omitted (data not

shown); 2- mandibular sections from WT mice including striated

muscle, and, for anti-AMELX IHC, 3- mandibular sections from

AMELX KO mice. AMELX labelling in AMELX KO tissues and

in striated muscle (Myo) from WT mice was negative (Fig. 2, Fig. 3,

Fig. S1 and Fig. S2).

In contrast to the age-dependent differential gene expression

revealed by RT-qPCR (Fig. 1), the distribution pattern of AMELX

and AMBN was identical at all studied ages in the mandibular

tissues surrounding the incisor. In situ hybridization in mandible

confirmed AMELX mRNA expression in ameloblasts (positive

control tissue) and, with lower intensity, in the alveolar bone area;

where bone-lining cells showed AMELX mRNA expression

Figure 3. AMBN and AMELX protein expression in 1 week old WT mice. A. AMBN protein (red signal) is strongly expressed in enamel (En)
and in dental follicle (DF) and is detected in cells lining alveolar bone (white arrows). B. On serial sections, AMELX protein (green signal) shows similar
localization pattern with expression in enamel, dental follicle and bone-lining cells (white arrows). In addition, a diffuse AMELX signal is also detected
in periosteum (Po) and bone (Bo) (in particular in matrix of trabebular spaces (white asterisks)). No protein expression is detected in striated muscle
(Myo), a negative control tissue. C. Higher magnification of AMELX protein expression shows AMELX-positive osteoblastic cells lining bone trabeculae
(red arrows) (Blue box), strong expression in dental follicle area (Yellow box). Higher magnification shows no signal in striated muscle (Orange
box). Ambl = ameloblast, Bo = bone, De = dentin, DF = dental follicle, En = enamel, Myo = striated muscle and Po = periosteum.
doi:10.1371/journal.pone.0099626.g003
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(Fig. 2B). AMELX protein was visualized using IHC and showed

similar but more diffuse localization pattern when compared to

AMELX mRNA distribution (Fig. 2D). No RNA nor protein

signal was observed in mandible tissues from 8 week old AMELX

KO mice (Fig. 2A–C).

AMBN and AMELX protein distribution in manbibular

sections from 1 week old WT and AMELX KO mice was further

investigated using immunohistofluorescence staining (Fig. 3-Fig.

S2). Besides their presence within enamel matrix, both AMBN and

AMELX proteins were detected in mandibular bone-lining cells

(Fig. 3.A–B, white arrows, Fig. 3C, inset blue box) and in dental

follicle (DF) (Fig. 3A-B-C, inset yellow box) in WT mice.

Additionally, a slight diffuse expression of AMELX was detected

in the periosteum (Po) and bone (Bo) areas (Fig. 3B and Fig. 3C).

Western blot detection of AMELX and AMBN in
mandibular bone

To analyze the protein expression profile of EMPs in alveolar

(AB) and basal bones (BB), we first studied total protein extracts

from 15 week old mice using a detergent-based dissociative

extraction procedure. Dental epithelium cells (EP) were used as

positive controls. Extracted proteins were separated by SDS

PAGE (10 mg total protein per well) and transferred to membranes

for western blotting. Anti-AMBN immunostaining of the western-

blot (Fig. 4A) revealed the presence of the nascent AMBN

molecule at 67 kDa and a range of lower molecular weight

processing products in dissociative extracts of dental epithelial

cells. A similar molecular weight profile was reported for

ameloblastin extracted from rat incisor enamel organ [30]. The

nascent 67 kDa ameloblastin was also detected in dissociative

extracts of alveolar bone (AB) with lower molecular weight

processing products. AMBN immuno-cross reactivity in basal

bone (BB) was much weaker and was near the limit of detection.

Anti-AMBN immunostaining of blots of non-dissociative extracts

of EP, AB and BB (Fig. 4B) revealed a spectrum of AMBN staining

similar to the dissociative extracts. Anti-AMELX immune staining

of dissociative extracts showed the presence of multiple AMELX

proteins migrating below 26 kDa in the enamel epithelium

(Fig. 4C). The additional lower weight AMELX components

may be AMELX processing products from enamel matrix present

as a contaminant in dental epithelium cell extracts. The identity of

the stained bands migrating at 43 kDa and above is unclear

though amelogenin is known to form high molecular weight

complexes that are stable during SDS PAGE [13,31]. Dissociative

extracts of AB and BB exhibited a single band of amelogenin cross-

reactivity at 26 kDa though at levels near the limits of detection.

