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The main goal of this study was to investigate the influences of Phomopsis longanae
Chi infection on activities of cell wall-degrading enzymes (CWDEs), and contents of
cell wall components in pericarp of harvested “Fuyan” longan (Dimocarpus longan
Lour. cv. Fuyan) fruit and its relation to disease development. The results showed
that, compared with the control samples, P. longanae-inoculated longans showed
higher fruit disease index, lower content of pericarp cell wall materials (CWMs), as
well as lower contents of pericarp cell wall components (chelate-soluble pectin (CSP),
sodium carbonate-soluble pectin, hemicelluloses, and cellulose), but higher content
of pericarp water-soluble pectin (WSP). In addition, the inoculation treatment with
P. longanae significantly promoted the activities of CWDEs including pectinesterase,
polygalacturonase, β-galactosidase, and cellulase. The results suggested that the
P. longanae stimulated-disease development of harvested longans was due to increase
in activities of pericarp CWDEs, which might accelerate the disassembly of pericarp cell
wall components. In turn, resulting in the degradation of pericarp cell wall, reduction
of pericarp mechanical strength, and subsequently leading to the breakdown of longan
pericarp tissues. Eventually resulting in development of disease development and fruit
decay in harvested longans during storage at 28◦C.

Keywords: longan (Dimocarpus longan Lour.), Phomopsis longanae Chi, disease development, cell wall
components, cell wall-degrading enzymes, cell wall disassembly

INTRODUCTION

In developed countries, fruit decay caused by pathogens affects 20–25% of the harvested fruits
during post-harvest handling and storage. While in developing countries, the situation is even
worse due to inadequate transportation, storage, and preservation facilities for fruits (Al-Hindi
et al., 2011). Infection by pathogenic bacteria and fungi could take place in almost every step of fruit
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production from pre-harvest to post-harvest storage and
marketing (Yao and Tian, 2005; Aghdam and Fard, 2017; Li et al.,
2017).

In botanic cells, the cell wall is the first barrier against the
infection by fungal pathogens (Kubicek et al., 2014). Cell wall-
degrading enzymes (CWDEs) secreted by pathogens play a key
role in penetrating the cell wall to utilize the nutrients (Kang
and Buchenauer, 2000; Lalaoui et al., 2000; Kikot et al., 2009;
Tian et al., 2009; Gharbi et al., 2015; Ramos et al., 2016). There
is a diverse array of CWDEs, including polygalacturonase (PG),
pectin methylgalacturonase (PMG), pectinesterase (PE), pectin
lyase (PL), pectate lyase (PNL), cellulase (CX), β-glucosidase, and
xylanases (Al-Hindi et al., 2011; Li et al., 2012; Kubicek et al.,
2014). Ramos et al. (2016) found that Macrophomina phaseolina
induced the cell wall degradation of maize and sunflower, which
was initiated by the pectinase that was the first CWDE secreted by
M. phaseolina. The activities of PG and PMG were higher than CX
that appeared in the later stage of the degradation process (Ramos
et al., 2016). This sequence promoted the initial tissue maceration
before the degradation of cell wall materials (CWMs). It was
reported that Fusarium culmorum was able to secrete CWDEs
including cellulases, xylanases, and pectinases. These CWDEs
degraded the wheat spike plant tissues (cellulose, xylan, and
pectin) and enabled the invasion to the tissues by F. culmorum
(Kang and Buchenauer, 2000). Kang and Buchenauer (2000) also
reported that in the cell wall, the degree of pectin degradation
was higher compared with cellulose and xylan at the early stage
of infection, which implied that there might be earlier secretion
or higher activity of pectinases over cellulases or xylanases.
Moreover, Li et al. (2012) showed that Botryodiplodia theobromae
Pat. caused the stem-end rot of mangoes by producing PG,
PMG, and CX that disrupted the fruit tissues in the deterioration
process. Therefore, it can be concluded that the secretion of
CWDEs plays an important role in the degradation of plant cell
wall during pathogenesis.

Longan is a well-known subtropical fruit with a short shelf life
at room temperature due to its high susceptibility to pathogenic
infections (Chen et al., 2014; Lin et al., 2017a,b,c, 2018; Zhang
et al., 2017, 2018; Sun et al., 2018). Our previous studies
demonstrated that Phomopsis longanae Chi (P. longanae) is one
of the dominating pathogens that can cause postharvest decay
of longans (Chen et al., 2011a,b, 2014; Lin et al., 2017a). To
date, there has been no report on the types or activities of the
CWDEs produced by P. longanae, and there is still a lack of
research regarding the effect of these enzymes on infected longan
fruits. The objective of this study was to investigate the changes
of CWDEs activities during disease development in P. longanae-
inoculated longan fruits and their effect on the degradation of
cell wall. This study also aimed to elucidate the CWDEs’ function
during the infection of P. longanae on harvested longan fruits.

