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Abstract

Drug combination therapy is a promising strategy to treat complex diseases such as cancer and infectious diseases.
However, current knowledge of drug combination therapies, especially in cancer patients, is limited because of adverse drug
effects, toxicity and cell line heterogeneity. Screening new drug combinations requires substantial efforts since considering
all possible combinations between drugs is infeasible and expensive. Therefore, building computational approaches,
particularly machine learning methods, could provide an effective strategy to overcome drug resistance and improve
therapeutic efficacy. In this review, we group the state-of-the-art machine learning approaches to analyze personalized drug
combination therapies into three categories and discuss each method in each category. We also present a short description
of relevant databases used as a benchmark in drug combination therapies and provide a list of well-known, publicly
available interactive data analysis portals. We highlight the importance of data integration on the identification of drug
combinations. Finally, we address the advantages of combining multiple data sources on drug combination analysis by
showing an experimental comparison.
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Introduction

Drug combination therapy has become a promising strategy
for several complex diseases, such as cancer, diabetes and
bacterial infections. This strategy can increase therapeutic
efficacy, reduce toxicity and overcome drug resistance compared
with single-drug administrations. Therefore, it is becoming an
optimal option with increasing attention from researchers.
However, there is limited information about effective drug
combinations since screening all possible drug combinations is
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challenging and expensive. Thus, the computational prediction
of combinatorial drug therapies is needed and essential to
provide more sustainable treatment for the patients. To predict
efficient drug combinations, computational approaches have
been developed to date; however, they face several challenges
that need to be solved, such as missing data, different data
types and standardization. Consequently, machine learning (ML)
models are increasingly being applied to efficiently explore the
drug combinations from a large number of both approved and
investigational chemical compounds.
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Table 1. Comparison with existing survey papers

References ML
approaches

Toxicity Systems
biology
approaches

Data
integration

Data
sources

Interactive
data
analysis
portals

Experimental
evaluation

Systems biology approaches
for advancing the discovery
of effective drug
combinations [3]

� � �

Modeling of compound
combination effects and
applications to efficacy and
toxicity: state-of-the-art,
challenges and
perspectives[4]

� � � � � �

Advances in computational
approaches in identifying
synergistic drug
combinations [5]

� �

Predictive approaches for
drug combination discovery
in cancer [6]

� � �

Systems pharmacology:
defining the interactions of
drug combinations [7]

� � �

Artificial intelligence in drug
combination therapy [8]

� �

This review � � � � � �

In this review, we aim to systematically assess represen-
tative ML methods that have been proposed in recent years
for understanding the drug combination therapies by grouping
these methods into three categories. These methods have often
been evaluated to overcome drug resistance in a variety of
researches [1, 2]. To the best of our knowledge, there are already
some reviews that have elucidated drug combination therapies,
while these reviews emphasize different perspectives from this
review or with a special focus on a particular biological problem
[3–8]. On the other hand, this review mainly considers three
perspectives as follows: (i) drug combination therapies from the
viewpoint of developing ML methods, (ii) importance of data
integration from different sources and (iii) publicly available
interactive data analysis portals. The difference and detailed
comparison between these reviews can be seen in Table 1.

The outline of this review starts with a brief discussion of
the significance of the synergy, efficacy and toxic effects of drug
combinations. We provide information on relevant data sources
commonly used for drug combination prediction methods and
side information to improve the prediction accuracy. Then, we
divide ML methods into three categories: drug combination sen-
sitivity prediction, drug synergy prediction and drug synergy
classification, and evaluate the methods in each category. To
address the need for comparative studies, we show an exper-
imental comparison of drug combination prediction methods.
Finally, we discuss a list of well-known, publicly available soft-
ware for analyzing combination data.

Drug combination therapy
Motivation

Drug combination therapies allow us to elucidate disease char-
acteristics between patients caused by variation in therapeutic

responses, define synergistic drug effects and minimize adverse
drug reactions. The usage of drug combinations has multiple
advantages over monotherapy, such as higher efficacy and lower
toxicity [9, 10]. With monotherapy, it is really hard to treat
complex diseases such as cancer [11, 12]. A single drug typi-
cally targets a single protein or pathway. Two clinically identical
tumors rarely have commonly mutated genes, and so traditional
therapies need to go beyond the ‘one disease, one drug, one
target’ paradigm. Thus, combination therapy is rapidly becoming
regular where single-drug treatments are ineffective. However,
the identification of combinatorial drugs is expensive and time
consuming since testing every possible combination of these
drugs would be infeasible. The main questions that arise here
are (1) identifying predictive biomarkers that may reveal the
underlying mechanism of the drug combinations and (2) how to
predict whether a known or new drug combination will be useful
for a specific patient.

The existing computational methods can be divided into
three categories: systems biology-based methods [3, 13],
network-based methods [14, 15] and ML-based methods [8].
These methods mainly evaluate two important properties of
drug combinations: sensitivity and synergy. Although these
two can be roughly defined as predicting the correct treatment
for the right patient, they have different measurement units.
Sensitivity is the drug combination response in preclinical
studies based on cell lines or patient-derived cells, which
is usually measured in the unit of percentage inhibition of
cell viability or growth. In contrast, synergy is defined as the
degree of drug interactions where the effect of the combination
is greater than that predicted by their individual potencies.
Synergy is generally quantified through a selected reference
model based on the properties of the dose–response curves,
which describe the magnitude of the response of a drug, of
specific drugs. Many approaches have been proposed using
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chemical, biological and molecular data to model sensitive and
synergistic drug combinations, especially for cancer [16].

