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Abstract: In the progress of allergic and irritant contact dermatitis, chemicals that cause 

the generation of reactive oxygen species trigger a heat shock response in keratinocytes. In 

this study, an optical sensor cell line based on cultured human keratinocytes (HaCaT cells) 

expressing green fluorescent protein (GFP) under the control of the stress-inducible 

HSP70B’ promoter were constructed. Exposure of HaCaT sensor cells to 25 µM cadmium, 

a model substance for oxidative stress induction, provoked a 1.7-fold increase in total 

glutathione and a ~300-fold induction of transcript level of the gene coding for heat shock 

protein HSP70B’. An extract of Arnica montana flowers resulted in a strong induction of 

the HSP70B’ gene and a pronounced decrease of total glutathione in keratinocytes. The 

HSP70B’ promoter-based sensor cells conveniently detected cadmium-induced stress using 

GFP fluorescence as read-out with a limit of detection of 6 µM cadmium. In addition the 

sensor cells responded to exposure of cells to A. montana extract with induction of GFP 

fluorescence. Thus, the HaCaT sensor cells provide a means for the automated detection of 

the compromised redox status of keratinocytes as an early indicator of the development of 

human skin disorders and could be applied for the prediction of skin irritation in more 

complex in vitro 3D human skin models and in the development of micro-total analysis 

systems (µTAS) that may be utilized in dermatology, toxicology, pharmacology and  

drug screenings. 
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1. Introduction 

Allergic and irritant contact dermatitis are the most common eczematous diseases. An early 

response of keratinocytes, which constitute the major epidermal cells of the skin, involves a  

non-immunological reaction that is characterized by cell damage induced by reactive oxygen species 

(ROS). ROS can promote the release of pro-inflammatory cytokines from keratinocytes, which in turn 

activate an immunological response that leads to the progress of contact dermatitis [1,2].  

There are several sources of ROS in the cell, the most notable resulting from alterations in the 

activities of NADPH oxidase, xanthine oxidase and the mitochondrial respiratory cycle. If chemicals 

interfere with the activities of these enzyme systems, oxidative stress will be rapidly elevated. 

Evaluation of the cell-damaging effects of compounds including oxidative stress can be conducted by 

cell-based sensor systems, which are capable of adapting the process of skin irritation by integrated  

in vitro models and enabling a predictive as well as descriptive prescreening. Moreover, they may 

represent a sufficient alternative to the three common ways of measuring the presence of oxidative 

stress, which are the direct measurement of ROS, the determination of the ROS-evoked damage to 

biomolecules, and the detection of antioxidant levels. Their spectra have been intensively reviewed [3]. 

Direct detection is hampered by its extreme instability of ROS. Therefore, it is preferred to measure 

the ROS-induced damage to proteins, DNA, RNA, lipids, or other biomolecules by adapting 

thiobarbituric acid (TBA) or Comet assays, among others. While these are indirect methods, many 

markers of damage are extremely stable and therefore provide a more reliable scheme of measuring 

oxidative stress. Another approach is to quantify the levels of antioxidant enzymes and other redox 

molecules that serve to counterbalance ROS generated in the cell. Assays are available to measure the 

activity of specific antioxidant enzymes, such as catalase and superoxide dismutase, or the 

determination of redox-sensitive systems such as thioredoxin or glutathione [4]. The latter exists in two 

forms, including the reduced sulfhydryl form (GSH) and the oxidized disulfide (GSSG). The main 

function of GSH is to neutralize ROS using mechanisms involving glutathione peroxidase, 

glutathione-S-transferase and glutathione reductase. Interestingly, glutathione concentrations are 

significantly increased in HaCaT cells following exposure to the toxic metal cadmium [5,6]. Although 

the mechanisms of cadmium toxicity are cell type-dependent, this metal is known to induce the 

expression of cysteine-rich, metal-binding proteins (metallothioneins) that can protect the cell from 

cadmium toxicity and inactivate antioxidant enzymes by interacting with the thiol groups of these 

proteins, resulting in the generation of ROS. In addition, cadmium provokes homeostatic alterations in 

physiological metals, such as copper, zinc and iron, and increases the transcript levels of enzymes that 

are involved in glutathione biosynthesis, including gamma-glutamylcysteine synthetase and 

glutathione synthetase. Cadmium severely affects the redox status of cells, even at sub-lethal 

concentrations and induces oxidative stress in HaCaT cells as demonstrated by decreased GSH/GSSG 

ratios [5–7]. 
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The human skin is permanently exposed to stress factors, such as ultraviolet light and xenobiotics, 

which may result in the generation of ROS. As such, keratinocytes are actively involved in the immune 

reactions that are characteristic of contact dermatitis, for example, by producing cytokines. Therefore, 

keratinocytes represent a valuable model cell type for the screening of the dermatological effects of 

