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Abstract

Due to the high sensitivity of diffusion tensor imaging (DTI) to physiological motion, clinical DTI scans often suffer a
significant amount of artifacts. Tensor-fitting-based, post-processing outlier rejection is often used to reduce the influence
of motion artifacts. Although it is an effective approach, when there are multiple corrupted data, this method may no longer
correctly identify and reject the corrupted data. In this paper, we introduce a new criterion called ‘‘corrected Inter-Slice
Intensity Discontinuity’’ (cISID) to detect motion-induced artifacts. We compared the performance of algorithms using cISID
and other existing methods with regard to artifact detection. The experimental results show that the integration of cISID
into fitting-based methods significantly improves the retrospective detection performance at post-processing analysis. The
performance of the cISID criterion, if used alone, was inferior to the fitting-based methods, but cISID could effectively
identify severely corrupted images with a rapid calculation time. In the second part of this paper, an outlier rejection
scheme was implemented on a scanner for real-time monitoring of image quality and reacquisition of the corrupted data.
The real-time monitoring, based on cISID and followed by post-processing, fitting-based outlier rejection, could provide a
robust environment for routine DTI studies.
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Introduction

Diffusion tensor imaging (DTI) is an MRI technique that

measures the anisotropy of water incoherent motion, which can

generate unique image contrasts to display the brain white matter

[1,2]. In DTI, a diffusion tensor is typically estimated by a least

squares error fit of the intensity at each pixel of diffusion-weighted

images (DWIs) and non-diffusion-weighted (b0) images. Sensitive

to molecular motion on the order of 10 mm, DWIs often suffer

from a large amount of signal loss (corruption). An image slice that

is acquired during bulk motion could lead to complete signal loss

of the entire slice. Even without bulk motion, sub-pixel elastic

brain motion caused by cardiac pulsation is known to cause

regional signal loss [3–8]. The image corruption leads to errors in

the subsequent tensor estimation. Although the mis-registration

can be lessened by post-processing image alignment, for corrupted

images, the only available solution is to discard the affected image

slice (slice rejection) or pixels (pixel rejection).

To reduce the impact of the image corruption, several artifact

detection methods have been [9–11] proposed. One of the most

widely used methods is the robust estimator approach [10,11], in

which a tensor is first estimated with all data points using a robust

estimator, and data points with large fitting errors (differences

between calculated and measured diffusion-weighted values) are

rejected. Most of these methods use an iterative re-weighting

algorithm to determine the optimal solution. If there is intensity

corruption in multiple diffusion directions, the initial estimation of

the tensor deviates substantially from the actual value, and robust

fitting becomes unstable. Recently, Chang et al. [12] suggested an

improved approach based on a priori knowledge that outlier data

have lower intensity values. In this paper, we attempted a different

approach, in which a non-fitting-based metric of data corruption

was used as a part of the estimator. This metric was based on

image intensity continuity through the slice orientation. In multi-

slice imaging, adjacent slices are acquired at different time points,

and, thus, the motion-caused corruption usually affects each slice

independently, leading to the appearance of severe intensity

discontinuity through the image slice orientation. An index, called

the ‘‘corrected Inter-Slice Intensity Discontinuity’’ (corrected

ISID, or cISID), was devised to reflect non-anatomical intensity

discontinuity, and was tested for artifact detection. The perfor-

mance of the corruption-detection accuracy was then compared to

several types of robust estimators, with and without the cISID

terms.

In addition to the examination of the corruption-detection

accuracy, we also tested the feasibility of real-time image rejection
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and reacquisition methods. Corruption detection and data

rejection are usually performed during post-processing tensor

calculation. Although this is an effective approach, the rejection of

corrupted pixels leads to a loss of SNR for the estimated tensor. To

reduce these drawbacks of post-processing quality assurance, real-

time monitoring of image quality, with reacquisition of severely

corrupted images, is desirable. As a proof-of-principle study, we

implemented a real-time monitoring and data reacquisition

scheme on a scanner and the feasibility was evaluated.

Materials and Methods

Retrospective case studies in this paper were conducted using

existing clinical data. Approval was obtained from the Johns

Hopkins Institutional Review Board to use these data after de-

identification. All subjects participated in the real-time monitoring

study provided written consent for participation in accordance

under the oversight of the Johns Hopkins Institutional Review

Board.