The effect of drug combination is measured by large-scale
dose–response matrix experiments in various concentrations
of single agents and combinations. The combination can be
categorized as synergistic, additive or antagonistic based on the
difference between the observed and the expected responses
computed by a reference model [17]. Two compounds are con-
sidered synergistic when the combined effect is greater than
that predicted by their single-agent potencies. If the effect of
each drug neither decreases nor increases the sum of individual
drug effects, it is called additive, known as noninteraction. In
contrast to the synergistic effect, the combination is antagonis-
tic if the sum is less than the response of individual agents.
Synergistic combinations are preferable to delay the beginning
of the resistance, whereas antagonistic combinations are useful
for inhibiting the expansion of resistance [18]. Even though
researchers focus on synergistic drug combinations, antagonism
might be more beneficial for identifying the toxicity levels. There
are four commonly used reference models for categorizing the
level of drug combination synergism as follows: (i) Bliss inde-
pendence: the most commonly used model, which provides a
score under the assumption of each drug acts independently
of the other. Each measurement above this score indicates syn-
ergy. The main drawback of the model is that it claims synergy
when two identical drugs are combined; (ii) Loewe additivity: the
idea behind the model is that the drugs can not interact with
themselves and need to have equal individual drug maximum
effects while computing the combination effect. However, this
model is not applicable when a dose–effect curve is not available;
(iii) Highest single agent: this model assumes that the combined
effect should be superior to the effects achieved by the single
drugs for synergism;and (iv) Chou–Talalay: this model relies on
the linearity of the median-effect plot, which was proposed
by Chou to linearize the dose and effect relations of all data
points by plotting log(dose) versus log[fraction affected/fraction
unaffected], which is generally not the case for other refer-
ence models. A significant limitation of the model is its depen-
dence on accurate and well-defined dose–effect curves, which
are not always available. A detailed explanation and comparison
between these methods can be found in [1]. These models serve
as a baseline to understand the interaction between drugs based
on their single performance. However, each of these reference
models has limitations and is not entirely suited for combina-
tions of more than two drugs. In addition, just a reference model
cannot consider how drugs may interact; thus, more complex
mathematical models have emerged.

Drug synergy, efficacy and the toxic effects of drug
combinations

Drug synergy can be defined as combining two or more chemical
compounds to produce a more significant effect than an individ-
ual compound based on specific mathematical models. Clinical
trials show higher synergy outcomes for proper combinations,
such as more efficacy and less toxicity, and many approaches
neglect the toxicity and efficacy of drug combinations [19]. There
is a common misunderstanding that synergy and efficacy are
treated as the same. Although synergy measures the degree
of interaction, the efficacy of a drug combination depends
on the extent of patient-to-patient variability and degree of
correlation among monotherapy responses [20–22]. Therefore,
it is possible that even though the combination is synergistic,
the actual response might be inefficient to reach therapeutic

efficacy, which may lead to prioritization of drug combinations
that are unable to kill cancer cells despite strong synergy [23].
On the other hand, acquiring less toxicity by decreasing the drug
doses allows for fewer adverse effects. These three major factors,
i.e. synergy, efficacy and toxicity, should be considered together
while categorizing drug combination therapies. Even though two
drugs are not synergistic, they might still be beneficial by having
higher efficacy and lower toxicity [24].

Existing drug combination therapies

Drug combination therapies have become a powerful approach
to fight against complex diseases in recent years. The primary
motivation behind this approach is to find synergistic drug
combinations while maximizing efficacy and reducing toxicity.
With the recent advances, Food and Drug Administration (FDA)-
approved new drug therapies include various novel drugs; thus,
many successful treatments prevailed. Most of the approved FDA
drug combinations target the treatment of infectious diseases
[1]. For example, the FDA approved a pairwise drug combi-
nation of Dolutegravir and Lamivudine, which together blocks
the HIV-1 multiplication for the treatment of HIV-1 infection
in April 2019 [25]. In addition to this, much of the research
and development is targeting different cancer types in recent
years. One example is treatment of melanoma patients with the
combination of Dabrafenib and Trametinib that can harbor BRAF
V600E mutations was approved by the FDA in 2015 [26]. More-
over, the treatment of using both Vermurafenib, which targets
BRAF, and Cobimetinib, which targets MAP2K1, has been shown
to be synergistic for treating BRAF mutated melanoma and
was also approved by FDA. Another combination was approved
for diabetes treatment using Osiglitazone and Exenatide [27].
Osiglitazone is already an antidiabetic drug, but it increases the
risk of myocardial infarction. Nevertheless, when two drugs are
combined together, they decrease the risk of myocardial infarc-
tion [28]. Not only pairwise combinations but also triple and
quadruple combinations are emerging recently. As an example,
the combination of Oravirine, Lamivudine and Tenofovir was
approved in 2018 to deal with HIV-1 infection for adults [29].

