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Background: Pulmonary hypertension (PH) leads to right ventricular (RV)

hypertrophy and failure (RVF). The precise mechanisms of the metabolic basis

of maladaptive PH-induced RVF (PH-RVF) are yet to be fully elucidated. Here

we performed a comparative analysis of RV-metabolic reprogramming in

MCT and Su/Hx rat models of severe PH-RVF using targeted metabolomics

and multi-omics.

Methods: Male Sprague Dawley rats (250–300 gm; n = 15) were used.

Rats received subcutaneous monocrotaline (60 mg/kg; MCT; n = 5) and

followed for ∼30-days or Sugen (20 mg/kg; Su/Hx; n = 5) followed by

hypoxia (10% O2; 3-weeks) and normoxia (2-weeks). Controls received

saline (Control; n = 5). Serial echocardiography was performed to assess

cardiopulmonary hemodynamics. Terminal RV-catheterization was performed

to assess PH. Targeted metabolomics was performed on RV tissue using

UPLC-MS. RV multi-omics analysis was performed integrating metabolomic

and transcriptomic datasets using Joint Pathway Analysis (JPA).

Results: MCT and Su/Hx rats developed severe PH, RV-hypertrophy and

decompensated RVF. Targeted metabolomics of RV of MCT and Su/Hx rats

detected 126 and 125 metabolites, respectively. There were 28 and 24

metabolites significantly altered in RV of MCT and Su/Hx rats, respectively,

including 11 common metabolites. Common significantly upregulated

metabolites included aspartate and GSH, whereas downregulated metabolites

included phosphate, α-ketoglutarate, inositol, glutamine, 5-Oxoproline,

hexose phosphate, creatine, pantothenic acid and acetylcarnitine. JPA

highlighted common genes and metabolites from key pathways such as

glycolysis, fatty acid metabolism, oxidative phosphorylation, TCA cycle, etc.
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Conclusions: Comparative analysis of metabolic reprogramming of RV from

MCT and Su/Hx rats reveals common and distinct metabolic signatures which

may serve as RV-specific novel therapeutic targets for PH-RVF.
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pulmonary hypertension, right ventricular failure, targeted metabolomics,
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Introduction

Pulmonary hypertension (PH) is a chronic, progressive,

and fatal pulmonary vascular disease that leads to increased

right ventricular hypertrophy (RVH), RV failure (RVF),

and ultimately, death (1–7). With about 200,000 Americans

hospitalized each year with PH, the estimated prevalence for

PH is between 15 and 50 cases per million individuals. If left

untreated, the life span of an individual with PH is about 2.8

years and the 5-year survival rate is only around 62% (8).

PH-induced RV failure (PH-RVF) is a major determinant of

morbidity andmortality in PH (9–11) and is characterized by RV

myocyte hypertrophy (12–14), extensive extra-cellular matrix

(ECM) reorganization (14–16), fibrosis (17–21) and vascular

remodeling (22–24).

In the setting of chronic pressure-overload associated with

PH, the process of RV remodeling is continuous but often

dichotomized into adaptive or compensated and maladaptive

or decompensated phenotypes. RVH is initially adaptive, but

can eventually lead to RV decompensation, dilatation, and

failure (9, 25, 26). Compensated RV remodeling is typically

associated with normal RV function and is characterized by

concentric hypertrophy, minimal RV dilatation and fibrosis

(9, 25). On the other hand, decompensated RV remodeling

is defined by reduced RV function and is characterized by

extensive inflammation and fibrosis, oxidative stress, capillary

rarefaction, myocyte apoptosis, metabolic reprogramming, and

glycolytic shift (9, 25, 26).

RV appears to exhibit a distinct stepwise metabolic

reprogramming, depending upon the transition from normal

to adaptive and maladaptive remodeling from chronic pressure

overload due to pulmonary vascular remodeling (27). While

transitioning from the compensated to the decompensated

state, RV cardiomyocytes experience a metabolic shift including:

(1) reduced oxidative phosphorylation and beta-oxidation of

fatty acids (24, 27, 28); (2) pyruvate to lactate conversion

through aerobic glycolysis (Warburg effect) and its utilization

(27, 28); and (3) increased utilization of amino acids especially

glutamine (glutaminolysis) in the TCA cycle (27–29). Despite

some prior reports (30–32) on metabolic reprogramming

of RV in experimental PH, a comparative analysis of RV

metabolome using targeted metabolomics and multi-omics

approaches in the pre-clinical MCT and Su/Hx rat models

of severe decompensated PH-RVF is missing. Hence, there is

an unmet need to further elucidate the RV-specific metabolic

therapeutic targets to devise potentially novel RV-specific

therapeutic strategies based on metabolite supplementation

and/or pathway-specific gene manipulation.