Testing of different corruption detection methods
Corrupted pixels can be identified in three ways, as shown in

Fig. 1. First, subtracted images from repeated DWIs can be used to

detect artifacts, assuming that one of the repeated DWIs is not

corrupted (Fig. 1, Method A). This approach can be used only

when there are multiple repetitions and there are occasions when

all repetitions happen to be corrupted. Second, tensor fitting errors

could be used to detect corruptions, as shown in Fig. 1, Method B.

Tensor-fitting-based artifact detection methods treat the outliers

(points with large fitting errors) as corrupted points. Robust

estimators that are relatively insensitive to the outliers have been

proposed to detect artifacts, such as the Geman-McClure M-

estimator (GMM) in Mangin et al. [11] and the Robust Estimation

of Tensors by Outlier Rejection (RESTORE) in [10,12]. In this

study, a non-fitting-based criterion is introduced that is based on

image intensity continuity through the slice selection orientation

(cISID, Fig. 1, Method C). This method could be used individually

or jointly with robust estimators to detect artifacts, which will be

discussed in detail below.

Least squares-based tensor fitting
According to the DTI theory, the relation between the b0

image (S0) and diffusion-weighted signals (Sb) is as follows:

Sb = S0exp(2bTDb), where the vector, b, is decided by the

diffusion gradients, and the diffusion tensor, D, is a 363 positive

symmetric matrix (six independent variables) to be determined

[13], and the superscript, T, represents vector or matrix

transposition. Sbs from at least six non-collinear bs are required

to estimate the tensor. A widely used method estimates tensors by

minimizing a least squares (LS) cost function:

XN

i~1

(Sbi{S0 exp({bT
i Dbi))

2~
X

i

ri
2 ð1Þ

the estimated tensor, D̂D minimizes the cost function, which is the

sum of the squares of the fitting errors (denoted by ri), i indicates

the diffusion directions, and there are N DW signals in total. The

fitted DW images calculated from D̂D are called ‘‘theory images’’

as shown in Fig. 1, Method B, which is denoted as

ŜSb~S0 exp({bTD̂Db). The image of fitting errors is called an

‘‘error map’’ in Fig. 1. (error~Sb{ŜSb). As the generic least

squares method uses unconstrained tensor estimation, it could

generate non-positive tensors during processing. To prevent that

from occurring, positivity-preserving methods, which enforce the

positivity of eigenvalues, can be used. A widely used method is the

Log-Euclidean metric method [14,15], where D is represented by

its matrix logarithm L = Log(D), and the eigenvalues of L are the

logarithms of the eigenvalues of D. No constraints on L are

required during calculations, but the positivity of D, which is

exp(L), is guaranteed. Thus the least square approach and its

variations in this paper were adapted from the one proposed in

[15] and were with respect to L instead of D.

Robust estimators
In robust estimators, the cost function is a weighted sum of the

error terms:

X
i

wiri
2 ð2Þ

The definitions of the weighting, wi (or noted as wrobust for robust

estimators), are different among these various methods. In [10,11],

the GMM was used, i.e., wi = wrobust = 1/(ri
2+C2), where C served as

a normalization factor and was 1.4826 times the median absolute

deviation (MAD) of the residue, ri, in [10]. The solution of the

minimization problem is reached by an iterative reweighting

method. It should be noted that robust fitting was used only for

outlier detection. After robust fitting, the points with large errors

were rejected as outliers and a non-robust fitting, using the

unrejected points, was performed to arrive at the final tensor

estimation.

In [16], the least trimmed squares (LTS) was proposed as a

robust cost function:

Xh

i~1
(ri

2)1:N ð3Þ

where (ri
2)1:N was the sorted square errors in ascending order, and

h was a truncation factor, as the method attempts to minimize the

sum of the first h smallest square errors.

Although appearing very different, LTS works as a robust

estimator in (2) with special definitions of weighting, wi. In LTS, wi

are ‘‘0’’ at the terms with the largest N2h ri
2’s and ‘‘1’’ for the rest.

LTS is similar in concept to GMM, as both give small weightings

to large error terms and large weightings to smaller error terms,

but LTS is more extreme, as it gives zero weightings to large error

terms and equal weightings (one) to smaller error terms. However,

the global solution of (3) is difficult to determine, since it requires

an exhaustive search of all the
N

h

� �
combinations of error terms.

Alternatively, a method similar to the iterative reweighting was

used in [16].