Data sources

A wide range of research programs has generated various
databases on combinatorial drug therapy to accelerate the
discovery of personalized multitargeted drug combinations in
recent years. These advancements bring new opportunities
for the application of large-scale ML methods in predicting
drug combinations. Two of the most significant and oldest
resources of the publicly available database for investigating
drug combinations are US FDA and Drug Combination Database
(DCDB) [30]. The FDA Orange Book [31] consists of drugs
and combinations approved based on the FDA’s safety and
effectiveness. The first combination was approved in the 1940s,
and FDA updates the number of approved drug combinations
every year. The dataset contains 419 drug combinations where
341 double, 67 triple, and 11 more than triple combinations, and
367 are structurally unique combinations from 328 unique small
molecules by 2018 [29]. DCDB is known as the first database
committed for the research of multicomponent drugs. This
database includes 1363 drug combinations from 904 distinctive
components from various clinical studies and FDA Orange
Book. Around 20% of DCDB drug combinations are approved
to be used in patients. Meanwhile, approximately 13% of
the combinations are reported to be nonefficacious. Another
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essential resource is NCI-ALMANAC (A Large Matrix of Anti-
Neoplastic Agent Combinations) [32], one of the pioneers in
the characterization of drugs in vitro. NCI-ALMANAC is a library
of cancer cell lines maintained by National Cancer Institute
(NCI). The library provides FDA-approved drug combinations
for targeting cancer and killing tumor cells from the NCI-60
cell lines obtained from nine cancer types. This data has >5000
pairs of drug combinations from 104 FDA-approved drugs and 60
cell lines. The ONEIL study [33] provided a comprehensive data
source of drug combinations, which has been widely applied
by many researchers recently. This source includes 38 drugs
and their pairwise combinations, 92 208 drug combinations,
and 583 distinct combinations against 39 cancer cell lines
representing multiple cancer types. One of the latest drug
combination datasets is AstraZeneca’s DREAM-AZ dataset [34],
consisting of cell viability response measurements and synergy
scores from 910 pairwise combinations of 118 drugs across
85 molecularly characterized cancer cell lines. The dataset is
the result of a DREAM Challenge to evaluate computational
strategies for predicting synergistic drug pairs and biomarkers.
Although DCDB and FDA databases offer drug combinations for
multiple diseases, NCI-ALMANAC, DREAM-AZ and the ONEIL
study focus on oncological diseases. Another disease-specific
repository is Antifungal Synergistic Drug Combination Database
(ASDCD) [35], which is designed for synergistic antifungal
drug combinations. ASDCD consists of published synergistic
antifungal drug combinations, chemical structures, drug-targets,
target-related signaling pathways, drug indications and other
pertinent data. The database has 210 antifungal synergistic drug
combinations and 105 individual drugs from >12 000 references.

Integrating data for predicting drug combinations

More detailed information on the dose–response effects of com-
binations is required in drug combination therapy applications
since it is demonstrated that drug combination therapy is bet-
ter than single-drug treatment. Therefore, it is necessary to
consider the relationship among drugs, targets and diseases
when using drug combination therapy. The integrative analysis
of side information with rapid accumulation would enable us to
analyze the relationships between the side information. The cur-
rent computational methods rely on the selective incorporation
of target features, pharmacogenomics and chemical property
information.

Drug-related information plays a significant role in under-
standing the behavior of compound combinations, such as
the similarity of structure and biochemical properties between
drugs. Drug–target and drug–drug interactions can also be used
to improve predictions of effective combination therapies. In
particular, drug–drug interactions are essential since they might
cause unexpected pharmacological effects, including adverse
drug events. The existence of drug–target interactions in the
same pathway is shown to be predictive of synergism [27].
It is also shown that they contribute to the identification of
novel synergistic chemical pairs. In addition, adverse drug
effects contribute to identifying novel synergistic chemical
pairs, illustrated by a number of synergistic drug combinations
reported for various diseases [36]. In recent years, gene
expression profiles have also helped predict synergistic effects of
drug combinations on cancer cell lines [37, 38]. Details of these
data types and their related tools can be found in the review
papers we provided in Table 1.

ML approaches
We categorize ML approaches for drug combination therapy
into the following three problem settings: (1) drug combination

sensitivity prediction, (2) drug synergy prediction and (3) drug
synergy classification. First, ‘drug combination sensitivity pre-
diction’ is to predict the sensitivity of two or more drugs under
an experimental condition from the input of drug combina-
tion sensitivity values for multiple conditions. Sensitivity is a
measure of treatment response that can be defined in the unit
of percentage inhibition of cell viability or growth. Figure 1A
illustrates this problem setting. The main task is to predict the
unknown response of a drug pair and a cell line (missing entries
in a matrix) for which other response values of drug pairs and
cell lines are already given. This experimental setup is very
similar to monotherapy, only includes more experiments such as
considering four doses for each drug in a pairwise combination,
16 measurements are required, whereas four measurements
are enough for monotherapy. Second, ‘drug synergy prediction’
is to measure the degree of the interaction between two or
more drugs. Synergy is defined as a combination effect that is
greater than the predicted effect of the individual drugs. This
task has two different problem settings, and Figure 1B demon-
strates two subtasks. The first subtask (Figure 1B1), ‘drug synergy
score estimation’ is to compute synergy score of drug combina-
tions. Synergy score is usually calculated as the deviation of the
observed drug combination effect from the expected combina-
tion effect based on the properties of the dose–response curves
of the single drugs. There are various reference models (base-
line) for quantifying the level of drug combination synergism.
The most common and prominent reference models based on
performance of individual drugs are Loewe Additivity and Bliss
Independence. The full dose–response matrices (full surface)
predicted in the ‘drug combination sensitivity prediction’ task
are necessary to estimate the reference model and compute a
synergy score. In the second subtask (Figure 1B2), ‘drug synergy
matrix completion’, the purpose is to predict unknown synergy
scores of drug combinations and cell lines. The task can be
considered as continuation of the first subtask since the synergy
scores obtained in the first subtask can be used to fill the
synergy matrix of combinations, and unknown synergy scores
of drug combinations and cell lines are predicted. Third, ‘drug
synergy classification’ identifies novel synergistic combinations
when drugs interact with each other for several cell lines under
multiple conditions (Figure 1C). This task basically can be con-
sidered as classifying the drug combinations whether they are
synergistic, additive or antagonistic. There are different datasets
consist of binary values, which are specifically designed for this
task such as FDA Orange Book [29] and DCDB [30]. However, this
task can be also considered as a continuation of ‘drug synergy
prediction’. A continuous parameter of synergy score obtained
from the reference model can be used to categorize the drug
combinations as being synergistic, additive and antagonistic.
In this setting, the synergy scores have usually been cut off
according to a fixed threshold. We explain and summarize each
of the three categories in detail in Table 2. In the rest of Sec-
tion ML approaches, we briefly introduce the ML-based drug
combination prediction methods, which are categorized into
three categories: sensitivity prediction, synergy prediction and
synergy classification methods. Table 3 summarizes the features
of all methods shown in this survey.