skin-damaging agents. In this study, a simple and fast detection of the oxidative stress response in 

keratinocytes is described using genetically modified sensor cells that are based on the Human adult 

low Calcium high Temperature (HaCaT) cell line [8], which was stably transfected with a reporter 

construct that allowed for the expression of green fluorescent protein (GFP) under the control of the 

promoter regulating the human heat shock protein HSP70B’. The resulting optical sensor cell line 

demonstrated time- and dose-dependent activities when chemicals or plant extracts that are known skin 

irritants were used. We compare our results to conventional measurements of total glutathione (tGSH) 

concentrations in HaCaT cells and highlight the advantages of using a live cell-based biosensor 

instead. Furthermore, we discuss insights into the varying effects of xenobiotics on non-immunological 

skin cells, thereby contributing to the understanding of keratinocyte participation in the development 

of different forms of contact dermatitis.  

Based on our recent study that established HSP72 as a biomarker for the indirect determination of 

oxidative stress in cultured human keratinocytes [9], we evaluated here whether the properties of this 

keratinocyte sensor cell line could be improved for future applications in micro-total analysis systems 

(µTAS) by replacing the HSP72 promoter with that of HSP70B’. 

2. Experimental Section 

2.1. Cell Culturing and Cytotoxicity Testing 

The cultivation of HaCaT cells [8] and determination of cell viability using the  

3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) cytotoxicity assay were 

performed as described previously [9]. Percent cytotoxicity was calculated by dividing the absorbance 

of the treated cells by that of the untreated controls. The stock solution of 2,4-dinitrochlorobenzene 

(DNCB) was prepared in ethanol, nickel sulfate (NiSO4∙6H2O) and cadmium chloride (CdCl2) were 

dissolved in deionized distilled water. 

2.2. Determination of Gene Expression Levels 

The isolation of total RNA from the HaCaT cells and quantitative reverse transcription-polymerase 

chain reaction (qRT-PCR) were essentially performed as described [9]. The primer sequences for  

qRT-PCR were as follows: HSPA6 fwd 5’-TGC AAG AGG AAA GCC TTA GGG ACA-3’ and rev 

5’-TTT GCT CCA GCT CCC TCT TCT GAT-3’, GAPDH fwd 5’-TTC GAC AGT CAG CCG CAT 

CTT CTT-3’ and rev 5’-GCC CAA TAC GAC CAA ATC CGT TGA-3’. All qRT-PCR measurements 

were conducted at least three times from three independent cell cultures. The data were analyzed using 

Student’s t-test.  
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2.3. Arnica Montana Extract 

Dried flowers from the A. montana L. plant were extracted by PHARMAPLANT GmbH (Artern, 

Germany) in 70% ethanol (v/v) at 60 °C for 36 h. The solvent was evaporated to dryness after first 

being reduced using a vacuum rotary evaporator at 60 °C. For the cell culture experiments, the dry 

extracts (drug-extract ratio of 7.3:1) were dissolved in dimethyl sulfoxide. For the quantitative 

analysis, sample preparations were conducted according to the previously described method [10] with 

an amount of extract that was equivalent to 1 g of dried plant material using santonin as an internal 

standard. The analysis was conducted using the Agilent GC/MS system (GC 7890A, MSD 5975C, 

Gerstel GmbH & Co. KG, Mühlheim an der Ruhr, Germany) that was equipped with a SLB
TM

-5 ms 

chromatographic column with 60 m × 0.25 mm I.D. × 0.25 µm film thickness (Sigma-Aldrich, 

Taufkirchen, Germany). The initial column temperature was 100 °C, which then increased from  

100 °C to 300 °C at 10 °C/min and held at 300 °C for 40 min. The injector temperature was 250 °C 

and the injection volume was 1 µL. The carrier gas flow was 1.6 mL/min with a 1:10 splitting ratio.  

2.4. Engineering the Sensor Cell Line 

A genomic region corresponding to nucleotides −641 to +110 of the HSPA6 gene (+1 referring to 

the transcription start) was amplified from the human genome by PCR using 5’-AAA AAC TCG AGA 

CCA CTG AAC CAC CAA TGC T-3’ as the forward primer and 5’-AAA AAC CGG TCT TCT TGT 

CGG ATG CTG GA-3’ as the reverse primer. The resulting DNA fragment containing the functional 

promoter region of HSPA6 [11] was subcloned into the XhoI and AgeI sites of pAcGFP1-1 (Clontech, 

Saint-Germain-en-Laye, France) to generate pHSP70B’p-AcGFP1-1. The stable transfection of the 

HaCaT cells was achieved using TurboFect (Thermo Fisher Scientific, Schwerte, Germany) according 

to the manufacturer’s protocol and a subsequent selection in medium containing 1 mg/ml G418. 