Recently we demonstrated significantly similar RV

transcriptomic signatures between MCT and Su/Hx rat models

of severe PH-RVF (24).We found that fatty acidmetabolism and

oxidative phosphorylation (OXPHOS), two critically important

metabolic pathways tightly associated with cardiomyocyte

mitochondrial bioenergetics, contractility, and functioning,

were the top common downregulated pathways in both rat

models (24). Hence, here we hypothesized that these two rat

models may also exhibit similar RV metabolomic signatures.

Therefore, we performed a comprehensive comparative targeted

metabolomics analysis on RV tissue ofMCT and Su/Hx rats, that

recapitulate most of the pathophysiology of human PH-RVF.

Further, we performed RV multi-omics analysis integrating

metabolomic and transcriptomic (24) datasets using Joint

Pathway Analysis (JPA).

Materials and methods

Animals and treatments

All animal studies were performed in accordance with the

National Institutes of Health (NIH) Guide for the Care and

Use of Laboratory Animals. Adult male Sprague Dawley rats

(200–250 g) received either a single subcutaneous injection of

endothelial toxin Monocrotaline (MCT, 60 mg/kg, MCT group,

n = 5) and were followed for ∼30 days or VEGF-receptor

antagonist Sugen (SU5416, 20 mg/kg, Su/Hx group, n = 5) and

kept in hypoxia (10% oxygen) for 3-weeks followed by 2-weeks

of normoxia. PBS treated rats served as controls (CTRL group,

n= 5) (Figure 1A).

Echocardiography and RV catheterization

Transthoracic echocardiogram (VisualSonics Vevo2100)

was obtained using a rat specific probe (30 MHz). Rats were

anesthetized via inhaled isoflurane at 2–3%. Each rat was

placed in supine position, and body temperature wasmaintained
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FIGURE 1

Development of severe decompensated RV Failure in MCT and Su/Hx rats. (A) Experimental protocol. (B) Representative transthoracic

echocardiographic images of B-Mode (upper panel) of the heart in parasternal short axis view at end diastole and pulmonary artery (PA)

pulsed-wave doppler (lower panel) images from Control, MCT and Su/Hx rats. (C) Plots comparing RVSP (mmHg), PAT (mS), PAT/PET, Fulton

Index [RV/(LV + IVS)], RVFAC (%), RVIDd (mm), LVSP (mmHg) and LVEF (%) in Control, MCT and Su/Hx rats. Data presented as mean ± SEM. N =

3–5 per group. **p < 0.01, ***p < 0.001, ****p < 0.0001; ns, not significant.

at 37◦C. Transthoracic echocardiography was performed to

monitor cardiopulmonary hemodynamics using a Vevo 2,100

high-resolution image system (VisualSonics, Toronto, Canada).

Echocardiograms including B-mode, M-mode and pulsed wave

Doppler images were obtained (Figure 1B). RV fractional area

of change (RVFAC, %) was measured from parasternal short-

axis view at mid-papillary level. RV internal dimension at

end-diastole (RVIDd, mm) was measured using M-mode,

parasternal short or long-axis view. A 30-MHz linear transducer

was used to perform the pulmonary pulsed-wave Doppler

echocardiography of PA flow (Figure 1B). The probe was placed

in a parasternal long-axis position to visualize the PA outflow

tract. Pulsed flow Doppler imaging was then overlaid to observe

the dynamics of blood flow through the PA valve and measure

pulmonary ejection time (PET) and pulmonary acceleration

time (PAT). Ejection fraction (EF) was measured from left

ventricle. Echocardiogram software (Vevo 2,100 version: 1.5.0)

was used for all echocardiography measurements.

The right ventricular systolic pressure (RVSP) and left

ventricular systolic pressure (LVSP) were measured directly

by inserting a catheter (1.4 F Millar SPR-671, ADInstruments)

connected to a pressure transducer (Power Lab, ADInstruments)

into the RV or LV, respectively, just before sacrifice. Briefly,

for cardiac catheterization, the rats were anesthetized with

isoflurane (2–3%). The animals were placed on a controlled

warming pad to keep the body temperature constant at 37◦C.

After a tracheotomy was performed, a cannula was inserted, and

the animals were mechanically ventilated. After a midsternal

thoracotomy, rats were placed under a stereomicroscope (Zeiss,

Hamburg, Germany) and a pressure-conductance catheter

(model 1.4 F Millar SPR-671) was introduced via the apex

into the RV or LV and positioned toward the pulmonary or

aortic valve, respectively. The catheter was connected to a

signal processor (ADInstruments) and pressures were recorded

digitally. After recording the pressures, heart and lung tissues

were removed rapidly under deep anesthesia for preservation of

protein and RNA integrity.