Drug combination sensitivity prediction

There has been a considerable improvement in ML models that
can be used to predict drug responses for the last decades. Many
of these previous studies have been successfully applied for
single drug–response prediction [43]. However, starting with
the release of the NCI-ALMANAC database [32], specifically for
the cancer disease, the prediction of pairwise drug–response
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Figure 1. Schematic structures of combinatorial drug prediction methods. (A) Sensitivity prediction: predicting drug combination responses in preclinical studies

based on cell lines or patient-derived cells (multiple concentrations of drugs can be considered for each cell line). (B) Synergy prediction: predicting the degree of drug

interactions that contribute to the drug combination sensitivity. (C) Drug classification: identifying the degree of interaction between drugs (multiple concentrations

of drugs can be considered for each cell line).

combination therapies has started to gain attention from
researchers.

BestComboScore [44] is known as the first attempt that ML
evaluation of paired drug response sensitivity prediction. The
model applies deep neural network and intermediate integra-
tion, which means that multiple types of molecular and drug

features are jointly trained in the first layer of the neural net-
work. BestComboScore predicts the best growth inhibition seen
in any experiment for a given drug pair and does not include
drug concentrations as an input feature to reduce training data
imbalance. The model was tested on different combinations of
features to evaluate the relative importance of each feature.
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Empirical results reveal that all molecular features have
potential over prediction; however, the most predictive capacity
belongs to drug descriptors. Even though the model was
designed for pairwise drug combinations, the model can be
extended to more than two drugs in combination therapy.

DrugComb [45] is an open-access data portal that targets
both sensitivity and synergy prediction of drug combinations.
The portal stores comprehensive drug combination data sources
from different databases and provides curation and standard-
ization. DrugComb can also be considered a data analysis tool
that allows users to visualize, analyze and annotate drug com-
bination dose–response data. The model uses linear regression
to provide sensitivity scores of drug combinations, considering
drug chemical fingerprint information as predictors. The pri-
mary outcome is that chemical information can be an essen-
tial feature for explaining the sensitivity of drug combinations.
This research can be improved by an integration pipeline for
more heterogeneous sources. Furthermore, more advanced ML
methods would be tested to enhance accuracy.

comboFM [39] is one of the recent studies that transfer drug
combination dose–response data into a higher-order tensor.
The outstanding discrimination with other studies is that
comboFM includes various doses of drug combination responses
into experiments. Besides, genomic descriptors of cell lines
and chemical descriptors of each drug are integrated into the
model. Then, higher-order factorization machines are applied to
predict missing entries in the dose–response matrices, untested
drug–drug–cell line triplets and new drug combinations. After
dose–response matrices are completed, synergy scores are
computed, resulting in a single score defined for each drug
combination. All these data except concentration values and
genomic descriptors are represented by binary values in a one-
hot encoding form more than continuous values, which may
cause loss of information sometimes. This design can be used as
drug repurposing since new drug combinations can be predicted
even without available combination measurements.

Drug synergy prediction

Many synergy prediction methods, which are reviewed under
Section Drug synergy prediction, can also be regarded as a com-
binatorial drug response prediction method since they require
fully measured dose–response matrices to calculate drug syn-
ergy scores. For example, one of the main objects of DECREASE
[48], which is also reviewed in Section Drug synergy prediction,
is to fill missing entries in the drug–dose response matrix first
and then calculate synergy scores.

DrugComboRanker [46] predicts synergistic drugs that target
different signaling modules of cancer-specific networks, by inte-
grating genomic profiles of both drugs and cancers, aiming to
combine drugs with existing therapy to reduce drug resistance.
There are two main steps of the model: (1) drug functional
network construction and (2) partitioning of the functional drug
network into clusters using a Bayesian nonnegative matrix fac-
torization. The functional drug network is constructed based on
genomic profiling data of drugs. The second part discovers the
clusters that share common responses to drug treatment and
predicts the functional targets of drugs. Rich genomic profiles
of drugs, diseases and network-based integration make this
approach practical, whereas only the combinations in known
disease–pathway interactions can be found.

DeepSynergy [37] is known as the first deep learning
method to predict drug combination synergies. Compared with
previous studies developed for small datasets, DeepSynergy uses

more extensive synergy data [33] for prediction and incorporates
chemical and genomic information as input information. The
method has a normalization strategy because this model
integrates heterogeneous data sources, which might cause
information loss. Deep neural network algorithms are very well
suited for large datasets, and the predictive performance of
DeepSynergy can be improved if more data is available.