Anti-AMELX immune staining of non-dissociative extracts

showed the presence of AMELX as a doublet at around 26 kDa

in enamel epithelium while alveolar bone exhibited a single band

of amelogenin cross-reactivity at 26 kDa. A similar band was

present in the basal bone extract but at such low levels that it was

only visible after digitally enhancing the image (not shown).

Discussion

To the best of our knowledge, no previous studies have

quantified gene expression levels and examined the solubility states

of endogenously expressed EMPs in mandible bones using dental

epithelial cells as a reference in rodents. Using a similar strategy,

we previously demonstrated the regulation of EMPs gene

expression by nuclear effectors in vivo in dental [11,27,32] and

bone tissues [33,34]. Pioneer reports described AMELX [12,35]

and AMBN [36] in non-enamel mineralized tissues. Here we

confirm and extend these data; dental epithelial cells and alveolar

Figure 4. Western blot of AMBN and AMELX in 15 week old WT
mice. Proteins were extracted from dental epithelial cells (EP) (positive
control), alveolar bone (AB), basal bone (BB) under dissociative and non-
dissociative conditions. Proteins were loaded at 10 mg per lane and
blots probed with anti-AMBN and anti-AMELX antibodies. A. Anti-
AMBN probing of dissociative extracts show cross reactive species with
molecular weights ranging from 20–67 kDa for AMBN (the 67 kDa band
corresponds to nascent amelobastin). 67 kDa AMBN is present at similar
relative amounts in the EP and AB extracts but far less readily
detectable in BB. B. A similar situation exists for non-dissociative
extracts. C. Anti-AMELX probing of dissociative extracts show cross
reactive species at 26 kDa and below in EP samples (higher molecular
weight staining may be due to AMELX aggregation). Feint cross
reactivity at ,25 kDa is visible in AB samples with even less been
detected in BB; the relative amount of AMELX present in bone samples
is far less than that seen in EP samples. D. A similar situation exists for
non-dissociative extracts; AMELX is detectable in AB but it is present in
the extract in much lower amounts compared to EP extracts.
doi:10.1371/journal.pone.0099626.g004
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bone displayed higher levels of AMELX and AMBN mRNA

expression when compared to basal bone and dental mesenchymal

cells from post-natal mice (one week old).

By screening AMELX and AMBN gene expression in 10 soft

tissues, we were able to identify the lung, liver and striated muscle

as negative control tissues for in situ studies. In line with previous

studies [15,16], repeated or occasional mRNA expression of

AMBN and AMELX was detected in several soft tissues but at low

level when compared to mandibular tissues. This occasional

expression could result from endogenous oscillations of EMPs gene

expression orchestrated by clock genes; both AMELX and

enamelin being downstream targets of the ‘‘clock genes’’ family

of transcription factors [37,38]. Alternatively, these variations may

result from the existence of EMPs-positive circulating cells (e.g.

macrophages, megakaryocytes and some hematopoietic stem cells

[15]).

Our RT-qPCR and western-blot results show that AMELX and

AMBN expression is higher in alveolar bone compared to basal

bone. This finding raises the possibility that AMELX and AMBN

are locally associated with high bone turn-over; this being a classic

characteristic of alveolar bone [39]. Indeed, AMELX [25] and

AMBN [40] have been shown to impact on osteoblast and

osteoclast differentiation and activity. Consistently and in line with

previous studies [40], aging was associated with decreased gene

expression of EMPs in jaw bones. Recently, increased expression

of AMBN was also shown to be associated with mechanical bone

stimulation [41] and healing [42]. Interestingly, MSX2, a

regulator of bone homeostasis [33] represses AMELX transcrip-

tion by targeting the AMELX promoter [43] and both AMELX

and AMBN inhibit Msx2 expression [44,45]. EMPs-Msx2

reciprocal cross-talk may thus play a part in localized jaw

modeling as supported by Msx2 and AMBN null-mutants

[34,44] and our preliminary biomechanical assay (Fig. S3).