Gross histologic analysis, tissue
preparation, and imaging

The right ventricular (RV) wall, the left ventricular (LV) wall,

and the interventricular septum (IVS) were dissected. RV, LV,

IVS and lungs were weighed. The ratio of the RV to LV plus

septal weight [RV/(LV + IVS)] was calculated as the Fulton

index of RV hypertrophy. RV free wall tissue was quickly washed

in ice-cold PBS and immediately snap frozen in liquid nitrogen

for subsequent metabolomics analysis.

Lungs were frozen, and transversal 5µm sections were

obtained with a cryostat. Lung tissue sections were stained with

Masson’s trichrome according to the manufacturer’s protocol,

and images were acquired with a confocal microscope (Nikon).

For assessment of pulmonary arteriolar wall thickness, only

distal pulmonary arteries <100µm were quantified using

ImageJ software.

Targeted metabolomics of RV tissue

Snap frozen RV tissue was pulverized in liquid nitrogen

(Liq.N2) using mortar and pestle. Protein estimation was

performed using Bradford assay method (33) and normalized

RV samples were processed for metabolite extraction. Targeted
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metabolomics approach was applied for detection and

quantification of a set of 150 central carbon metabolites.

Metabolite extraction from RV tissue

Briefly, 50mg of RV tissue was pulverized using Liq. N2

in mortar and pestle and immediately put in pre-chilled 1.5ml

microcentrifuge tubes. Next, 1ml 80% methanol (MeOH, pre-

chilled at −80◦C) was added to each sample and vortexed

vigorously for 20 s to resuspend well. The samples were then

transferred to 2ml microcentrifuge tubes with 0.7ml 80%

MeOH and kept for 3 h at −80◦C to aid proper quenching,

extraction, and protein precipitation. Then the samples were

vortexed again for 20 s and centrifuged at 16,000 g for 15min

@ 4◦C. The entire supernatant was transferred to a new

2ml microcentrifuge tube, added 80% MeOH to reach the

final volume to 200 uL, dried using the Genevac EZ-2Elite

evaporator at 30◦C using program 3 (aqueous) and the tubes

with the remaining pellets were stored at −80◦C. The dried

samples were stored at −80◦C until ready for LC-MS analysis.

LC-MS analysis was performed using Thermo Scientific Q

Exactive mass spectrometers coupled to UltiMate 3,000 UPLC

chromatography systems at the UCLA Metabolomics Core

Facility (34).

Bioinformatics analysis

The targeted metabolomics raw data was processed for

further analysis using MetaboAnalyst 5.0 for metabolomic

pathway enrichment analysis. Further, Joint Pathway

Analysis (JPA) was performed by integrating the

transcriptomic data from our recently published study

(24) and the metabolomic data from our current study

using MetaboAnalyst 5.0 to correlate the genes and

metabolites related to RV metabolic reprogramming in

MCT and Su/Hx rats from two separate sets of experiments

(35, 36). For pathway analysis, an FDR adjustment (<0.05)

was performed.

Validation cohort of targeted
metabolomics of RV tissue from MCT and
Su/Hx rats

A validation cohort of targeted metabolomics of RV tissue

was performed on a separate set of male Sprague Dawley rats

with comparable disease severity (Control n = 4, MCT n = 4,

Su/Hx n= 3).

Statistical analysis

A sample size of 5 rats per group gives us adequate power

(80%) to detect standardized effect sizes between groups as

small as 2.5 (assuming a two-sample t-test, Bonferroni adjusted

alpha= 0.017, two-tailed). To assess differences between groups,

Welch’s Unpaired t-test and one-way ANOVA tests were used

due to potential assumption violations (equal variance) using the

more standard tests. When significant differences were detected,

individual mean values were compared by post-hoc tests that

allowed for multiple comparisons with adequate type I error

control (Tukey’s). Analyses were run using GraphPad Prism

9.0 and p-values < 0.05 was considered statistically significant.

Values are expressed as mean± SEM.

Results

Development of RVF in MCT and Su/Hx
rats

Both MCT and Su/Hx rats showed severe PH as evidenced

by increased RVSP (Control: 35.1 ± 1.5 mmHg, MCT: 95.8

± 3.7 mmHg, p < 0.0001 vs. Control; Su/Hx: 87.9 ± 6.9

mmHg, p < 0.0001 vs. Control), and decreased pulmonary

artery acceleration time (PAT) (Control: 39.3 ± 1.0mS, MCT:

20.8 ± 1.0mS, p < 0.0001 vs. Control; Su/Hx: 18.5 ± 2.7mS,

p < 0.0001 vs. Control) and PAT/pulmonary ejection time

(PET) ratio (Control: 0.46 ± 0.01, MCT: 0.26 ± 0.01, p =

0.0001 vs. Control; Su/Hx: 0.25 ± 0.03, p = 0.0001 vs. Control)

compared to control (Figure 1C). Both MCT and Su/Hx rats

showed severe pulmonary vascular remodeling as the hallmark

of PH. Significantly increased pulmonary arteriolar medial

hypertrophy was documented in both MCT and Su/Hx rats

(% wall thickness: Control: 14.2 ± 1.0, MCT: 43.7 ± 2.4,

p < 0.0001 vs. Control; Su/Hx: 45.8 ± 3.7, p < 0.0001 vs.