ISID-based artifact detection
The pixel-by-pixel-based robust methods described above do

not use any information outside the pixel of interest. In this study,

we propose an image feature called Inter-Slice Intensity Discon-

tinuity (ISID). The intuitive understanding of ISID is derived from

the sagittal or coronal view of an image with artifacts, as shown in

Fig. 1, Method C. In routine multi-slice imaging, slices are

acquired in an interleaved spatial order, e.g., first the odd-

numbered slices are acquired, then the even-numbered slices. In

this method, adjacent slices are acquired at different time points,

and, thus, the motion-caused corruption usually affects each slice

independently, leading to the appearance of severe intensity

discontinuity through the image slice selection orientation. The

Outlier Detection in DTI
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ISID can be detected by comparing the images before and after

performing a morphology operation called ‘‘image close’’ [17]

along the Z (slice) direction. It involves a dilation followed by an

erosion operation, both in the Z direction. Considering a 3D

image, I, as an array with subscripts (i, j, k)s,

0#i#M,0#j#N,0#k#L, the image after the close operation can

be expressed as: I2 = close(I) = erosion(I1) = erosion(dilation(I)),

such that for each (i, j, k), I1(i, j, k) = max(I(i, j, k+), I(i, j, k2)), and

I2(i, j, k) = min(I1(i, j, k+), I1(i, j, k2)), where k+ = min(k+1,L) and

k2 = max(k21,0).

Intuitively, the close operation fills the ‘holes’ due to signal loss

between slices. Fig. 2b is the result after the close operation

performed on Fig. 2a. The difference between Fig. 2a and 2b is

called the ISID image (Fig. 2c) and can highlight the artifact,

although it is also contaminated by through-slice intensity changes

due to the anatomy. To minimize the anatomical contribution, the

ISID of a single DWI is then subtracted from an ISID image that

is calculated from the average of all DWIs to obtain the corrected

ISID (or cISID)(Fig. 2d). The image corruption could be regional,

as shown in Fig. 2a, but, with severe head motion, the intensity of

an entire slice could disappear, as shown in Fig. 2e, which could

also be highlighted by cISID.

Combination of robust fitting and cISID
The cISID itself can be used directly as a criterion for detecting

corruptions, but it could fail if there happened to be artifacts at

similar locations on multiple (.2) consecutive slices. However,

because the cISID is based on information that is independent of

the fitting errors, we hypothesized that the combination of these

two criteria would enhance the stability of artifact detection. In

robust estimators, the weightings are based on the assumption that

ri terms with large errors should have small weightings. With

cISID, the assumption is that the points with the large cISID

values are more likely to be artifacts. To accomplish this, the

weightings can be modified by multiplying a weighting derived

from the cISID, which now becomes wi = wisid?wrobust, where wrobust

is the robust weighting, as defined in GMM or LTS. The wisid is

the weighting based on cISID. To reflect the effect of cISID, it

should be a positive and decreasing function of |cISID| and have

a maximum value at cISID = 0. This paper tested two forms of

wisid: wisid = 1/(cISIDi
2+c2) and wisid = exp(2cISIDi

2/c2), where

cISIDi is computed from the ith diffusion direction image, and c

is a normalization factor that is 1.4826 times the MAD of the

cISID values of all the points inside the brain. If the wisid is

multiplied by the wrobust of GMM, it is noted as GMM-cISID, and

if wisid is multiplied by the wrobust of LTS, it is noted as LTS-cISID.

In this paper, only the results of the first type of wisid (wisid = 1/

(cISIDi
2+c2)) are presented because we did not find a noticeable

difference among the two types.

In [15], another way to include the through-slice discontinuity is

to use a spatial regularization term that penalizes tensor

discontinuity between pixels/slices, and was added to the least

squares cost function, as follows:

Figure 1. Three methods to detect motion-caused artifacts. Method A, subtraction of two repeated scans highlights artifacts; Method B,
fitting residual (error) map shows artifacts as outliers; Method C, corrected inter-slice intensity discontinuity (cISID) of DW images is used to detect
artifacts.
doi:10.1371/journal.pone.0049764.g001

Outlier Detection in DTI
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X
i

ð
V

ri
2zlrs

ð
V

w(DD+zLDD) ð5Þ

where V is the image domain and all the tensors in the image are

estimated simultaneously. L = Log(D) and w is increasing function

[15] that penalizes large spatial variations of L. This method

(noted as SR) was also compared with cISID-based methods.

Here, we used only the gradient of L along the Z direction (+z),

because, in the test, we wanted to penalize the large tensor changes

between slices. lrs is the weighting for the spatial regularization

term.