MATERIALS AND METHODS

Inoculation of Longan Fruits
Phomopsis longanae culturing and the preparation of spore
suspension were performed as described in our previous

publication (Chen et al., 2014). The concentration of spore
suspension was diluted to 1 × 104 spores mL−1 and used for
inoculation.

“Fuyan” longan (Dimocarpus longan Lour. cv. Fuyan) fruit at
commercial maturity were handpicked from a longan orchard
(Quanzhou, Fujian, China). The harvested fruit were carefully
packed and transported to a research laboratory in Fujian
Agriculture and Forestry University (Fuzhou, Fujian, China)
within 3 h and stored at 4◦C. Fruit in uniform maturity and size
were selected for the experiment and any rotten or damaged fruit
were excluded.

The fruits were dipped in 0.5% sodium hypochlorite solution
for 10 s to eliminate surface microorganisms, and then air-dried.
A total of 150 fruits were employed to evaluate the properties
of harvested fruits on day 0. The remaining 3000 fruits were
randomly divided into two lots (1500 fruits per lot) for the control
and P. longanae-inoculated treatment. The control group (1500
fruits) was dipped into the sterile deionized water for 5 min. The
P. longanae-inoculated group (1500 fruits) was immersed into the
P. longanae spore suspension (1 × 104 spores mL−1) for 5 min.
All fruits were then air dried and packed in a polyethylene bag
with a thickness of 0.015 mm. Each bag contained 50 longan
fruits and 30 bags were used for each treatment. The samples
were then stored at 28◦C with a relative humidity of 90%. For
each treatment, three bags of fruit (total 150 longan fruits) were
randomly selected on a daily basis during the storage period and
used for the assessments of longan fruit. All the evaluations were
conducted in triplicate.

Assessment of the Index of Fruit Disease
Longan fruit disease was assessed based on our previous study
(Chen et al., 2014). The lesion proportion on fruit surface of 50
individual longan fruits was measured and defined to five disease
scales. The calculations of fruit disease index were performed
based on the method of Chen et al. (2014).

Preparation of CWM
Extraction of CWM was based on the modified procedures
described in Duan et al. (2011) and Chen et al. (2017a,b). Ten
grams of frozen longan pericarp were homogenized in 200 mL of
80 % ethanol. The mixture was boiled for 30 min with stirring.
The solution was then cooled to room temperature, followed by
filtration with filter papers (φ11 cm Medium-Speed, Whatman,
Zhejiang, China). The residues were subsequently washed with
200 mL of 80% ethanol, immersed into 50 mL of 90 % dimethyl
sulfoxide for 8 h to remove starches. It was subsequently washed
with 200 mL of acetone, dried for 3 days at 40◦C to report the
final weight as CWM.

Fractionation and Analysis of Cell Wall
Components
Cell wall components fractionation and analysis were followed
the procedures reported in Rugkong et al. (2010) and Chen et al.
(2017a,b) with some modifications. Water-soluble pectin (WSP)
was extracted via dispersing CWM (300 mg) in sodium acetate
buffer (50 mmol L−1, pH 6.5) for 6 h with shaking (SKY-200B,
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SUKUN, Shanghai, China). The mixture was then centrifuged
(10,000 × g, 4◦C) for 10 min (Centrifuge 5810R, Eppendorf AG,
Hamburg, Germany). The sediment was immersed in 20 mL of
50 mmol L−1 ethylene diamine tetraacetic acid (EDTA) with
1 mol L−1 NaCl (pH 6.8). After shaking and centrifugation,
the supernatant containing chelate-soluble pectin (CSP) was
collected. Residues were further immersed in 20 mL of 50 mmol
L−1 Na2CO3 with 20 mmol L−1 NaBH4 for another shaking
and centrifugation. The supernatant containing Na2CO3-soluble
pectin (NSP) was collected. The remaining residue was further
dipped in 10 mL of 4 mmol L−1 KOH solution with 100 mmol
L−1 NaBH4 for shaking and centrifugation, and the supernatant
collected was considered as hemicellulose. A volume of 1%
sodium sulfite and 50 mL of 8 mol L−1 KOH solution with
10 mmol L−1 NaBH4 were then added to the remaining residue
for shaking and centrifugation, and the supernatant containing
cellulose was collected. The amounts of WSP, CSP, and NSP were
determined via m-hydroxydiphenyl method (Wang et al., 2015;
Chen et al., 2017a,b). The amount of hemicellulose and cellulose
were determined based on the anthrone method (Wang et al.,
2015; Chen et al., 2017a,b).