Control; Supplementary Figure 1). MCT and Su/Hx rats also

demonstrated an increase in RV hypertrophy Fulton index

(RV/LV + IVS) (Control: 0.27 ± 0.01, MCT: 0.80 ± 0.06,

p < 0.0001 vs. Control; Su/Hx: 0.61 ± 0.06, p = 0.0019

vs. Control). Decompensated RV failure was demonstrated by

decreased RV fractional area change (RVFAC) in MCT and

Su/Hx rats (Control: 44.5 ± 3.4%, MCT: 12.7 ± 1.5%, p <

0.0001 vs. Control; Su/Hx: 15.0 ± 1.7%, p < 0.0001 vs. Control)

and increased RV internal diameter at end-diastole (RVIDd)

(Control: 1.0 ± 0.02mm, MCT: 4.4 ± 0.38mm, p = 0.0019

vs. Control; Su/Hx: 5.9 ± 1.04mm, p = 0.0004 vs. Control)

compared to control (Figure 1C). No significant differences

were observed between Su/Hx- and MCT-treated groups for

all parameters. No significant differences were observed in

Su/Hx- and MCT-treated groups compared to control for LVSP

(Control: 112.3 ± 4.3 mmHg, MCT: 111.9 ± 10.1 mmHg, p =

0.9991 vs. Control; Su/Hx: 115.0 ± 2.1 mmHg, p < 0.9528 vs.

Frontiers inCardiovascularMedicine 04 frontiersin.org

https://doi.org/10.3389/fcvm.2022.935423
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org


Banerjee et al. 10.3389/fcvm.2022.935423

Control) and LVEF (Control: 70.1 ± 4.5%, MCT: 78.1 ± 5.0 %,

p = 0.6862 vs. Control; Su/Hx: 69.3 ± 10.2 %, p = 0.9959 vs.

Control) (Figure 1C).

Targeted metabolomics of the RV in MCT
rats

Targeted metabolomics of the RV free wall tissue

of MCT rats detected 126 metabolites (Figures 2, 3,

Supplementary Figures 2–6). There were 28 metabolites

significantly altered in RV of MCT rats compared to controls (p

< 0.05). Out of these 28 metabolites, 15 were upregulated and 13

were downregulated. Based on p-value, the top 10 significantly

altered metabolites in MCT vs. control were inositol, carnitine,

glutamine, phosphate, proline, aspartic acid, GSH, hexose

phosphate and creatine. The top 5 significantly upregulated

metabolites included proline, aspartic acid, tyrosine, GSH

and phosphocholine. The top 5 significantly downregulated

metabolites included inositol, carnitine, glutamine, phosphate,

and hexose phosphate (Figures 3, 4).

Targeted metabolomics of the RV in
Su/Hx rats

Targeted metabolomics of the RV free wall tissue

of Su/Hx rats detected 125 metabolites (Figures 2, 3,

Supplementary Figures 2–6). There were 24 metabolites

significantly altered in RV of Su/Hx rats compared to controls

(p < 0.05). Out of these 24 metabolites, 2 were upregulated

and 22 were down regulated. Based on p-value, the top 10

significantly altered metabolites in Su/Hx vs. control were

inositol, lysine, aspartic acid, 5-Oxoproline, succinate, arginine,

leucine-isoleucine, thiosulfate, valine, and ornithine. The top

2 significantly upregulated metabolites included aspartic acid

and GSH. The top 5 significantly downregulated metabolites

included inositol, lysine, 5-Oxoproline, succinate, and arginine

(Figures 5, 6).

Common RV metabolomic signature of
MCT and Su/Hx rats

There were 11 common significantly altered RV

metabolites between MCT and Su/Hx rats (Figure 3,

Supplementary Figure 7). There were 2 common upregulated

and 9 common downregulated metabolites. The common

significantly upregulated metabolites included aspartic acid and

GSH. The common significantly downregulated metabolites

included inositol, glutamine, creatine, phosphate, hexose

phosphate, α-ketoglutarate, pantothenic acid, acetylcarnitine

and 5-Oxoproline. Interestingly, valine was upregulated in MCT

but downregulated in Su/Hx (Figures 3, 5).