Resistant cells were harvested and initially screened using fluorescence-activated cell sorting (FACS) 

(FACSAria IIU, Becton Dickinson, Heidelberg, Germany) to eliminate cells with constitutively high 

GFP expression levels and no induction of the functional promoter (negative screening). Cells 

demonstrating low basal GFP expression were tested for HSP70B’-induced GFP expression by 

incubation for 2 h at 43 °C followed by a 12–16 h recovery at 37 °C. Only cells responding to heat 

shock with high levels of GFP expression were collected for single clone selection (positive 

screening). HSP70B’-induced GFP expression following heat shock was confirmed in single clones by 

microscopy and FACS to select a working cell line showing the strongest signal-to-noise ratio in 

response to heat shock (2 h, 43 °C) and exposure to CdCl2 (6 h, 25 µM) [9]. 

2.5. Quantitative Fluorescence Microscopy 

Fluorescence microscopy was used for the quantitative assessment of cellular GFP expression 

levels in an incubation time- and dose-dependent manner. The sensor cell line was seeded on 

coverslips at a density of 50,000 cells/cm
2
 in 24-well culture plates. Following treatment with toxins, 

the cells were kept under normal culture conditions for up to 18 h. GFP expression levels were 

observed using an Axio Imager M2 (Zeiss, Jena, Germany). Cell culture images showing confluent cell 

layers were digitally recorded with an AxioCam MRm camera that was attached to the microscope 
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using the filter set 38 HE and a 20× objective (Zeiss, Jena, Germany). The average fluorescence (mean 

grey value) of each cell region was corrected for medium and device fluorescence, and compared to an 

untreated control to obtain relative fluorescence values.   

2.6. Determination of Total Cellular Glutathione 

Concentrations of tGSH in cells were determined as described previously [12]. Two hundred 

thousand cells were seeded into each well of a 6-well plate. Following incubation with the toxins, the 

cells were washed with PBS. After harvesting, 600,000 cells were resuspended in extraction buffer 

(0.1% Triton X-100 and 0.6% 5-sulfosalicylic acid in potassium phosphate buffer) and underwent two 

cycles of freezing at −80 °C and thawing. The lysates were centrifuged, and the supernatants were 

mixed with 5,5’-dithio-bis-(2-nitrobenzoic acid (DNTB, 0.66 mg/mL), glutathione reductase  

(454 U/mL) and NADPH (0.66 mg/mL). The chromophore product was immediately measured at  

412 nm every 30 s for 3 min. The tGSH concentration of the unknown sample was determined 

according to a regression curve of the GSH standard. 

3. Results and Discussions 

3.1. HSP70B’ is a Sensitive Biomarker for the Prediction of Oxidative Stress 

HSP70B’ was previously used as a biomarker for oxidative stress in diverse mammalian cell  

lines [13–15]. Building upon these observations, we first tested whether HSP70B’ expression was also 

induced in response to stress in the human keratinocyte cell line HaCaT. To this end, HaCaT cells were 

exposed to either 25 µM CdCl2 or elevated culture temperatures (43 °C), which are both known to 

induce HSP72 promoter activity in HaCaT cells [9]. The method of qRT-PCR was used to determine 

the mRNA levels of the HSP70B’ gene. We found that its expression was low in untreated cells and 

was induced by approximately 335-fold in response to CdCl2 exposure (data not shown). Likewise, 

148-fold and 269-fold inductions in HSP70B' gene expression were observed following heat treatment 

for 1 h and 2 h, respectively. The observation of a stronger induction from very low basal activity 

compared to HSP72 indicated that the generation of a sensitive sensor cell line based on a  

HSP70B’-driven reporter gene in HaCaT cells would be superior to the HSP72-GFP reporter in future 

µTAS settings. 

To determine whether the induction of HSP70B′ expression in HaCaT cells in response to CdCl2 

exposure was in fact correlated with increased oxidative stress, we determined tGSH concentrations in 

transfected cells. Oxidative stress can act in three different ways on the glutathione pool in HaCaT 

cells [6]. First, CdCl2 may alter the ratio of the reduced sulfhydryl form of glutathione (GSH) to the 

oxidized glutathione disulfide (GSSG). Second, CdCl2 exposure affects the activities of enzymes that 

are involved in combatting ROS, such as superoxide dismutase, catalase, and glutathione peroxidase. 