Extraction and Assay of CWDEs
Enzyme extraction was based on the procedures described by
Andrews and Li (1995) and Chen et al. (2017a,b). Briefly, frozen
longan pericarp (1 g) was ground with 8 mL of 40 mmol
L−1 sodium acetate buffer (containing 100 mmol L−1 NaCl,
2% mercaptoethanol and 5% PVP, pH 5.2). The homogenous
solution was centrifuged (12,000 × g, 20 min) at 4◦C. The
collected supernatant was used to measure the activities of PE,
PG, β-galactosidase and cellulase.

Pectinesterase activity was measured by combining 3 mL of
crude enzyme with 10 mL of 1% pectin for the titration using
0.01 mol L−1 NaOH (pH 7.4 at 37◦C for 30 min). The amount
of enzyme that consumed 1 µmol NaOH solution per hour was
used to define one unit of PE activity.

Polygalacturonase activity was determined by mixing 5 mL
of 20 mmol L−1 sodium acetate (pH 4.0), 2 mL of 1% (w/v)
polygalacturonic acid, and 1 mL of crude enzyme extract,
followed by incubation at 37◦C for the 30 min. A volume of
2 mL of 10 mmol L−1 Na2B4O7 was then added to the reaction
mixture before terminating the reaction with 0.1 mL of 1% (w/v)
2-cyanoacetamide and boiling for 5 min. The boiled reaction
mixture without adding substrate was used as the blank. The
concentrations of the reducing groups were measured at 276 nm
with D-galacturonic acid as the standard. The amount of enzyme
producing 1 µmol galacturonic acid per hour was considered as
one unit of PG activity.

To determine the β-galactosidase activity, 5 mL of 20 mmol
L−1 sodium acetate (pH 4.7), 2 mL of 3 mmol L−1 p-
nitrophenyl-β-D-galactopyranoside, and 1 mL of crude enzyme
were combined and incubated at 37◦C for 30 min. A volume of
2 mL of 0.2 mmol L−1 Na2CO3 was then added to the mixture.
The concentration of the reducing product was determined at
400 nm with p-nitrophenol (PNP) as a standard. One unit of
β-galactosidase activity referred to the amount of enzyme that
produced 1 µmol PNP per hour.

Cellulase activity was assayed by mixing 5 mL of 20 mmol L−1

sodium acetate (pH 4.0), 1 mL of 0.25% carboxymethyl cellulose,
and 1 mL of crude enzyme extract. The mixture was incubated
at 37◦C for 30 min followed by addition of 2 mL of 10 mmol L−1

Na2B4O7 and 0.1 mL of 1% (w/v) 2-cyanoacetamide. The reaction
was stopped by heating in a boiling water bath for 5 min. A blank
was prepared for each sample by boiling the reaction mixture
before addition of substrate. One unit of cellulase activity referred
to the amount of enzyme that produced 1 µg D-glucose per hour.

The activities of CWDEs were presented as U mg−1 protein.
Protein content was measured following the method of Bradford
(1976) using bovine serum as standard.

Statistical Analysis
All experiments were repeated three time and data were acquired.
The values in figures were expressed in the format of the mean
values and standard errors. Analysis of variance (ANOVA) was
used to analyze the data using the software (SPSS version 17.0).
Student’s t-test was used to compare the mean values of the data
set. A P-value of less than or equal to 0.05 or 0.01 was considered
statistically significant.

RESULTS AND DISCUSSION

Changes in Fruit Disease Index
As indicated in Figure 1, control fruits were intact without lesion
during the first two storage days, and then the fruit disease index
gradually increased with further storage. But the disease index
of P. longanae-inoculated fruit increased rapidly throughout
the storage period. Statistical analysis reveals that P. longanae-
inoculated fruit had consistently higher fruit disease index than
the control fruit at the same storage time (P < 0.01). After
5 days of storage, the disease index of P. longanae-inoculated

FIGURE 1 | Effects of Phomopsis longanae infection on fruit disease index of
harvested longan fruit during storage at 28◦C. The asterisks indicate
significant difference between control and P. longanae-inoculated fruit
(∗∗P < 0.01). ◦, control; •, P. longanae-inoculation treatment.
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longans was 0.9, which was almost twice as high as that of
the control longans. This clearly demonstrates that inoculation
treatment could significantly increase disease development of
longans during storage.