RV metabolic pathway analysis highlights
common metabolic reprogramming
signature

Weperformedmetabolic pathway enrichment analysis using

RVmetabolomics data which highlighted 59 significantly altered

pathways in MCT and 60 significantly altered pathways in

Su/Hx (based on FDR <0.05) (Figure 7A). Importantly, there

was significant concordance between MCT and Su/Hx as

demonstrated by 59 common significantly altered pathways

shared between the two models. Interestingly, Warburg effect

was the top common metabolic pathway between MCT and

Su/Hx. Other top common metabolic pathways included

glutamate metabolism, glycine and serine metabolism, arginine

and proline metabolism, aspartate metabolism, citric acid

(TCA) cycle, mitochondrial electron transport chain, glycolysis,

gluconeogenesis, and several others (Figures 7B,C).

Joint Pathway Analysis using
transcriptomic and metabolomic datasets

We performed JPA on RV transcriptomic dataset from our

recently published study (24) and metabolomic dataset from

the current study (Figure 7D). JPA highlighted common genes

and metabolites related to key metabolic pathways such as

glutathione metabolism, aspartate and glutamate metabolism,

glycolysis, oxidative phosphorylation, fatty acid metabolism,

inositol metabolism and TCA (citric acid) cycle among others

(Figure 7D). Some of these genes (Cox7b, Acat1) have already

been validated by PCR (24).

Confirmation of RV targeted
metabolomics using a validation cohort

We ran a validation cohort of targeted metabolomics of RV

tissue on a separate set of rats with comparable disease severity

(Control n= 4,MCT n= 4, Su/Hx n= 3) and found very similar

results to the original cohort (Supplementary Figure 8).

Discussion

Here we performed the first-ever comprehensive

comparative targeted metabolomic analysis on the RV tissue of

MCT and Su/Hx rat models of severe decompensated PH-RVF,

which revealed distinct model-specific metabolomic signatures

with significant overlap of metabolites and metabolic pathways
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FIGURE 2

Comparative analysis of targeted metabolomics of RV tissue from severe decompensated RV Failure in MCT and Su/Hx rats. (A) Correlation heat

map of individual metabolites from targeted metabolomics data of RV tissue from Control, MCT and Su/Hx rats. Red color represents positive

correlation and blue color represents negative correlation. (B) Scores Plot showing PC1 plotted against PC2 for individual data points of Control

(red), MCT (green) and Su/Hx (blue) rats. (C) Heat map showing scaled expression of 43 di�erentially expressed metabolites from RV tissue of

Control (blue), MCT (red) and Su/Hx (purple) rats. N = 5 per group.

between the two models. Interestingly, our metabolic pathway

enrichment analysis showed significant concordance in the RV

metabolic reprogramming with “Warburg effect” being the top

common pathway in both models. Another unique feature of

this study is the JPA using transcriptomic and metabolomic

data sets from the RV of MCT and Su/Hx rats demonstrating

the correlation between genes and metabolites from critically

essential metabolic pathways (Figure 8).

RV metabolic reprogramming reported in
various animal models of PH

Recently, Graham et al. performed a steady-state

metabolomics analysis in the RV tissue of female mice

(hypoxia or Schistosoma) and female SD rats with hypoxia only

or Sugen followed by 3 weeks of hypoxia and 2 (Su-Hx+ 2) or 5

(Su-Hx+ 5) weeks of normoxia (30). They reported that the RV

metabolic substrate delivery was functionally preserved without

evidence of depletion of key metabolites. Specifically, there was

a significant increase in GSH in Su-Hx + 5 rats, consistent with

our findings from RVs of both MCT and Su/Hx rats (Figures 3,

5). Moreover, their data showed metabolic changes including

dysregulation of TCA cycle and energy currency metabolites in

Su-Hx + 5 rats (decreased α-KG, malate and ADP), consistent

with an increased glycolytic shift rather than conventional

OXPHOS, which is similar to other studies from the failing

heart (27, 29, 37–41). Interestingly, we also found dysregulation

of TCA cycle (decreased α-KG and citrate) and significant

depletion of critical energy currency metabolites (e.g., creatine

and phosphate) in the RVs of both MCT and Su/Hx rats

(Figures 3, 5). In addition, our metabolic pathway enrichment

analysis found enrichment of arginine and proline metabolism,

alanine, aspartate and glutamate metabolism, glutathione

metabolism, and citric acid (TCA) cycle, similar to the study of

Graham et al. Our results are also in agreement with their study,

as no significant changes were detected in lactate and glutamate,

although significant decrease in glutamine in both MCT and

Su/Hx and significant increase in glucose in MCT rat RVs were

observed. However, there are major differences between our

study and the study by Graham et al. such as the use of male

rats, side-by-side comparison of MCT and Su/Hx rat models

of decompensated RVF, and JPA (Figure 7D) in our study.

Further, in contrast to their Su-Hx + 5 rat RV metabolomic

signature, we found a much higher number of significantly

altered metabolites (24 metabolites) and metabolic pathways (60

pathways) in our Su/Hx rats (30). Another difference between

our study and the study performed by Graham et al., besides

the gender, is the use of hypobaric vs. normobaric hypoxia.