Indeed, 72 h after altering occlusion, we observed a significant

increase in AMBN and AMELX mRNA expression associated

with decrease in Msx2 gene expression.

Protein occupies 20–30% of the secretory stage enamel matrix

by volume and of this protein .90% is derived from the AMELX

gene whereas AMBN is present in the matrix at far lower

concentrations. AMELX is highly aggregative under physiological

conditions and acts as a structural scaffold during enamel

development. Nascent AMBN is solubilized in the developing

enamel matrix and is a mobile species. In contrast, AMBN

processing products are more aggregative [29]. Identifying

solubilized and diffusible proteins in tissues using histology-based

techniques may be compromised by the fact that otherwise soluble

factors become immobilized by chemical fixation. Here AMELX

and AMBN proteins were detectable in the microenvironment

surrounding EMPs-producing (RNA-positive) cells. In addition,

high protein levels detected in the dental follicle suggest that dental

and bone cells may secrete these peptides toward this adjacent

tissue. If EMPs function in some capacity as signaling molecules

[12] then endogenously secreted EMPs would require a certain

degree of solubility in the extracellular environment in order for

them to diffuse and interact with nearby cells (paracrine signaling)

or receptors on the secreting cell itself (autocrine signaling) (Fig. 5).

To test this hypothesis, we extracted dental epithelial cells (EP),

alveolar bone and basal bone under dissociative and non-

dissociative conditions and subjected equal amounts of total

protein extracted to western blot probing for AMBN and

Figure 5. Proposed model for EMPs expression and signaling in extra-dental tissues. This model is based on the presently described RNA
and protein patterns and published data. EMP-based autocrine and paracrine cell-cell communications would participate to distinct
physiopathological events. They may play a role during tooth growth and alveolar bone modeling processes. In adults, EMPs would be involved
in alveolar bone responses to mechanical stimuli. Supramolecular structures generated by self-assembly of EMPs might also intervene in these
processes. Bibliographical references. 1. Haze, 2009 [8]; Tamburstuen, 2011 [10], 2. Zeichner-David, 2006 [57]; Fukae, 2006 [58]; Matsuzawa, 2009
[59]; Tambursten, 2010 [42]; Kakegawa, 2010 [60]; Zhang, 2011 [54]; Kitagawa, 2011 [53]; Kunimatsu, 2011 [61]; Izumikawa, 2012 [62]; Amin, 2013 [63],
3. Spahr, 2006 [36]; Haze, 2009 [8]; Iizuka, 2011 [18]; Tamburstuen, 2011 [10]; Atsawasuwan, 2013 [40], 4. Matsuzawa, 2009 [59]; Iizuka, 2011 [18];
Tamburstuen, 2010 [42]; Amin, 2013 [64]; Atsawasuwan, 2013 [24], 5. Haze, 2009 [8]; Tamburstuen, 2011 [10], 6. Tamburstuen, 2010 [42]; Lu, 2013
[19], 7. Haze, 2009 [8,20], 8. Saito, 2008; Wang, 2005 [48], 9. Wang, 2005 [48], 10. Beleyer, 2010 [47], 11. Fincham, 1994 [65], Wald, 2013 [66].
doi:10.1371/journal.pone.0099626.g005
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AMELX. We provide evidence that AMBN, particularly the

nascent 67 kDa molecule, is readily detectable on blots of

dissociative extracts of alveolar bone; and it is present in these

extracts at a similar ratio relative to other components as found in

EP. The ratio of freely soluble 67 kDa AMBN in the non-

dissociative extracts is also comparable to the ratio found in EP; i.e.

to some degree, AMBN is present in alveolar bone in a solubilized

state; or at least it is not tightly associated with the bone matrix.

AMELX was also detectable in blots of non-dissociative extracts of

alveolar bone but it comprised a far smaller ratio of the

dissociatively extracted proteins when compared to EP. Likewise,

AMELX was detectable in non-dissociative extracts of alveolar

bone but again at ratios far lower than the ratio of AMELX in EP.