Changes in CWM
As shown in Figure 2, the pericarp CWM content decreased
rapidly during storage and CWM readings of P. longanae-
inoculated longans was significantly (P < 0.05) lower than the
control longans on each storage day. After 5 days of storage,
the CWM in pericarp of control longans decreased from 12.18
to 6.23 mg g−1, while P. longanae-inoculated longans has
a pericarp CWM value of 5.08 mg g−1 on storage day 5.
Correlation analysis indicates that there was a significant negative
correlation between disease index (y) and CWM content (x)
(y = 1.5173−0.1362 x, r = −0.915, P < 0.05) for the P. longanae-
inoculated longans during storage. These findings indicate that
the disease development or loss of disease resistance of longan
fruits during storage could lead to cell wall disassembly.

Changes in Cell Wall Components
Cell wall components including pectic substances,
hemicelluloses, and cellulose constitute the material basis for
the mechanical properties of cell wall, and also for maintaining
the mechanical strength of the pericarp (Huang et al., 1999;
Vorwerk et al., 2004). Pectic substances like WSP, CSP, and
NSP are located in the primary cell wall and the middle lamella.
The degradation of pectic substances led to cellulose and
hemicellulose disassembly, which caused pericarp tissue loosing
or fruit softening (Duan et al., 2008; Zhou et al., 2011; Chen et al.,
2017a,b). In a similar study performed on litchi fruit, higher
levels of structural materials like insoluble pectin, hemicellulose,
and cellulose were observed in the cell walls of ‘Huaizhi’ litchi
fruit pericarp compared with ‘Nuomici’ litchis, which might

FIGURE 2 | Effects of P. longanae infection on cell wall material (CWM) in
pericarp of harvested longan fruit during storage at 28◦C. The asterisks
indicate significant difference between control and P. longanae-inoculated fruit
(∗P < 0.05). ◦, control; •, P. longanae-inoculation treatment.

FIGURE 3 | Effects of P. longanae infection on water-soluble pectin (WSP) (A),
chelate-soluble pectin (CSP) (B) and sodium carbonate-soluble pectin (C) in
pericarp of harvested longan fruit during storage at 28◦C. The asterisks
indicate significant difference between control and P. longanae-inoculated fruit
(∗P < 0.05, ∗∗P < 0.01). ◦, control; •, P. longanae-inoculation treatment.

notably correlate to better pericarp structural strength (Huang
et al., 1999).

The data acquired from this work indicate that P. longanae-
inoculated longans had a faster increase in pericarp WSP
than the control longans (Figure 3A). P. longanae-inoculated

Frontiers in Microbiology | www.frontiersin.org 4 May 2018 | Volume 9 | Article 1051

https://www.frontiersin.org/journals/microbiology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-09-01051 May 19, 2018 Time: 14:42 # 5

Chen et al. Cell Wall Metabolism in Longans

FIGURE 4 | Effects of P. longanae infection on hemicellulose (A) and cellulose (B) in pericarp of harvested longan fruit during storage at 28◦C. The asterisks indicate
significant difference between control and P. longanae-inoculated fruit (∗P < 0.05, ∗∗P < 0.01). ◦, control; •, P. longanae-inoculation treatment.

FIGURE 5 | Effects of P. longanae infection on activities of pectinesterase (A), polygalacturonase (B), β-galactosidase (C), and cellulase (D) in pericarp of harvested
longan fruit during storage at 28◦C. The asterisks indicate significant difference between control and P. longanae-inoculated fruit (∗P < 0.05, ∗∗P < 0.01). ◦, control;
•, P. longanae-inoculation treatment.

longans also had faster reduction in pericarp CSP contents
(Figure 3B), NSP (Figure 3C), hemicellulose (Figure 4A), and
cellulose (Figure 4B) than the control longans. Furthermore,
fruit disease index (y) shows negative correlations with CSP
content (x) (y = 1.6142−8.7271 x, r = −0.971, P < 0.01),
NSP content (x) (y = 1.1252−2.9018 x, r = −0.962, P < 0.01),
hemicellulose (x) (y = 1.0903−2.584 x, r = −0.916, P < 0.05)
and cellulose (x) (y = 1.58−0.4145 x, r = −0.956, P < 0.01) in
pericarp of P. longanae-inoculated longan fruit during storage.