Studies have demonstrated that normobaric and hypobaric

hypoxia may lead to differential physiological responses.

Studies have shown higher heart rate, lower arterial oxygen

saturation, decreased physical performance, lower ventilatory

response and pH, as well as higher oxidative stress in hypobaric

hypoxic condition compared to normobaric hypoxia (42–44).

Transcriptomic and metabolic signatures in RV, can potentially

be differentially affected after exposure to normobaric and

hypobaric hypoxia. However, in this study, our main focus was

only to reveal the common and unique metabolic signatures

in the decompensated RV of MCT and Su/Hx rats under

normobaric conditions.

A recent interesting study, investigating metabolic

reprogramming in the RV of murine models of hypoxia alone

and hypoxia + Sugen, demonstrated an increase in glutamine,
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FIGURE 3

Significant di�erentially expressed metabolites from RV tissue of MCT rats that are also significantly altered in Su/Hx rat RV tissue. (A) Venn

diagram showing significantly regulated metabolites in MCT vs. Control (red) and Su/Hx vs. Control (blue). (B) Significantly upregulated

metabolites from RV tissue of MCT rats (red) that are common with Su/Hx rat RV tissue compared to Control rats (green). (C) Significantly

downregulated metabolites from RV tissue of MCT rats (red) that are common with Su/Hx rat RV tissue compared to Control rats (green). Data

presented as mean ± SEM. N = 5 per group. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.

creatine phosphate, lactate and a decrease in free FAs and

glucose in both groups compared to normoxic controls. Some of

these changes are in contrast with our results, as glutamine and

creatine were significantly reduced in our Su/Hx rats, whereas

these metabolites were significantly increased in Su/Hx mice

used in their study. These findings could be due to fundamental

differences between the mouse and rat models of Su/Hx as it is

well-established that mice do not demonstrate the evidence of

decompensated RVF (31).

Another recent study from Hautbergue et al. investigated

the metabolic signatures of RV remodeling in chronic

hypoxia- and MCT-treated male Wistar rats and demonstrated

significant alterations in metabolites related to arginine,

pyrimidine, purine and tryptophan metabolic pathways in the

RV of the MCT rats (32). They demonstrated significantly

increased thymine, deoxy-uridine and cytosine (pyrimidine

metabolic pathway) and significantly decreased creatine and

glutamine (arginine metabolic pathway) in MCT RV, which are

consistent with ourMCT results. Significantly increased tyrosine

(tryptophan metabolic pathway) and significantly reduced

purine metabolism metabolites such as inosine in their study,

are also in concordance with our MCT findings. In addition,

we found significantly increased levels of 11 other metabolites

including methionine, phosphoethanolamine, glucosamine-6-

phosphate, CDP-choline, glucose, valine, proline, phospho-

choline, 4-hydroxy phenyllactate, GSH and aspartate in the RV

of MCT rats that were not detected in their study. Furthermore,

we found significantly decreased levels of 10 other metabolites

including carnitine, DHAP, AMP, IMP, α-KG, 5-oxoproline,

phosphate, hexose phosphate, pantothenic acid and acetyl

carnitine, in the RV of MCT rats that were not detected in their

study (32).

In a recent study, Prisco et al. performed a quantitative

global metabolomic profiling on RVs of MCT rats and
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FIGURE 4

Significant di�erentially expressed metabolites from RV tissue unique to MCT rats. (A) Significantly upregulated metabolites from RV tissue

unique to MCT rats (red) with severe decompensated RV Failure compared to Control rats (green). (B) Significantly downregulated metabolites

from RV tissue unique to MCT rats (red) with severe decompensated RV Failure compared to Control rats (green). Data presented as mean±SEM.

N = 5 per group. *p < 0.05, **p < 0.01.

FIGURE 5

Significant di�erentially expressed metabolites from RV tissue of Su/Hx rats that are also significantly altered in MCT rat RV tissue. (A)

Significantly upregulated metabolites from RV tissue of Su/Hx rats (red) that are common with MCT rat RV tissue compared to Control rats

(green). (B) Significantly downregulated metabolites from RV tissue of Su/Hx rats (red) that are common with Su/Hx rat RV tissue compared to

Control rats (green). Data presented as mean ± SEM. N = 5 per group. *p < 0.05, **p < 0.01, ***p < 0.001.

documented higher levels of end products of hexosamine

biosynthetic, glycolytic, and pentose phosphate pathways.