We were unable to detect EMPs in serum (data not shown),

which suggests that, contrary to osteocalcin that behaves as

hormonal signal in general metabolism [46], EMPs might not play

a role in long-range endocrine signaling. Some matrix ligands,

omnipresent in mesenchymal extracellular compartments, could

perhaps entrap these secreted EMPs and limit their diffusion.

Indeed, fibronectin [47], heparan sulfate [20] and biglycan [48]

bind AMELX or AMBN in vitro. However, the inability to detect

EMPs in serum may simply be due to dilution of the bone-derived

EMP peptides once they enter the blood stream.

Autocrine and paracrine activities of growth factors control local

bone modeling and remodeling. Solubilized EMPs may behave in

the same way (Fig. 5). Indeed, distinct dysmorphologies charac-

terize bones in which AMELX [16,49] or AMBN [24,50]

expression are genetically modified, even though calcium and

phosphorus content and the degree of mineralization are normal

[51,52]. Disturbed EMP expression patterns are associated with

alveolar and jaw bone malformations [33,34]. These findings and

the present data suggest that solubilized EMPs may play a role in

controlling cell fate through short-distance paracrine and auto-

crine functions and thus control local bone morphology via signals

previously evidenced for AMBN [19,53,54] and AMELX [55,56].

We thus propose a model in which EMPs play a role in

mandibular physiology (Fig. 5).

Conclusion

Based on our findings on the solubilized state and the

localization of AMELX and AMBN in mandibular bones, we

hypothesize that these EMPs play a dual role: one as components

of a structural extracellular matrix in developing enamel and

second as growth factor-like molecules in bones responsible for

supporting the teeth in the mandible.

Supporting Information

Figure S1 Optimization of AMBN and AMELX immu-
nodetection in 1 week old WT and AMELX KO mice. A-B.

When using a classic dilution of antibody (1/1,000), cross

reactivity to AMELX and AMBN proteins is restricted to the

dental epithelial cells (EP) (positive control tissue) in WT mouse, a

pattern well documented in the literature. Dilutions of 1/500 show

the presence of AMBN and AMELX protein expression in EP, but

also in some bone stromal cells. Increased concentration of

antibody (1/100 for AMBN and 1/50 for AMELX) results in

stronger staining in osteoblasts, in osteocytes and in mandibular

bone matrix. At dilution 1/100 (AMBN) or 1/50 (AMELX),

striated muscle (negative control tissue) shows diffuse staining

indicating the limit of specificity for these antibodies. At dilution

1/10, the striated muscle was clearly stained for both AMBN and

AMELX, determining the non-specificity threshold. This thresh-

old was confirmed using AMELX KO mouse as a bona fide control,

non-specific cross reactivity signal being observed when using 1/

10 antibody dilution. For detailed immunohistoperoxidase meth-

ods see File S1.

(TIF)

Figure S2 AMELX protein expression in 1 week old WT
and AMELX KO mice. A. When using 1/500 antibody

dilution, AMELX (green staining) is not detected in AMELX

KO mice. B. Using the same antibody dilution, WT section show

anti-AMELX cross reactivity in enamel (En) and ameloblasts

(Ambl).

(TIF)

Figure S3 Impact of mechanical stimuli on AMBN and
AMELX mRNA expression in jaw. A. Right maxillary molar

cusps in 15 week old WT mice were ground flat to the level

indicated by the red dotted line. B. 72 h after grinding, significant

increase in mRNA levels of AMELX (x7) and AMBN (x3) is

observed in treated mandible alveolar bone. Concurrently, a

significant reduction in MSX2 mRNA level (x3) is observed;

MSX2 being a transcriptional repressor of AMELX gene. mRNA

expression of those genes are unaffected in basal bone (data not

shown). mRNA levels of genes of interest are normalized against

mRNA expression of the housekeeping gene RS15 (F59-

ggcttgtaggtgatggagaa-39/R59-cttccgcaagttcacctacc-39). Overall

probability was determined using KW test (**p,0.05). For

detailed molar grinding and flattening procedures see File S1.

(TIF)

File S1 Detailed procedures.

(DOCX)
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