We used iteratively re-weighted, nonlinear LS approaches to

determine the solutions to all the weighted LS problems as in

[10,11]. Starting from an initial estimation of tensor obtained by a

generic nonlinear LS fitting, in each iteration, the weighting terms

were first calculated and the LS problem with fixed weighting

terms was solved. For all the nonlinear LS fittings with fixed

weightings and Log-Euclidean metrics in our experiments, a

gradient descent method [15], with a step size decided by an

adaptive line search, was used.

Data Acquisition
Our experience indicates that image corruption occurs more in

pediatric cases. In this study, existing clinical images of six

pediatric patients were used. All patients were sedated during the

scan and there was no detectable mis-registration of images due to

bulk motion. The data were acquired using Avanto 1.5T and Trio

3.0T scanners (Siemens Medical Solutions, Erlangen, Germany),

using a clinical, single-shot EPI sequence with a parallel imaging

factor of two. The imaging matrix was 80680

(FOV = 1806180 mm) or 96696 (2006200 mm), and was then

interpolated to twice the original matrix sizes. The slice thickness

was 2–2.2 mm and 50–60 slices were acquired without gap.

Diffusion weighting was applied along 12 independent orienta-

tions, with b = 800 s/mm2. One b0 image was also acquired. The

scan took approximately two minutes, and was repeated two or

three times. The repeated measurements were stored in separate

files without signal averaging.

Evaluation of the proposed methods
Pixel-by-pixel rejection for offline processing. Although

we had at least two repeated datasets from each subject, only one

set was used each time to test the automated outlier rejection

methods. To identify corrupted pixels in images, subtracted

images between two repeats (see Fig. 1, Method A) were

thresholded (see details below) to generate a gold standard. This

is not a perfect criterion because corruption could occur in both

repetitions. Thus, an expert carefully inspected the two repeated

images, and, manually defined the corrupted areas based on

anatomical knowledge, in case both scans were corrupted In the

datasets, 21 anatomical slices were used that contained at least one

corrupted image among the 12 DWIs with different gradient

Figure 2. The process of the cISID calculation. a, original DW image in a coronal view; b, after the ‘‘close’’ operation along the slice selection (z)
direction; c, the difference map between (b) and (a); and d, the final cISID map, in which the ISID of the average of all DW images was subtracted to
suppress ISID due to through-slice anatomical changes. cISID calculation on another example with signal drop of several slices. (e–h): another
example of whole slice intensity drop highlighted by cISID.
doi:10.1371/journal.pone.0049764.g002

Table 1. Cost functions and processing time for compared
methods.

Method Cost function
Processing
times(s)

GMM X
i

1

ri
2zC2ð Þ ri

2 147

SR X
i

ð
V

ri
2zlrs

ð
V

w(DD+zLDD)
200

GMM-cISID X
i

1

cISIDi
2zc2

� � : 1

ri
2zC2ð Þ ri

2 153

LTSh
Xh

i~1
(ri

2)1:N
180 (h = 11)

LTSh-cISID Xh

i~1
(ri

2)1:N
: 1

ri
2zC2ð Þ

201(h = 11)

cISID 4

doi:10.1371/journal.pone.0049764.t001
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encoding directions. These slices were grouped according to the

number of corrupted DWIs. Among the 21 slices, there were six

slice levels with one corrupted DWI, which were noted as group

1/12, eight slices with two corrupted DWIs (2/12), and seven slices

with three or more corrupted DWIs ($3/12).

Six methods were tested: GMM; GMM with cISID weighting

terms (noted as GMM-cISID); LTS11; LTS11 with cISID

weighting terms (noted as LTS11-cISID); adapted LS tensor

estimation with spatial regularization of the Log-Euclidean of

tensors (5), in which lrs = 100. Their cost functions are summa-

rized in Table 1. For the LTS approach, we tested the h values for

9–11, but only the results for h = 11 are shown because it

performed slightly better than h = 9 and 10. Finally, a method with

the cISID only (noted as cISID) was tested. The only differences

between GMM and GMM-cISID or LTS11 and LTS11-cISID

are in the definitions of the weightings; all other steps are the same.

For each method compared, the following steps were per-

formed:

1) For methods based on robust tensor estimators (GMM, SR,

and GMM-cISID), a fitting error map was calculated by

subtracting the raw DWI from the theory image. For cISID,

the cISID image was used as the error map.

2) Error was normalized by estimated noise standard deviation,

s, using the method previously described [10,18]. A threshold

(thresholderror) was applied to the normalized absolute fitting

error map to create a binary (0/1 value) mask map (maskerror),

identifying pixels with normalized absolute errors above the

thresholderror.