RVs of MCT rats also showed elevated levels of ceramides,

dihydroceramides, hexosylceramides, dicarboxylic fatty acids

as well as multiple glutaminolysis-related metabolites and

mitochondrial enzymes (45). In another recent study, Prisco

et al. also profiled 767 metabolites using global metabolomics

approach and demonstrated a distinct metabolic signature

in MCT RV metabolism (42). Interestingly, nearly all the

acylcarnitines were reduced in the MCT RVs. Dysregulated
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FIGURE 6

Significant di�erentially expressed metabolites from RV tissue unique to Su/Hx rats. Significantly expressed metabolites from RV tissue unique to

Su/Hx rats (red) with severe decompensated RV Failure compared to Control rats (green). Data presented as mean ± SEM. N = 5 per group. *p <

0.05.

metabolite signatures demonstrated impaired fatty acid

oxidation as well as increased glycolysis and glutaminolysis

in the MCT RVs, very similar to our results. Furthermore,

integrating proteomic and metabolomic data sets, this study

also established glycolysis or gluconeogenesis, tricarboxylic acid

cycle, and fatty acid degradation as the most altered metabolic

pathways in the MCT RVs (46), very similar to our JPA findings.

Metabolic shift and warburg phenotype
in RV of decompensated PH-RVF: Role of
glycolysis, FAO, and OXPHOS

Cardiac hypertrophy-induced structural remodeling results

in increased reliance on glucose metabolism with a decrease

in FAO. Further, metabolic gene reprogramming in the

hypertrophied as well as failing hearts has been well-described

as a reversion to a fetal metabolic program. Importantly,

these metabolic alterations often precede the hypertrophy-

related structural changes in the failing heart and represent

stepwise distinct early metabolic reprogramming events, prior

to both adaptive as well as maladaptive remodeling. Glycolytic

shift from FAO may facilitate ventricular hypertrophy and

early adaptation to hemodynamic shear stresses (27, 47).

Further, prolonged dependence on glucose utilization likely

leads to an ultimate state of energy depletion as cardiac

hypertrophy subsequently results in decompensated HF (27, 48–

50).

The heart generates ATP from a variety of fuels primarily via

mitochondrial OXPHOS to maintain the contractile function.

The main fuels include fatty acids, lactate, ketones, glucose,

pyruvate, and amino acids. Myocardial FAO increases in HF

associated with diabetes and obesity, while it decreases in

HF associated with hypertension (27). We recently reported

that FAO and OXPHOS are the top common down regulated

pathways whereas glycolysis is one of the top common

upregulated pathways in the transcriptomic data sets from

RVs of MCT and Su/Hx rats (24). On the contrary, FAO is

demonstrated to be increased in RV of rats with PAB (37).

Given that FAO is the major source of energy production

in ventricular cardiomyocytes (41), lipid metabolism has been

understudied in the failing RV in PH. Increased circulating

levels of free FAs and increased RV-specific deposition of

long-chain FAs, ceramides and triglycerides were documented

in the patients with PAH (51–53). Remarkably, Randle cycle

describes the reciprocal relationship between the activation

of FAO and glucose oxidation (54). Similarly, in our study,
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FIGURE 7

Metabolic pathway enrichment analysis showing RV metabolic reprogramming and Joint Pathway Analysis (JPA) of transcriptomic and

metabolomic datasets from RV tissue of MCT and Su/Hx rats highlighting the top common genes, metabolites and metabolic pathways. (A)

Venn diagram showing significantly regulated pathways in MCT vs. Control (red) and Su/Hx vs. Control (blue). (B,C) Metabolomic Pathway

Enrichment Analysis showing 25 top significantly regulated metabolic pathways in RV tissue of MCT vs. Control and Su/Hx vs. Control rats based

on enrichment ratio and FDR <0.05. (D) For integrative analysis of transcriptomics (24) and metabolomics data at the pathway level, list of

significant genes (FDR <0.05) from the transcriptomic data with o�cial gene names and fold changes and list of metabolites from

metabolomics data with compound names and fold changes, were uploaded in JPA module of Metaboanalyst 5.0 platform and analyzed for all

pathways (integrated) by selecting algorithms: (1) Hypergeometric test for Enrichment analysis, (2) Degree centrality for Topology measure and

(3) Combined p-values (pathway level) for the integration method. Here, only the critical metabolic pathways that are typically associated with

cardiomyocyte hypertrophy and contractile function such as glutathione metabolism, aspartate and glutamate metabolism, glycolysis, oxidative

phosphorylation, fatty acid metabolism, inositol metabolism and TCA (citric acid) cycle are shown. In the top common significant genes (left

heat map; 28 genes from 8 pathways) and metabolites (right heat map; 19 metabolites from 8 pathways), corresponding to each of the

above-mentioned pathways (middle panel, rectangular boxes), are represented with their normalized di�erential expression and normalized

average amounts [top upregulated (red) and top downregulated (blue) (FDR <0.05)], respectively. Colored connecting lines (color similar to the

metabolic pathway box) between genes and pathways as well as metabolites and pathways, are drawn to show the association of genes and

metabolites with their corresponding metabolic pathways.
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FIGURE 8

Hypothetical scheme summarizing the results of this study. (A) Upper panel shows the normal metabolism in RV cardiomyocytes in CTRL rats.