Third, treatment with CdCl2 increases tGSH concentrations in the cells. As shown in Figure 1, a  

dose-dependent increase in tGSH concentrations in HaCaT cells in response to a CdCl2 challenge was 

observed. The maximal increase in tGSH of approximately 1.7-fold was achieved following the 

treatment of cells with 25–45 µM CdCl2 for 6 h, which was well below the range of general  

CdCl2 cytotoxicity in HaCaT cells as determined by MTT assays following 24 h of exposure  
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(EC50 = 45 ± 7 µM) [9]. The limit of detection (LOD) of the applied tGSH assay was determined to be 

1 µM CdCl2 following a 6 h incubation with the toxin. A CdCl2-induced increase in tGSH could be 

explained in principle by the oxidative stress-induced activation of signaling pathways that led to an 

increase in the de novo production of enzymes that are involved in glutathione biosynthesis [16,17]. 

Figure 1. Glutathione pool in HaCaT cells increases following exposure to CdCl2. Total 

GSH levels increase in HaCaT cells following exposure to 15, 25, 35, 45 and 100 µM 

CdCl2 for 6 h [mean ± SE; n = 3]. The curve was fitted to the experimental data using a 

polynomial regression analysis. 

 
 

To further evaluate the suitability of HSP70B’ induction as a predictor of oxidative stress-induced 

cell damage in keratinocytes, HSP70B’ gene expression was tested following the exposure of HaCaT 

cells to selected chemicals and a plant extract that was prepared from A. montana flowers, which are 

known skin irritants [18]. Concentrations of compounds were selected according to their general 

cytotoxicities to HaCaT cells according to EC80 values as determined by MTT assays after 24 h of 

exposure (data not shown). We first determined in parallel the stress-induced increase in HSP70B’ 

expression and the cellular tGSH content after challenging the cells with 10 µM of DNCB or 400 µM 

of NiSO4 for up to 8 h. The response of cells to 25 µM CdCl2 served as a positive control (Figure 2). 

The experiments reproduced the 335-fold induction of HSP70B’ expression following CdCl2 treatment 

that persisted over an 8-hour period. Likewise, a nearly 2-fold increase in tGSH content was achieved 

in cells that were treated with CdCl2 (Figure 2). An approximately 7.3-fold induction in HSP70B' 

expression was observed following the exposure of cells to DNCB for 3 h. This response was not only 

much less pronounced compared with the cadmium-induced effects, but it also rapidly reverted to 

nearly normal levels after 6–8 h. Nevertheless, DNCB induced an approximately 1.5-fold increase in 

the cellular tGSH pool. Interestingly, the treatment of cells with 400 µM of NiSO4 neither induced 

HSP70B’ expression nor did it enhance the cellular tGSH pool (Figure 2). This is consistent with the 

observation that NiSO4 does not produce ROS in a concentration range that is non-toxic to HaCaT 

cells [2]. In summary, the data show that HSP70B’ is a suitable biomarker for chemicals that induce 

oxidative stress irrespective of whether they act as a skin irritant (CdCl2) or cause allergic contact 

dermatitis (DNCB) in vivo.  
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Figure 2. Responses of HaCaT cells to treatments with DNCB and NiSO4. HSP70B’ 

expression (detected by qRT-PCR) and changes in tGSH levels were measured following 

the incubation of HaCaT cells with 25 µM CdCl2, 10 µM DNCB, or 400 µM NiSO4. Solid 

lines represent the detection of the relative mRNA levels of HSP70B’ compared with 

untreated cells. Dashed lines represent the relative tGSH levels. For each panel, average 

values from 3–6 independent experiments are shown. 

 
 

Dried flowers of A. montana are used for the topical treatment of skin bruises, contusions, and pain. 

Despite its traditional anti-inflammatory use [19], there have been several reports attributing  

dose-dependent cytotoxic effects to the sesquiterpene lactone (STL) fraction of the A. montana extract, 

particularly helenalin [18]. STL can cause contact dermatitis in two principal ways; it can directly 

alkylate and inactivate proteins that are involved in the cell-protective stress response. Given the 

millimolar concentration of glutathione in the cell, STL rapidly form glutathione adducts, which can 

also act as specific inhibitors of enzymes that are required, for example, to combat oxidative  

stress [20,21]. We investigated the impact of the A. montana extract and purified helenalin on 

HSP70B’ expression in HaCaT cells. The qRT-PCR measurements revealed a strong dose- and  

time-dependent increase in HSP70B’ mRNA levels after the treatment of HaCaT cells with the  
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A. montana extract. Treating the cells with the EC80 concentration of the A. montana extract  

(125 µg/mL) resulted in a >300-fold induction in HSP70B’ gene expression after 3 h of incubation 

(Figure 3). A quantitative analysis of the A. montana extract that was used in this study revealed a 

concentration of 144.0 ± 26.7 µg/mL or 530 µM of helenalin. Considering that we applied the extract 

according to the EC80 value of 125 µg/mL, the final concentration of helenalin in the experiment was 

estimated to be 1.35 µM. Pure helenalin was able to increase HSP70B’ mRNA expression in a  

dose-dependent manner with saturation at ~7 µM (data not shown). If applied at its EC80 concentration 

of 5 µM, helenalin induced HSP70B’ mRNA expression to similar levels as the A. montana extract 