3) The corrupted data points defined in the mask map were

rejected from the final tensor calculation and the corrected

tensor was calculated using the generic LS method.

All procedures were first developed in Matlab (MathWork Inc.)

and then implemented in C++ language. The GMM and GMM-

cISID were also implemented and are freely available in

DTIStudio (www.mristudio.org) [19]. The software provides

options to view the theory images, error maps, and the maskerror

to visually inspect the rejected pixels. The processing times (C++

programs) for different methods on a workstation with two 2.0 G

processors, with 6 G RAM on a 1606160652 dataset with 12

DWIs, are listed in Table 1.

Comparison of the Performances by Receiver Operating
Characteristic (ROC) analysis

The sensitivity/specificity of artifact detection was assessed as a

function of the thresholderror, and the results were compared against

the gold standard. The gold standard images were also converted

to binary maskerror maps using a method similar to steps 2) and 3)

described above, except that the error map was the difference

between repeated scans, and with a fixed thresholderror = 3 (three

times the estimated standard deviation of the error map). The

false-positive and false-negative pixels of the method under

comparison were identified by simply subtracting the maskerror

map for that method from the maskerror map of the gold standard.

The resulting pixels with ‘‘0’’ values were considered ‘‘matched,’’

while ‘‘21’’ indicated a ‘‘false positive’’ and ‘‘1’’ indicated a ‘‘false

negative.’’ The false-negative (FNR) and false-positive (FPR) rates

were calculated as a function of thresholderror, and drawn as ROC

curves.

For FPRs in the 0–50% range, area-under-the-curve (AUC)

values of ROC from each slice of each tested method were

calculated to assess performance. To compare the performances,

first, a one-way analysis of variance (ANOVA) was performed on

the AUC values from all methods to determine whether they had

the same mean value. Then a Tukey’s honestly significant

difference (HSD) multiple comparison was done between each of

the methods. In addition, paired t-tests were performed between

GMM vs GMM-cISID and LTS11 vs LTS11-cISID to test the

significance of the improvement.

Comparison of the Performances by Comparing Tensor-
Derived-Contrasts

To compare the impact of artifact detection accuracy on the

tensor-derived contrast values after outlier rejection, the pixels in

the tested slices were classified by the number of corrupted data

points in the gold standard (1/12, 2/12, 3/12 and 4/12 data

Figure 3. Image reacquisition. Pulse sequence timing scheme (a), and flow chart (b) of the image quality monitoring and reacquisition scheme.
After the completion of a DTI scan, the quality of each slice is evaluated and those judged as corrupted are reacquired. The waiting time depends on
the rejection algorithm and the data size (the dimensions of the images and the number of the gradient orientations).
doi:10.1371/journal.pone.0049764.g003

Outlier Detection in DTI

PLOS ONE | www.plosone.org 5 October 2013 | Volume 8 | Issue 10 | e49764



points corrupted). The mean diffusivity (MD) and fractional

anisotropy (FA) values computed from the uncorrupted repeated

scans were used as the gold standard. The MD and FA values

computed from the corrupted repeats after outlier rejection using

GMM and GMM-cISID were compared against the gold standard

values. Paired t-tests were used to compare absolute errors

between gold standard values and values from each of the

GMM and GMM-cISID methods to determine which method

achieved better estimation.

Slice-by-slice rejection analysis
There are several important factors to be considered for real-

time monitoring. First, the rejection must be done in a slice-by-

slice manner, contrary to the pixel-by-pixel outlier rejection for the

post-processing approaches. Second, an additional threshold

(thresholdarea) for the number of corrupted pixels in each slice is

needed to judge whether the slice should be reacquired, because it

is not practical to reacquire the slices with a small number of

corrupted pixels, which would lead to a longer scan time. For the

slice-by-slice analysis, the gold standard was the rejection/non-

rejection tag for each DWI slice. For each slice, the number of

corrupted pixels was counted, based on the previous pixel-by-pixel

gold standard, and the slice was classified as rejected when the

corrupted area reached 1%, 1.5%, 2.0%, and 2.5% of FOV.

Thus, four kinds of gold standards were generated, with a larger

percentage of FOV representing a more conservative rejection

strategy. For each type of gold standard, the ROC analysis was

performed for three pixel-rejection methods: GMM; GMM-

cISID; and cISID. For each method, a binary pixel-rejection

mask was first generated for each slice with a fixed thresholderror = 3.

Then, the slice rejection was performed as a function of thresholdarea.