Incorporating prior information has already shown its pre-
dictive power in predicting drug synergy scores. However, the
arising challenge here might be the curse of dimensionality,
which means if we have more features than observations, this
might cause that the model results in good performance only
to its initial dataset, and not to any other data sets. Finding
relevant features and understanding the importance of the side
information make the prediction models much more manage-
able. There are two studies relevant to this point. These two
examples of feature selection methods offer the opportunity for
understanding the significance of feature selection in predict-
ing drug synergies. A benchmark study [47] uses the genomic
information of cancer cell lines, drug–targets and molecular
information to predict the synergy between two drugs. The dif-
ficulty comes with high dimensionality, especially for genomic
information. Jeon et al. [47] select only genes in cancer-related
pathways by using a method called extremely randomized trees
(ERT), which uses multiple decision trees without bagging to
reduce the variance of a single decision tree. The other data-
driven study for the prediction of drug synergies is made by
[42]. This study uses an ensemble learning algorithm, XGBoost,
to select biologically relevant and most predictive drug and cell
line features to understand the biological factors underlying
drug synergy. Experimental results reveal that monotherapy and
genomic features are most informative. In contrast, target fea-
tures have a minor effect on drug combination therapy among
comprehensive pharmacological and molecular information.

DECREASE [48] is a comprehensive design that can iden-
tify synergistic and antagonistic combinations with a minimal
set of measurements. It is a two-step, efficient ML model to
predict drug synergies from drug–dose response values. Many
studies require fully measured dose–response matrices for the
computation of drug synergy scores. Some of them use single
concentrations of an individual agent, which any outlier might
have a drastic impact. DECREASE tries to solve these challenges
by detecting outliers and handling missing values in drug–dose
response data. As the first step, outliers are detected using the
difference between the observed responses and the expected
responses based on the Bliss independence model. Second, the
composite Nonnegative Matrix Factorization algorithm is used
to predict missing dose–response values. After predicting full
dose–response matrices from a sparse input, the synergy scores
are calculated by a reference model such as Bliss independence
or Loewe additivity. The crucial difference with other models
is that it does not incorporate any side information and does
not attempt to do prediction to new experiments. DECREASE
also implements an interactive web tool that enables testing
different biological problems such as identifying bacterial, fun-
gal or antiviral drug combination synergies. DECREASE might
be improved with higher-order combination data rather than
pairwise combinations in the future.

Drug synergy classification

One of the earlier ML approaches for the classification of
drug combinations has started with [49], which presents a
simple method to predict whether a drug pair is an effective
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combination by maximizing the F1 score. This method is
one of the earlier approaches that integrate molecular and
pharmacological data as side information to classify drug com-
binations. The model treats drug combinations as combinations
of their corresponding features, including their target proteins,
therapeutic effects and indication areas. Integration results
imply that side-effects and pathways are not sufficient for drug
combination prediction; however, drug target proteins, anatom-
ical therapeutic chemical (ATC) codes and drug indications are
informative.

Iwata et al. [27] constructed a more complex predictive model
than [49]. The framework uses logistic regression to predict
beneficial drug combinations using target proteins and ATC drug
codes and minimizes the loss function with L1 regularization
to overcome overfitting. The model has three central prediction
motivations: (i) the model should predict known drug–drug pairs,
(ii) predict new combinations for drugs of known combinations
and also (iii) predict new pairs without any known drug com-
bination. Experimental assessment proves that predicting new
combinations is challenging, and task (iii) is the hardest. More-
over, the ATC drug code is the most useful information, followed
by target–protein and indication profiles. However, the short-
coming is that ATC information unobtainable for new drug can-
didate compounds, and complete information would improve
the prediction of new combinations. The merit of the model is
the L1 regularizer for interpretability, whereas the downside is
lacking of disease context. The predictive performance would be
enhanced by incorporating adverse drug–drug interactions that
are valuable in drug development.

The integration of side data has proved to be promising on
drug combination therapies, and so more side data were exam-
ined on probability ensemble approach (PEA) [50] to predict drug
combination classes for analyzing both the efficacy and adverse
effects of drug combinations. PEA is a systems pharmacology
framework of using a Bayesian network to solve the missing
data problem and incorporate different features even though
some features are weakly informative. Given a pair of drugs, the
model calculates drug similarity features and combines them
using a Bayesian network into a likelihood ratio that represents
its probabilistic similarity to the known interaction. PEA reveals
the importance of each of the auxiliary sources by using not
only drug properties but also the drug–targets in the protein–
protein interaction network and the similarity of drug–targets.
The main results of [50] are (1) the model with all features has
higher performance than those with single features and (2) side-
beneficial effects would enable the analysis of the relationships
between drugs and combinations.

Network-based Laplacian regularized Least Square [51] dis-
tinguishes antifungal synergistic drug combinations from non-
synergistic ones by integrating drug–target interactions and drug
chemical structures as side information. The model classifies
drugs according to whether they have activity in the antifungal
assay. If one drug shows activity, but the other does not, then the
first drug is considered as the principal, and the latter is consid-
ered as the adjuvant. The idea behind the model is that principal
drugs often have similar synergistic effects with adjuvant drugs.
The framework has two classifiers for principal and adjuvant
drugs separately and combines these two classifiers into a single
classifier to obtain a final predictive result. Each classifier has its
own drug similarity measures. Based on the classification score,
drug combination pairs with high scores can be expected to have
a high probability of being synergistic.

SyDRa [52] identifies synergistic anticancer drug
combinations by using a random forest algorithm with three

types of features: drug–chemical structure, drug–target network
and pharmacogenomics. These feature combinations and labels
of drug combinations are used as an input to random forest
algorithm to distinguish synergistic and nonsynergistic drug
combinations. The primary finding is that the pharmacoge-
nomics features (especially similarity between gene expression
profiles) contribute to drug synergism more than the other
features. SyDRa uses a small training dataset compared with
independent test sets, which might affect the robustness of the
model. Kyoto Encyclopedia of Genes and Genomes pathways
targeted by each drug in a drug combination play a vital role
in SyDRa. Nevertheless, disease-specific pathways, such as
breast cancer-related pathways, are not considered to improve
performance.