(Figure 3). The induction of HSP70B’ expression by helenalin is consistent with its reported 

stimulation of apoptosis by the generation of ROS [22]. The results suggest that helenalin is a major 

active component in the A. montana extract with respect to the observed HSP70B' induction, but 

further components of the STL or flavonoid fractions may have additive or synergistic roles in  

A. montana cytotoxicity in HaCaT cells. 

Figure 3. Responses of HaCaT cells to treatments with Arnica montana extract and 

helenalin. HSP70B’ expression (detected by qRT-PCR) and changes in tGSH levels were 

measured following the incubation of HaCaT cells with 125 µg/mL A. montana or 5 µM 

helenalin. Solid lines represent the detection of the relative mRNA levels of HSP70B’ 

compared with untreated cells. Dashed lines represent the relative tGSH levels. For each 

panel, average values from 3–6 independent experiments are shown. 

 
 

It is worth noting that although its effect on HSP70B’ expression was similar to that which was 

observed following CdCl2 treatment, the tGSH concentrations of cells that were exposed to the  

A. montana extract did not increase but rather declined by more than half of the level of untreated 

controls (Figure 3). Likewise, helenalin dramatically reduced the tGSH pool in the HaCaT cells. 
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Although the effects on the cellular tGSH concentrations that were obtained using the A. montana 

extract or helenalin seemed to conflict with the results that were observed following exposure to 

cadmium, other studies have described the reduction of the cellular tGSH pool by STL, including 

helenalin, likely through the ROS-dependent oxidization of the cysteine pool that is required for 

glutathione synthesis [23]. 

The molecular mechanisms underlying the differential effects of CdCl2 and helenalin on the cellular 

tGSH pool remain elusive; however, our observations may indicate that different gene regulatory 

pathways are activated by either compound, irrespective of the fact that both are strong inducers of 

ROS production. Whereas the toxic mechanisms of cadmium have been thoroughly described [6,7,24], 

the effects of contact allergens, such as DNCB and NiSO4, on non-immunological skin cells have been 

investigated only recently [2]. Although concentrations of compounds were applied that had 

comparable effects on cell viability (EC80), the incubation of HaCaT cells with CdCl2 resulted in a 

much higher induction of HSP70B’ compared with the DNCB treatment. The toxic mechanisms of 

cadmium that affect cellular homeostasis are very complex and act indirectly by inhibiting antioxidant 

enzyme activities, leading to increased ROS levels [5,25]. Furthermore, the heat shock factor HSF-1 

has been identified as the mediator of stress-induced heat shock gene expression on the basis of its 

ability to display inducible DNA binding activity, oligomerization, and nuclear localization in response 

to environmental stressors, such as elevated temperatures and cadmium [26]. These multilevel toxic 

mechanisms may explain the somewhat stronger signal that is substantiated by the incubation  

time-dependent increase and saturation of the mRNA expression levels as determined by qRT-PCR 

and the increased tGSH levels. The general instability of DNCB combined with the short-term  

ROS-buffering capacity of the GSH/GSSG pool may affect the redox balance of HaCaT cells much 

less than cadmium-induced damage.  

In summary, HSP70B’ is a well-suited biomarker for the detection of a deregulated oxidative stress 

level by diverse chemical compounds as an increased HSP70B’ expression correlates with tremendous 

changes of the intracellular tGSH pool independent of the underlying specific toxic mechanisms. Thus, 

we next developed a sensor cell line based on the HSP70B’ promoter for the rapid and sensitive  

in vitro screening of chemicals that are suspected to cause skin irritation.  

3.2. Design of an Oxidative Stress Sensor Cell Line in HaCaT Cells 

HaCaT cells were stably transfected with a plasmid that allows for the expression of GFP under the 

control of the HSP70B’ promoter. To establish the reporter gene system, we first tested for the 

induction of GFP fluorescence in different clones of stably transfected cells after the exposure of the 

sensor cells to CdCl2 and heat shock. For each clone of sensor cells, the absolute emission output and 

dynamic range of GFP induction in stress situations was evaluated using flow cytometry (data not 

shown). Based on these results, a single clone that showed the best signal-to-noise ratio and highest 

dynamic range following treatment for short time periods was selected for further investigations. The 

threshold point was determined to be the fraction including approximately 95% of control cells that 

were not exposed to stress (intrinsic fluorescence). Then, the number of GFP-positive cells was 

calculated. The fraction of GFP-positive cells following exposure of the sensor cells to 25 µM CdCl2 

for 6 h was 52.5%, and 49.7% of the cells were GFP-positive after 2 h of exposure to 43 °C. 
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In the next series of experiments, the cells were seeded on coverslips for fluorescence microscopy 

to quantitatively investigate the expression levels of GFP in an incubation time- and dose-dependent 

manner. The cells were grown to near confluence and then treated with chemicals to induce oxidative 

stress. The results are presented in Figure 4 for the 25 µM CdCl2 and 5 µM helenalin treatments. The 

microscopic images indicated a low basal fluorescence of the sensor cells that considerably increased 

in response to stress.  