By comparing these results against the gold standard, FNR and

FPR were calculated and ROC curves were drawn. The gold

standard is not available ‘‘on the fly’’ when performing online

monitoring reacquisition. Thus, the performance of slice rejection

algorithms can only be tested off-line. Seven single-repetition

datasets, with all slices acquired from the pediatric subjects, were

used for testing, and the AUC values calculated from each dataset

were used for comparison. The same kind of statistical analysis as

that used for the pixel-by-pixel rejection was then conducted to

compare the performances of the three methods.

Image reacquisition scheme
As a proof-of-principle, the GMM-cISID method was imple-

mented in the Siemens Image Calculation Environment (ICE)

software package. ICE is a package used to develop programs that

run on the scanner’s reconstruction computer unit (reconstructer),

including image reconstruction, online image processing, and the

sending of feedback to the scanner controller to trigger reacqui-

sition. The program was installed on a 3T Tim-Trio scanner

(Siemens Medical Solutions, Erlangen, Germany). Images were

processed online and rejected slices were reacquired after

completion of the initial data set in real-time [20]. Fig. 3 shows

a typical pulse sequence-timing scheme. After all the DWIs were

Figure 4. Comparison of tensor-fitting results, with and without outlier rejection. Red arrows indicate the locations of corrupted pixels. a:
Results with conventional least squares fitting. The corrupted pixels cause faulty tensor fitting (theory images) and subsequent errors in FA values.
Due to the fitting error, the error maps (fitting residuals) may not correctly highlight the corrupted pixels; not only corrupted pixels (blue arrows), but
also some non-corrupted pixels (yellow arrows), reveal errors. b: Results with outlier rejection. If the pixel-rejection algorithm correctly rejects the
corrupted pixels, the theory images are unaffected by the artifacts and the error maps accurately highlight the corrupted pixels. The images are
screen shots from DtiStudio with which the post-processing rejection algorithms were implemented and tested.
doi:10.1371/journal.pone.0049764.g004

Outlier Detection in DTI
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received, the reconstructer began the artifact detection and slice

rejection program using the method described in this paper. A

message with ‘‘no rejection’’ was sent to the controller if no slice

was rejected and the scan was finished. Otherwise, the information

about the positions and diffusion directions of rejected slices was

sent to the scanner controller. Then, the controller rescanned the

rejected slices at corresponding positions and diffusion directions,

and completed the scan. Upon receiving the reacquired slices, the

reconstructer reconstructed them and replaced the rejected ones.

During one TR, rejected slices with different gradient orientations

can be acquired, unless the same slice level is affected by different

gradient orientations. The sequence was tested on a human

subject with a single-shot, diffusion-weighted EPI sequence with

the following parameters: TR/TE = 6800/104 ms; ma-

trix = 1286128 (FOV = 2006200 mm); 35 slices; and b val-

ue = 1000 s/mm2 in 20 directions. The thresholdarea = 150 pixels,

which is about 1% of FOV.

Results

Comparison of different corruption detection schemes
Figure 4 demonstrates the effects of the outlier rejection. In the

first row of Fig. 4a, the raw DWIs are shown, in which two of the

12 DWIs have apparent image corruption (indicated by the red

arrows). Generic LS tensor fitting led to abnormally high FA

values in the corrupted region. The theory images also indicate

erroneous fitting results; because of the deviation of the fitting

result, one of the corrupted DWIs has only minor errors (blue

arrow), while the corruption-free DWIs have noticeable fitting

errors (yellow arrows). Fig. 4b shows the results of tensor fitting

with an outlier rejection. The final theory images (first row) are

free from apparent artifacts, and the error maps could clearly

define pixels with the artifacts. The resultant FA map did not have

an abnormally high FA area.

Figure 5 shows the ROC analysis results of pixel-by-pixel

rejections. The figure shows that the performance of the outlier

rejection depends on the number of corrupted DWIs. Notably,

spatially regularized (SR) tensor estimation demonstrates relative

insensitivity to the number of corrupted data and performs better

than GMM in the groups of 2/12 and $3/12 data. The use of the

wisid in GMM-cISID clearly stabilizes the performance of GMM

and outperforms other methods. ANOVA tests showed that there

were significant differences among the six methods (all p-values

,0.01). The paired t-test showed significant improvement by

adding the cISID term to GMM (p,0.01) and LTS11 (p,0.01)

when there were more than two corrupted data points, which is

Figure 5. ROC curves of the pixel-by-pixel corruption detection methods. Six methods were compared, as indicated in the figure. Each ROC
curve in the figures was calculated from the data of all the slices in the group. a: The results of all data combined; b–d: the ROCs with 1, 2, and $3
corrupted DWIs in the 12 diffusion orientations (1/12, 2/12 and $3/12).
doi:10.1371/journal.pone.0049764.g005
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also true for all slice combined (Fig. 5a, 5c and 5d). The Tukey’s

HSD showed that LST11, SR, GMM-cISID, and LST11-cISID

perform consistently (p,0.05) better cISID and GMM results.