A different approach was made by Gayvert et al. [22] to
identify synergistic and effective drug combinations from drug
combination efficacies and single-drug agent information. This
study uses only single-agent knowledge as prior information.
For each drug pair, input features are constructed by taking the
mean and difference of the single-agent dose–response in each
tested cell line. The reason behind the idea is that the synergy
depends on the context and this makes it difficult to use the
information of different cancers or genotypes. Importantly, this
work directly concentrates on specific diseases such as mutant
BRAF melanoma. Nevertheless, it is still difficult to generalize
this work to all cancer types and this work has small training
data that might cause overfitting and produce inaccurate results.

Gradient tree boosting (GTB) was utilized by a heterogeneous
network-based inference to classify efficacious drug combina-
tions using features derived from drug–protein heterogeneous
network [54]. Protein networks play an essential role in treat-
ing complex diseases, and therefore they might be applied to
decrease the activity level of carcinogenic genes while devel-
oping drug combinations. This method has the following three
steps:

1. The model incorporates a drug similarity network, protein
similarity network and known drug–protein associations
into a drug–protein heterogeneous network.

2. Drug combination features are extracted by running a ran-
dom walk with restart on the heterogeneous network.

3. Extracted features are trained on a GTB classifier to predict
new drug combinations.

Like many other network-based methods, the assumption is that
similar drugs are likely to interact with similar target proteins.
However, there is always a possibility that new drugs or proteins
might have low similarity and be located far in the feature space,
which causes failure in predicting drug combinations. On the
other hand, the model is pertinent to the increased size of drug
combinations because of the nature of heterogeneous networks.

Deep Tensor Factorization (DTF) [58] combines two submod-
els: weighted tensor factorization and deep learning methods.
DTF generates features using the output of the weighted ten-
sor factorization method. The extracted latent features of drug
synergy information are used as input features to train the
deep neural network and finally predict the synergistic effect of
drug pairs. DTF can also be used for predicting missing synergy
scores in addition to the classification task. Experimental results
demonstrate that DTF shows a rather similar performance to
DeepSynergy [37], and there is no statistically significant differ-
ence, although DTF does not incorporate any side information.
DTF uses only a single data source for a complex problem;
however, incorporating more information might significantly
improve performance.
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Table 4. Performance scores of drug combination sensitivity prediction methods referred to in this review

Molecular and drug features MSE MAE R2

Xia et al. [44]
(BestComboScore)

One-hot encoding 0.5253 0.5709 –1.001

Gene expression, One-hot encoding 0.2447 0.3999 0.1272
Gene expression, 500-dimensional noise 0.2450 0.2450 0.1271
One-hot encoding, Dragon7 descriptors 0.0292 0.1086 0.8892
Proteome, Dragon7 descriptors 0.0303 0.1117 0.8844
microRNA, Dragon7 descriptors 0.0275 0.1050 0.8952
Gene expression, Dragon7 descriptors 0.0180 0.0906 0.9364
Gene expression, microRNA, Proteome,
Dragon7 descriptors

0.0158 0.0833 0.9440

The method which achieved the best score is in bold.

Table 5. Performance scores of drug combination sensitivity prediction methods referred to in this review

Methods RMSE Pearson Spearman

Julkunen et al. [39] (comboFM) New response matrix
entries

comboFM-5 9.86 0.97 0.91

comboFM-2 17.89 0.91 0.84
comboFM-1 31.56 0.70 0.66
Random forest 10.91 0.97 0.91

New response matrices comboFM-5 10.39 0.97 0.91
comboFM-2 18.00 0.91 0.83
comboFM-1 31.57 0.70 0.66
Random forest 12.23 0.96 0.90

New drug combinations comboFM-5 13.04 0.95 0.88
comboFM-2 19.37 0.89 0.81
comboFM-1 31.79 0.69 0.66
Random forest 15.44 0.93 0.86

The method which achieved the best score is in bold.

Drug-Combo-Generator [55] is the first network-based deep
generative model for overcoming drug resistance in drug
combination design. Unlike discriminative models, the target
is to define all drug combinations in the enormous chemical
combinatorial space and evaluate combination effects instead
of simply defining them as synergistic or antagonistic. The
method has fundamentally two steps. First, prior knowledge
of disease-related sources is jointly embedded into the system,
such as gene–gene, disease–gene, disease–disease relationships,
using hierarchical variational graph auto-encoders. The reason
is relationships between disease–proteins and drug–targets in
human protein–protein interactome might help to understand
drug behavior such that targets of two drugs belong to the
same disease module might cover different neighborhoods
[57]. These embeddings create features for each disease in the
second step, where a graph-set generator for reinforcement
learning is trained to maximize the therapeutic efficacy for drug
combinations in chemistry- and system-aware environments.
The objective is to generate a set of drug combinations with
similar distributions to the prior set of graphs. The advantage
is that the model can generate higher-order combinations
that might be favorable in the future, especially for infectious
diseases.

Empirical comparison
We reviewed several methods for drug combination therapies
in this survey, and it would also be interesting to compare
them with one another. However, different studies use different

data sources, scoring metrics and validation with little overlap.
Tables 4, 5, 6 and 7 summarize the performance scores of sen-
sitivity prediction, synergy prediction and classification of drug
combinations, respectively, as reported by the original studies.
The datasets used for each method can be found in Table 3.
Unfortunately, we could not include all the methods we reviewed
in the tables since results are shown only by pictures in several
works.