Figure 4. Fluorescence microscopy of HSP70B'-GFP sensor cells. Phase contrast images 

(left panels) and GFP fluorescence (right panels) of either untreated cells (A) or cells that 

were treated for 6 h with 25 µM CdCl2 (B) or 5 µM helenalin (C). 

 

 
A quantitative read-out of the stress response that was elicited by the HSP70B'-GFP cells was 

desirable for the facilitation of the automated screening of the chemicals that were suspected to cause 

skin irritation. To this end, oxidative stress-induced GFP fluorescence was determined using 

quantitative fluorescence microscopy. As presented in Figure 5, the exposure of the sensor cells to 

increasing CdCl2 concentrations induced a concentration- and time-dependent increase in GFP 

fluorescence that reached a plateau at approximately 12-fold levels of induction compared with the 

untreated sensor cells. The exposure of the sensor cells to over 60 µM CdCl2 resulted in aberrant cell 

morphology and eventually decreased GFP fluorescence (data not shown). Fluorescence intensities 

were recorded for different CdCl2 concentrations after 6 h of incubation to determine the lowest 

detectable concentration. The LOD was defined as the concentration that induced a fluorescence 

intensity that was equal to or higher than the mean fluorescence of the untreated control cells plus three 

times the standard error of the measurement according to the three-sigma rule (data not shown). Based 

on this definition, the sensor cells displayed an LOD of 6 µM CdCl2 for a 6 h exposure time, which is 

comparable to the LOD of the applied conventional tGSH assay. 
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Figure 5. Quantification of GFP fluorescence following exposure of sensor cells to CdCl2. 

The responses of sensor cells to treatments with 15, 25, 35, 45 and 60 µM CdCl2 for 2, 4, 

and 6 h were analyzed by quantitative fluorescence microscopy. Relative fluorescence 

intensity relates to the corresponding values for samples from the untreated cells, which 

was set as 1 [mean ± SE; n = 3; *P < 0.05].  

 
 

When the cells were treated with either DNCB, the A. montana extract or helenalin, all of which 

produce oxidative stress, similar levels of fluorescence induction were recorded (Table 1). It is worth 

noting that the treatment of sensor cells with NiSO4 elicited no response, which is in accordance with 

the aforementioned data indicating that NiSO4 does not cause oxidative stress in HaCaT cells. The data 

has also been compared with the values achieved by the former sensor cell line based on HSP72. The 

novel sensor cell line exhibits a comparable response profile but represents a significant improvement 

due to its 1.5-fold increased signal-to-noise-ratio. These data suggest that the HSP70B’-based sensor 

cells are suitable for the quantitative detection of ROS-induced cytotoxicity under sublethal conditions 

and shorter incubation periods compared with the endpoint measurements. 

Table 1. Response of HSP72-GFP [9] and HSP70B′-GFP sensor cell to different forms  

of stress. 

Substance 
Compound 

(EC80) 

Response HSP72-GFP 

(Relative Fluorescence) 

Response HSP70B’ 

(Relative Fluorescence) 

 t = 24 h t = 6 h t = 6 h 

CdCl2 25 µM 7.7 ± 0.3  10.4 ± 0.3 

DNCB 10 µM 4.7 ± 0.7 6.9 ± 0.2 

NiSO4 400 µM 1.2 ± 0.2 1.1 ± 0.1 

A. montana 125 µg/mL 5.5 ± 0.3 8.1 ± 0.2 

Helenalin 5 µM not tested 9.8 ± 0.3 

 

Compounds were applied at their EC80 concentrations of general cytotoxicity as determined by the 

MTT assay. Relative GFP fluorescence was standardized to the untreated cells. For each data set, mean 

values were calculated from 3–6 independent experiments [± SE]. 
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4. Conclusions 

In this study, we used genetically modified sensor cells expressing a HSP70B′-GFP reporter 

construct to demonstrate that it is possible to sensitively and rapidly quantify an early skin irritation 

response upon exposure to a panel of test substances that are known to cause irritant or allergic contact 

dermatitis. Furthermore, these data support the view that varying effects of xenobiotics impact  

non-immunological skin cells, supporting the importance of further research on keratinocyte 

participation in the development of pathologic cell states. Independent of the signaling pathways that 

are employed or the effects that chemicals or even complex mixtures of natural products may exhibit 

to cause oxidative stress, it was shown here that HSP70B’ expression and the derived reporter gene 

output serve as a valuable detection setup that enabled the construction of a rapid and sensitive in vitro  

pre-screening test for oxidative stress dysregulation, which is a fundamental characteristic that appears 

early in the onset of human skin disorders.  