However, a positive correlation between fruit disease index (y)
and WSP content (x) (y = −0.5308 + 8.3717 x, r = 0.972,
P < 0.01) in pericarp of P. longanae-inoculated longan fruit was
observed. In short, P. longanae-inoculation treatment accelerated
the degradation of the cell wall components including CSP, NSP,
hemicellulose, and cellulose in longans pericarp cell wall and
middle lamella; however, the degraded cell wall components
like WSP was elevated. Therefore, the mechanical strength of
the cell wall of longan pericarp was decreased during disease
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development. Cell wall disassembly of longan pericarp may
facilitate further pathogen invasion and dissemination.

Changes in Cell Wall Degrading Enzymes
To further explain the change of cell wall components during
disease development, changes in CWDEs were measured. PE and
PG activities in pericarp of control fruit rose gradually toward
the maximum on day 4 and decreased afterwards (Figures 5A,B).
The PE and PG activities in pericarp of P. longanae-inoculated
longans followed a similar trend as the control longans but
had significantly (P < 0.05) higher activities (Figures 5A,B). It
has been reported that the softening of pericarp tissues were
associated with the changes in pectic substances, which could
be attributed to the action of PE and PG (Liu et al., 2006).
Specifically, PE can remove the methoxyl groups and catalyze the
decomposition of galacturonic acid polymer to polygalacturonic
acid, which enables PG to hydrolyze 1, 4-α-D-galacturonic bond
of polygalacturonic acid to generate galacturonic acid (Liu et al.,
2006; Lin et al., 2007; Rugkong et al., 2010; Wei et al., 2010).
The degradation of pectic substances by the joint action of PE
and PG can destroy the structure of middle lamella and decrease
the mechanical strength of cell wall (Deng et al., 2005; Liu
et al., 2006). In the present work, PE and PG activities increased
significantly after inoculation treatment, which promoted the
depolymerization and dissolution of pectin.

As indicated in Figure 5C, β-galactosidase activity in pericarp
of P. longanae-inoculated longans exhibited a sharp increase
on the first day of storage, then changed mildly on the second
storage day, followed by a quick decline from days 2 to 4,
and a rapid increase on day 5. However, the β-galactosidase
activity in pericarp of the control longans increased steadily
with progressing storage time, with significantly (P < 0.01)
lower level in contrast to that of P. longanae-inoculated fruit
from day 1 to day 4 (Figure 5C). β-galactosidase also plays
a key role in the depolymerization and dissolution of pectic
substances in fruits. It can hydrolyze β-1, 4-galactan bonds and
separate galactosyl residues from pectin side chains, which may
trigger some adverse reactions such as the production of ethylene
and stress reaction, and thus further accelerate the disruption
of cell wall structure (Liu et al., 2006; Lin et al., 2007; Wei
et al., 2010; Chen et al., 2017a,b). The results of this study
suggest that higher levels of β-galactosidase activity in inoculated
fruits during storage contributed to the degradation of pectin
polysaccharides.

Cellulose activity increased gradually in both control and
P. longanae-inoculated longans during storage days 1–4 and then
decreased (Figure 5D). After 5 days of storage, P. longanae-
inoculated longans showed 72.5% higher value of pericarp

cellulose activity as compared with the control longans. Cellulase
is a multi-enzyme system including endo-1, 4-β-D-glucanase,
exo-1, 4-β-D-glucanase, and β-1, 4-glucosidase (Lin et al., 2007).
Cellulase could cause the degradation of cellulose and xyloglucan
in cell wall structure, which resulted in pericarp tissue loosing and
fruit softening (Deng et al., 2005; Liu et al., 2006; Zhou et al., 2011;
Bu et al., 2013; Chen et al., 2017a,b). In this study, the enhanced
activity of cellulase due to the P. longanae-inoculation treatment
correlated well with cellulose degradation (Figure 4B) in pericarp
of longan fruit during storage.

CONCLUSION

In summary, as compared with the control, fruit inoculated with
P. longanae could lead to significantly higher fruit disease index,
increased activity of CWDEs (e.g., PE, PG, β-galactosidase and
cellulose), and lower levels of CWM and cell wall components
(such as CSP, NSP, hemicelluloses, and cellulose) in pericarp of
harvested longan fruit. These results indicate that P. longanae
infection can accelerate the cell wall degradation of longan
pericarp during disease development by promoting CWDEs
activities, which decreased the mechanical strength of the cell
walls, resulting in longan pericarp tissue softening, and eventually
leading to fruit decay.
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