Fig. 6 demonstrates actual data with four corrupted data points

from the 12 orientation measurements in a cerebellum area

adjacent to the fourth ventricle (indicated by arrows). GMM failed

to reject the outlier pixels (demarcated by yellow arrows), resulting

in erroneous FA values. The corrupted pixels had much smaller

impacts on the GMM-cISID methods and the results were much

more comparable to the other repetition.

Fig. 7 shows quantitative comparisons of MD and FA values

between automated rejection methods and the gold standard. The

areas with corrupted pixels were defined the same way as the

method used to define the gold standard in the ROC analysis

above. The MD/FA values of these pixels were measured after

outlier rejections by GMM and GMM-cISID. When only 1/12 or

2/12 data points were corrupted, both GMM and GMM-cISID

methods had similar errors in MD and FA values, compared to the

gold standard. When there were more than 3/12 corrupted data

points, the GMM-cISID method had significantly smaller errors.

Performance for slice-by-slice rejection
The ROC curves for slice-by-slice rejection are shown in Fig. 8.

Fig. 8a–8d shows the results with different reject/no-reject gold

standards: from the stringent (1% of FOV) to the conservative

(2.5% of FOV) criteria for reacquisition decisions. Although the

Figure 6. Demonstration of different rejection algorithms in a severely affected case. Top row: The four affected images in the axial views
and one coronal view on the right (artifacts are demarcated by yellow arrows); 2nd row: theory images (left four columns) and FA maps (right column)
computed after outlier rejection using the GMM. 3th row: GMM-cISID method with an FA map in the right column. 4th row: another repetition.
doi:10.1371/journal.pone.0049764.g006

Figure 7. Comparison of estimation errors of tensor-derived contrasts by GMM and GMM-cISID against the gold standard. a: The
results of MD values, with pixels grouped by the number of corrupted data points according to the gold standard. b: The results of FA values. Results
with significant differences between two methods, as determined by t-tests (p,0.05), are marked by stars.
doi:10.1371/journal.pone.0049764.g007
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ROC curves show the superior performance of GMM-cISID and

GMM to cISID, the Tukey’s HSD does not show significant

differences between the cISID and the other two methods, but

paired t-tests showed significant differences between the cISID

(AUC values: 0.46760.038) and the GMM-cISID (0.48160.017)

method (0.47760.020 for GMM) when the gold standard was

most stringent (reject when 1% of the FOV was corrupted). When

the rejection criterion reached 1.5% of the FOV (Fig. 8b),

excellent accuracy was achieved with all three methods (all AUC

values .0.49), and, at 2.5% FOV, all three methods reached

almost perfect rejection performance (Fig. 8d).

Testing of the real-time feedback and requisition scheme
The sequence ran successfully on a human subject [20]. The

scan was completed in 2 m30 s, followed by 27 seconds of

Figure 8. ROC curves of the slice-by-slice rejection methods; each curve in the figure was calculated from all the tested datasets
combined. The slice rejection criterion of the gold standard was changed for 1% (a), 1.5% (b), 2.0% (c), and 2.5% (d) of the FOV, and the
performances of GMM (red), GMM-cISID (blue), and cISID (black) were evaluated.
doi:10.1371/journal.pone.0049764.g008

Figure 9. An example of a rejected image using the real-time image quality monitoring and reacquisition scheme. The image shown
in (a) was judged as corrupted, based on the mask of error map (b), in which outlier pixels are indicated as white pixels. The reacquired image is
shown in (c), which was free of corrupted pixels (d). The resultant FA map, with (e) and without (f) the rejection, led to a noticeable difference in FA
(g).
doi:10.1371/journal.pone.0049764.g009
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calculation (by GMM-cISID) time. The calculation of cISID only

required one second with a 20-orientation scheme, 35 slices, and a

1286128 matrix size. Fourteen slices from five diffusion directions

were rejected. The rejected slices were stored and the rejection

accuracy was confirmed by agreement with the post-processing

analysis. An example of rejected and reacquired images is shown

in Fig. 9.