We compared the performance of the novel HSP70B’-based assay to conventional measurements of 

tGSH concentrations and received similar response profiles as well as LODs following 6 h of 

incubation (tGSH: 1 µM CdCl2 and whole-cell biosensor: 6 µM CdCl2). The sensory method is 

characterized by a rapid absolute workload due to the elimination of sample preparation; it is  

non-destructive, and, consequently, adaptable to real-time measurements as well as other non-invasive 

detection procedures such as impedance readouts.  

Compared with the previously established HSP72-GFP reporter cells [9], the sensor cell line that 

was described here represents a significant improvement due to its superior signal-to-noise-ratio that is 

required for optimal sensor integration towards the development and evaluation µTAS for application 

in dermatology, toxicology, pharmacology and drug screenings. The integration of the developed 

toxicity assay into a µTAS has the big advantage that it works as shown in this paper under  

incubator-free conditions. The constant microfluidic stream of culture medium together with the 

temperature control und the use of CO2-independent medium for stabilized pH enables the creation of 

microsystems incorporating several steps of an assay into a single system. Under such conditions 

miniaturized complex systems for a broad field of applications can be easily developed. Such 

integrated microfluidic devices perform rapid and reproducible measurements on small sample 

volumes while eliminating the need for expensive instrumentation and labour-intensive laboratory 

manipulations.   

Acknowledgment 

We thank Anne Gompf (Leibniz Institute for Age Research-Fritz Lipmann Institute) for performing 

the flow cytometry analyses. We would like to express our gratitude to Susanne Eisenhuth and Anna 

Ebersbach for their excellent technical assistance. This work was supported by the German Federal 

Ministry of Economy and Technology (BMWi) within the ZIM program.  

Author Contributions 

Ute Hofmann: concept development, main experimental work, manuscript writing 



Sensors 2014, 14 11305 

 

 

Melanie Priem: experiments on cultivation of HaCat cells, genetic engineering of the HaCaT cells, 

development of test protocols, correcting of manuscript, literature research 

Christine Bartzsch: GC-MS experiments on helenalin, Arnica Montana extract preparation 

Thomas Winckler: concept development, supervision of test measurements with plant extracts, 

manuscript writing 

Karl-Heinz Feller: concept development, supervision of experiments, manuscript writing, literature 

research  

Conflicts of Interest 

The authors declare no conflict of interest. 

References  

1. Bito, T.; Nishigori, C. Impact of reactive oxygen species on keratinocyte signaling pathways.  

J. Dermatol. Sci. 2012, 68, 3–8. 

2. Kim, D.H.; Byamba, D.; Wu, W.H.; Kim, T.G.; Lee, M.G. Different characteristics of reactive 

oxygen species production by human keratinocyte cell line cells in response to allergens and 

irritants. Exp. Dermatol. 2012, 21, 99–103. 

3. Halliwell, B.; Whiteman, M. Measuring reactive species and oxidative damage in vivo and in cell 

culture: How should you do it and what do the results mean? Br. J. Pharmacol. 2004, 142,  

231–255. 

4. Jones, D.P. Radical-free biology of oxidative stress. Am. J. Physiol. Cell. Physiol. 2008, 295, 

C849–C868. 

5. Nzengue, Y.; Steiman, R.; Garrel, C.; Lefebvre, E.; Guiraud, P. Oxidative stress and DNA 

damage induced by cadmium in the human keratinocyte HaCaT cell line: Role of glutathione in 

the resistance to cadmium. Toxicology 2008, 243, 193–206. 

6. Nzengue, Y.; Candeias, S.M.; Sauvaigo, S.; Douki, T.; Favier, A.; Rachidi, W.; Guiraud, P. The 

toxicity redox mechanisms of cadmium alone or together with copper and zinc homeostasis 

alteration: Its redox biomarkers. J. Trace Elem. Med. Biol. 2011, 25, 171–180. 

7. Thevenod, F. Cadmium and cellular signaling cascades: To be or not to be? Toxicol. Appl. 

Pharmacol. 2009, 238, 221–239. 

8. Boukamp, P.; Petrussevska, R.T.; Breitkreutz, D.; Hornung, J.; Markham, A.; Fusenig, N.E. 

Normal keratinization in a spontaneously immortalized aneuploid human keratinocyte cell line.  

J. Cell Biol. 1988, 106, 761–771. 

9. Hofmann, U.; Michaelis, S.; Winckler, T.; Wegener, J.; Feller, K.H. A whole-cell biosensor as in 

vitro alternative to skin irritation tests. Biosens. Bioelectron. 2013, 39, 156–162. 