Drug combination sensitivity prediction

BestComboScore [44] is a study that evaluates the importance
of each integrated dataset, and so in Table 4, the second column
shows different combinations of datasets. Results show that all
three molecular feature types provide marginal benefit, whereas
most of the predictive feature is Dragon7 descriptors. On the
other hand, using all data (gene expression, microRNA, proteome
and chemical descriptors) is most advantageous in performance.

comboFM [39] is an extensive study on different designs
such as predicting new dose–response matrix entries, dose–
response matrices and drug combinations. Table 5 shows the
performance results of these three setups. Comparisons are
between comboFM-5, comboFM-2, comboFM-1 and random
forest methods. Although comboFM-5 corresponds to the 5th-
order factorization machine, comboFM-2 and comboFM-1 are
equal to the 2nd-order and 1st-order factorization machines,
respectively. comboFM-1 is also considered as ridge regression.
Results demonstrate that comboFM-5 significantly outperforms
comboFM-1 and comboFM-2 in both missing value and new
drug combination prediction settings. Although predicting
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Table 6. Performance scores of drug combination synergy prediction methods referred to in this review

Methods Pearson

Preuer et al. [37] (DeepSynergy) DNN 0.73 ± 0.04
Gradient boosting 0.69 ± 0.02
Random forest 0.65 ± 0.03
SVM 0.50 ± 0.03
Elastic net 0.44 ± 0.03
Baseline 0.43 ± 0.02

Jeon et al. [47] Elastic net 0.65
Ridge regression 0.661
Kernel ridge regression (RBF) 0.728
Random forest 0.731
Extremely randomized tree 0.738

The method which achieved the best score is in bold.

Table 7. Performance scores for some of the drug combination classification models referred to in this review

Methods or Datasets AUC

Iwata et al. [50] Whole features 0.90
ATC codes of the drugs 0.85
Drug side-effects 0.72
kNN 0.79

Chen et al. [51]
(NLLSS)

Combined space classifier 0.9054

Principal space classifier 0.8244
Adjuvant space classifier 0.8328

Gayvert et al. [22] BRAF-specific effectiveness 0.8809
General BRAF-effectiveness 0.8630
BRAF synergy 0.8683

Li et al.[52] (SyDRa) SyDRa 0.89
Pharmacogenomics features 0.83
CT (chemical similarity, drug target network) features 0.73

Liu et al. [54] GTB 0.949
kNN 0.768
SVM 0.859
Logistic 0.520
Naive Bayes 0.508
Random forest 0.866
Adaboost 0.866
LogistBoost 0.808

Preuer et al. [37]
(DeepSynergy)

DNN 0.90 ± 0.03

Gradient Boosting 0.89 ± 0.02
Random Forests 0.87 ± 0.02
SVM 0.81 ± 0.04
Elastic Nets 0.78 ± 0.04
Baseline 0.77 ± 0.04

Sun et al. [58] (DTF) DTF 0.89 ± 0.01
DeepSynergy 0.90 ± 0.02
Logistic regression 0.83 ± 0.02
CP-WOPT 0.67 ± 0.11

kNN = k-Nearest Neighbors, GTB = Gradient tree boosting, SVM = Support vector machines, DNN = Deep neural networks, CP-WOPT = CANDECOMP/PARAP-AC-Weighted
OPTimazation, BRAF-specific effectiveness = combinations that achieve at least 50% growth inhibition within the genotypic group, General BRAF-effectiveness =
combinations that achieve at least 70% growth inhibition. The method which achieved the best score is in bold.

new combinations is a more challenging task, comboFM-5 has
particularly high Pearson correlation scores in both settings.

Drug synergy prediction

Table 6 provides an experimental comparison of drug synergy
prediction methods presented in this review. Pearson correlation

score is the common evaluation score by three methods. Deep-
Synergy [37] outperforms the other ML methods significantly in
terms of Pearson correlation. However, ERT in [47] also achieves
almost the same score as Deepsynergy. The reason why ERT
outperforms other methods might be the extreme randomness,
which reduces the variance of the model and makes the model
more robust particularly with noisy data. The performance of
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Table 8. The list of interactive data portals and tools

Link

Combenefit [40] https://sourceforge.net/projects/combenefit/
SynergyFinder [41] https://synergyfinder.fimm.fi
DeepSynergy [37] http://www.bioinf.jku.at/software/DeepSynergy/
DrugComb [45] https://drugcomb.fimm.fi
DrugCombDB [79] http://drugcombdb.denglab.org/
SynToxProfiler [19] https://syntoxprofiler.fimm.fi

linear models is clearly lower than nonlinear models in both
experiments. The detailed information about data sources can
be found in Table 3. Table 6 demonstrates that ensemble learning
algorithms such as gradient boosting and random forest have
great potential besides deep learning algorithms.

Drug synergy classification

Table 7 shows the results of the comparison of area under the
receiver operating characteristic curve (AUC) between the actual
and predicted drug synergy scores of seven methods presented
in this review. The second column shows comparison methods
or comparison datasets. For example, in the first row, ‘whole
feature’ means, those including all drug molecular and pharma-
cological features, are taken into account in [50]. DTF [78] and
DeepSynergy [37] are both competitive based on the results and
the predictions from the two approaches are complementary.
The best performance was by GTB of [54], but all methods
achieved around 90% or more of AUC, which implies the data
was too easy to evaluate the method, and more tough data
would be good to be used for evaluation. Besides, training the
drug combination prediction problem as a classification problem
might underestimate the actual situation.

Interactive data analysis portals
Table 8 is a list of publicly available software, interactive data
portals for analysing combination data.