Discussion

Motion-induced artifacts are often observed in DWIs, which

could lead to significant inaccuracy in tensor calculation. Previous

studies have suggested that one reason for the artifacts could be

brain pulsation [6,8,21,22], which could be effectively suppressed

by cardiac gating [3,5,23–28]. However, the use of cardiac gating

is often not a realistic solution because of the overly prolonged

scan time. Consequently, cardiac gating is rarely employed in

routine clinical DTI scans. The prevalence rate of such artifacts

depends on the subject population. Our past experience demon-

strates that pediatric cases tend to be more affected, especially at

the areas around the 4th ventricle; it is not uncommon that 20% of

DWIs are corrupted at such problematic brain regions (two to

three corrupted DWIs in a 12-orientation scheme). Rejection of

affected images or pixels could substantially improve the

subsequent tensor estimation.

In this study, we evaluated the usefulness of the cISID (GMM-

cISID) for fitting-based outlier rejection. When the number of

corrupted data points was limited, the outlier rejection based on

GMM and LTS11 was highly effective. The effect of the cISID

term became apparent as the number of corrupted points

increased, which clearly stabilized the rejection accuracy. We also

demonstrated that the use of spatial regularization in tensor

calculation, which takes into account the spatial continuity of

tensor values, is also robust to the existence of artifacts. However,

this method requires a much longer computation time than our

GMM-cISID methods. The drawback of the cISID term is that if

corrupted areas in two consecutive slices happen to overlap in the

slice orientation, the detection sensitivity would be compromised.

Therefore, for the post-processing analysis, we recommend that

the cISID term be combined with a fitting-based estimator, as

demonstrated in this paper.

Post-processing quality control, although it is effective, comes

with a loss of SNR. This led to the idea of real-time quality

monitoring and reacquisition of corrupted images. This approach,

of course, also results in increased scan times. In this study, we

implemented a feedback loop to monitor image quality and trigger

reacquisition. The test was successful, and corrupted images were

reacquired as expected. The current implementation, however,

has several limitations. First, the fitting-based, pixel-by-pixel

evaluation scheme requires a prolonged time for the calculation.

The calculation time for the cISID term is negligible, and, thus,

more suitable for real-time rejection criteria. The disadvantage of

the cISID-based monitoring method is the level of detection

accuracy, which is inferior to fitting-based algorithms. However,

the performances of all three approaches tested in this study were

excellent if the purpose is to detect severely affected images. The

slice-by-slice rejection test (Fig. 8) shows the cISID had a

performance similar to fitting-based criteria, in terms of slice

rejection, when the size of the corrupted area for slice rejection

was larger than 1.5% of the FOV, while all methods achieved

almost perfect accuracy when the size of the corrupted area for

slice rejection reached 2.5% of the FOV. There are several reasons

that real-time monitoring should be used only for severe cases.

First, the rejection of images with a small number of corrupted

pixels would lead to severe lengthening of the scan time. Second,

for cases with only a few corrupted pixels, we can expect excellent

performance from a fitting-based detection method, such as GMM

or the GMM-cISID methods for post-processing. Note that, in

severe cases (with many corrupted pixels), the chances for multiple

corrupted points for tensor calculation at a given pixel location

would increase. Therefore, the role of real-time monitoring and

reacquisition is to reduce the chances for multiple data corruption

rather than to achieve near-perfect detection performance; thus,

this method could play a complementary role with a post-

processing, fitting-based pixel rejection.

In conclusion, a new criterion for artifact detection, cISID, was

tested against several other detection methods. The methods using

cISID significantly stabilized the performance of fitting-based

outlier rejection for post-processing analysis when there were

multiple corrupted points. A slice-by-slice rejection test showed

cISID-based criteria accurately identified motion-corrupted slices

when the size of the affected area was larger than 1.5% in a

negligible computing time, compared with fitting-based methods,

which make it suitable for online monitoring. Last, we tested the

prototype of a real-time artifact detection and reacquisition

method to enhance the image quality of DWIs. This study was

based on only one DTI protocol with a fixed diffusion-weighting

scheme, image resolution, and SNR. The independence of the

cISID term on the diffusion tensor model could broaden its

applicability to other types of diffusion approaches such as high-

angular resolution diffusion measurements or potential non-tensor

behavior in regions with a significant amount of crossing fibers

[29]. Further testing under various imaging parameters, such as

high b values (2000–3000 s/mm2) and other diffusion imaging

methods, will be needed to establish a clinically stable and useful

tool.
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