10. Leven, W.; Willuhn, G. Sesquiterpene lactones from Arnica chamissonis less: VI. Identification 

and quantitative determination by high-performance liquid and gas chromatography.  

J. Chromatogr. A 1987, 410, 329–342. 

11. Leung, T.K.; Rajendran, M.Y.; Monfries, C.; Hall, C.; Lim, L. The human heat-shock protein 

family. Expression of a novel heat-inducible HSP70 (HSP70B’) and isolation of its cDNA and 

genomic DNA. Biochem. J. 1990, 267, 125–132. 



Sensors 2014, 14 11306 

 

 

12. Rahman, I.; Kode, A.; Biswas, S.K. Assay for quantitative determination of glutathione and 

glutathione disulfide levels using enzymatic recycling method. Nat. Protoc. 2006, 1, 3159–3165. 

13. Chen, P.; Kanehira, K.; Sonezaki, S.; Taniguchi, A. Detection of cellular response to titanium 

dioxide nanoparticle agglomerates by sensor cells using heat shock protein promoter. Biotechnol. 

Bioeng. 2012, 109, 3112–3118. 

14. Migita, S.; Wada, K.; Taniguchi, A. Reproducible fashion of the HSP70B’ promoter-induced 

cytotoxic response on a live cell-based biosensor by cell cycle synchronization. Biotechnol. 

Bioeng. 2010, 107, 561–565. 

15. Wada, K.; Taniguchi, A.; Okano, T. Highly sensitive detection of cytotoxicity using a modified 

HSP70B’ promoter. Biotechnol. Bioeng. 2007, 97, 871–876. 

16. Hatcher, E.L.; Chen, Y.; Kang, Y.J. Cadmium resistance in A549 cells correlates with elevated 

glutathione content but not antioxidant enzymatic activities. Free Radic. Biol. Med. 1995, 19, 

805–812. 

17. Mohanpuria, P.; Rana, N.K.; Yadav, S.K. Cadmium induced oxidative stress influence on 

glutathione metabolic genes of Camellia sinensis (L.) O. Kuntze. Environ. Toxicol. 2007, 22, 

368–374. 

18. Woerdenbag, H.J.; Merfort, I.; Passreiter, C.M.; Schmidt, T.J.; Willuhn, G.; van Uden, W.;  

Pras, N.; Kampinga, H.H.; Konings, A.W. Cytotoxicity of flavonoids and sesquiterpene lactones 

from Arnica species against the GLC4 and the COLO 320 cell lines. Planta Med. 1994, 60,  

434–437. 

19. Klaas, C.A.; Wagner, G.; Laufer, S.; Sosa, S.; Della Loggia, R.; Bomme, U.; Pahl, H.L.;  

Merfort, I. Studies on the anti-inflammatory activity of phytopharmaceuticals prepared from 

Arnica flowers. Planta Med. 2002, 68, 385–391. 

20. Picman, A.K. Biological activities of sesquiterpene lactones. Biochem. Syst. Ecol. 1986, 14,  

255–281. 

21. Schmidt, T.J. Glutathione adducts of helenalin and 11 alpha, 13-dihydrohelenalin acetate inhibit 

glutathione S-transferase from horse liver. Planta Med. 2000, 66, 106–109. 

22. Jang, J.H.; Iqbal, T.; Min, K.-j.; Kim, S.; Park, J.-W.; Son, E.-I.; Lee, T.-J.; Kwon, T.K. 

Helenalin-induced apoptosis is dependent on production of reactive oxygen species and 

independent of induction of endoplasmic reticulum stress in renal cell carcinoma. Toxicol. In 

Vitro 2013, 27, 588–596. 

23. Merrill, J.C.; Kim, H.L.; Safe, S.; Murray, C.A.; Hayes, M.A. Role of glutathione in the toxicity 

of the sesquiterpene lactones hymenoxon and helenalin. J. Toxicol. Environ. Health 1988, 23, 

159–169. 

24. Thevenod, F. Catch me if you can! Novel aspects of cadmium transport in mammalian cells. 

Biometals 2010, 23, 857–875. 

25. Nzengue, Y.; Steiman, R.; Rachidi, W.; Favier, A.; Guiraud, P. Oxidative stress induced by 

cadmium in the C6 cell line: Role of copper and zinc. Biol. Trace Elem. Res. 2012, 146, 410–419. 

  



Sensors 2014, 14 11307 

 

 

26. Pirkkala, L.; Nykanen, P.; Sistonen, L. Roles of the heat shock transcription factors in regulation 

of the heat shock response and beyond. FASEB J. 2001, 15, 1118–1131. 

© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article 

distributed under the terms and conditions of the Creative Commons Attribution license 

(http://creativecommons.org/licenses/by/3.0/). 

 