Combenefit [40] is the first free, open-source, advanced soft-
ware package for the visualization and analysis of drug combi-
nations. Combenefit incorporates three reference models; the
Loewe, the Bliss and the highest single agent (HSA) models,
which are mentioned in Section Drug combination therapy. The
graphical interface of Combenefit provides model-based quan-
tification of drug combinations in single and high-throughput
settings. Combenefit was also used to generate one of the com-
monly used datasets for the AstraZeneca–Sanger Drug Combi-
nation Prediction DREAM challenge [34].

SynergyFinder [41] is known as the first publicly available
open-source web application to assess the degree of synergy or
antagonism. In addition to Combenefit, SynergyFinder includes
one more reference model, zero interaction potency (ZIP), for
synergy scoring. Using multiple reference models provides an
unbiased evaluation of the significance of drug combinations.
An interactive graphical interface offers a 2D or a 3D synergy
map over the dose matrix.

DrugComb [45] is a free access computational tool that has
the following four features:

(1) Free accessible computational tool that provides a web
server for evaluation and visualization of accumulated,
standardized and harmonized drug combination dose–
response data.

(2) Users can analyze their own data.
(3) The sensitivity of drug combinations can be evaluated.
(4) Extensive database, including NCI ALMANAC [32], ONEIL

[33], FORCINA [75] and CLOUD [76] datasets.

DeepSynergy [37] is a publicly available web application,
which uses a deep learning model trained on the ONEIL data
[33] to assess the synergy of drugs. The application provides
predictions for untested drug combinations for a given cell line.

DrugCombDB [79] has a user-friendly website for evaluating
the synergy of two drugs or antagonism by using the ZIP refer-
ence model and data visualization. DrugCombDB integrates drug
combinations from high-throughput screening (HTS) assays of
drug combinations, external databases and PubMed literature.

SynToxProfiler [19] is the first web tool available for analyzing
drug combinations in terms of synergy, toxicity and efficacy.
SynToxProfiler can rank synergistic drug pairs with higher effi-
cacy and lower toxicity, using scores based on the integration of
synergy, toxicity and efficacy scores. In addition, SynToxProfiler
can deal with combinations of a multiple (>2) number of drugs.

Conclusion
Drug combination therapy offers a promising approach to
improve the effectiveness of treatments, which are often limited
by drug resistance, toxicity and disease heterogeneity. However,
identifying all possible combinations for synergistic interaction
is infeasible due to the size of combinatorial space. In addition,
a deeper understanding of the underlying biological impact is
required to efficiently explore the sizeable synergistic space.
Incorporation of biological and chemical knowledge would
be the solution for this objective. Computational methods
especially ML are becoming a crucial element of combination
therapy research in this phase to integrate data from many
different biomedical sources and understand what kind of
effects they have on the prediction of compound combinations.
In this light, we discussed the latest ML approaches for drug
combination therapies. We also brought attention to the data
that needs to be integrated for a comprehensive analysis to
efficiently identify effective drug combinations and highlight the
importance of side-effect management for avoiding unexpected
toxicity. Finally, we provided an empirical comparison of
methods presented in this review to understand the difference
between methods and a list of publicly available software for
analyzing combination data.

Using ML for combination therapy requires proper selection
of inputs, so including chemical properties and bioactivity data
is crucial to enhance the possibility of overcoming drug resis-
tance. In addition to inputs, experimental results also demon-
strate that model selection also has a big impact on the perfor-
mance such that linear models result in lower performance com-
pared with nonlinear models. Furthermore, ensemble learning

https://sourceforge.net/projects/combenefit/
https://synergyfinder.fimm.fi
http://www.bioinf.jku.at/software/DeepSynergy/
https://drugcomb.fimm.fi
http://drugcombdb.denglab.org/
https://syntoxprofiler.fimm.fi
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algorithms such as gradient boosting and random forest have
great potential besides deep learning algorithms. In all predic-
tion settings, predicting new combinations, in which the pre-
dictions are made for drug combinations outside the training
space with no available combination measurement, is a more
challenging task than the other tasks but a more realistic case.
The accurate drug combination predictions provide a promising
approach for personalized treatments and accelerate the clin-
ical use of drug combination therapies to increase therapeutic
efficacies.

One possible way to improve the identification of more sus-
tainable drug combinations might be to collaborate with cost-
effective alternative strategies, particularly drug repurposing,
which has also effectively found potential treatments. In this
collaboration, drug repurposing can be used to identify the hit
compounds and then drug combination test with the identified
hit compounds to find effective drug combinations [78]. On the
other hand, due to the immense data increase, big data problems
are arising, and carefully chosen feature extraction methods are
needed to improve the prediction accuracy [8]. There will be
a need to develop more efficient computational methods for
different diseases as expectations increase and opportunities
emerge. Pairwise drug combinations are the most prominent;
however, combinations of three or four drugs are emerging
recently. These current and future situations demonstrate that
ML methods are promising and have an exciting future for
personalized drug combination therapies by utilizing different
types of molecular and genomic data.

Key Points
• Drug combination therapies allow us to elucidate dis-

ease characteristics between patients caused by varia-
tion in therapeutic responses, define synergistic drug
effects and minimize adverse drug reactions.

• Identification of combinatorial drugs is expensive and
time consuming since testing every possible combina-
tion of these drugs would be infeasible.

• We aim to systematically assess representative ML
methods that have been proposed in recent years
for understanding the drug combination therapies by
grouping these methods into three categories.

• Three major factors, i.e. synergy, efficacy and toxicity,
should be considered together while categorizing drug
combination therapies.

• ML methods are becoming a crucial element of combi-
nation therapy research to integrate data from many
different biomedical sources and understand what
kind of effects they have on the prediction of com-
pound combinations.

Supplementary data

Supplementary data are available online at Briefings in Bioin-
formatics.
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