(B) Lower panel shows the altered metabolites and metabolic pathways in the decompensated RVF cardiomyocytes of MCT and Su/Hx rats. The

(Continued)
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FIGURE 8 (Continued)

common significantly increased and decreased metabolites are indicated using red and blue arrows, respectively. The MCT-specific unique up-

and downregulated metabolites are indicated as up- and down-headed brown arrows within white circles while Su/Hx-specific unique

downregulated metabolites are indicated as down-headed blue arrows within white circles. MCT, monocarboxylate transporters; GLUT, glucose

transporter; FA, fatty acid; FFA, free fatty acid; SLC, solute carrier; NAD, Nicotinamide adenine dinucleotide; NADP+, Nicotinamide adenine

dinucleotide phosphate; NADPH, reduced nicotinamide adenine dinucleotide phosphate; ROS,; GSH, glutathione; GSSG, glutathione disulfide;

PO4, phosphate; AMP, adenosine monophosphate; IMP, inositol monophosphate; InsP3, inositol triphosphate; OXPHOS, oxidative

phosphorylation; ETC, electron transport chain; TCA, tricarboxylic acid cycle; CPT, carnitine palmitoyltransferase; DHAP, Dihydroxyacetone

phosphate; GA3P, glyceraldehyde 3-phosphate; α-KG, alpha ketogluterate; Gαq, G-protein coupled receptor alpha-q subunit; PLCβ,

phospholipase C beta.

we found a significant reduction in acetyl-carnitine in both

MCT and Su/Hx rat RVs (Figures 3, 5) and carnitine in

MCT rat RVs which clearly suggests significantly reduced

transfer of long-chain FAs across the inner mitochondrial

membrane for subsequent β-oxidation as mentioned elsewhere

(55–57). Further, simultaneous significantly increased levels

of glucose in RVs of MCT rats support increased glucose

oxidation, because of the reciprocal relationship between

FAO and glucose oxidation (Figure 4A). Glycolysis converts

glucose to pyruvate which subsequently either converts to

lactate or undergoes further mitochondrial oxidation. A shift

from mitochondrial FAO to glycolysis occurs in the RV and

foundational investigations demonstrated increased glycolysis

and reduced glucose oxidation in RV, similar to the “Warburg

effect,” well-documented in cancer literature (58, 59). In

fact, the metabolic reprogramming in the failing RV and

a chronic shift in energy production from OXPHOS to

glycolysis (Warburg effect) is associated with PH-induced

decompensated RVF (60, 61) and is strongly supported by our

data (Figures 7A–C).

Although majority of the studies suggest that diminished

FAO and OXPHOS drive metabolic derangement in

the RV of PH-RVF, however contemporary reports

highlight the involvement of increased glucose oxidation

in mediating PH-RVF progression (60, 61). Interestingly,

our results are consistent with finding Warburg effect,

glycolysis/gluconeogenesis, glutaminolysis, and amino acid

metabolism as the top common pathways (Figures 7A–C)

and alteration of related metabolites (aspartic acid, glutamine,

5-oxoproline and hexose phosphate). However, the events of

metabolic reprogramming during decompensated RVF beyond

the conventional “Warburg effect” create more complexity in

metabolic rewiring to promote PH-RVF and are becoming the

focus of future research (60, 61). Finally, parallels have been

drawn between significant alterations in metabolic pathways

such as fatty acid oxidation and synthesis, pentose phosphate

pathway and glutaminolysis in cancer and PH-induced RV

remodeling (61).

Under normoxic conditions, pyruvate is oxidized in

the mitochondria by the Krebs cycle to generate ATP

and meet energy demands in cells. However, during

hypoxic conditions, cells with “Warburg phenotype” utilize

pyruvate to produce lactate through the action of lactate

dehydrogenase (LDH/LDHA). Warburg Effect or “aerobic

glycolysis” can be defined as lactate production in the

presence of oxygen. Out of several signaling pathways

contributing to the Warburg Effect, receptor tyrosine kinases

(RTK)-mediated activation of PI3K/Akt and Ras plays

a significant role. Akt is known to stimulate glycolysis

through activation of several glycolytic enzymes including

hexokinase and phosphofructokinase. RTK signaling results

in transcriptional activation of several genes of glycolysis

and lactate production. Hypoxia-signaling can increase

expression of LDHA to stimulate lactate production, as

well as pyruvate dehydrogenase kinase to inhibit pyruvate

dehydrogenase and restrict pyruvate entry into the Krebs

cycle (58, 62–71).

In our transcriptomic data, very similar to the established

“Warburg phenotype” signaling and metabolic signatures, we

also found significantly upregulated/increased expression of

phosphofructokinase (pfk) and hexokinase3 (hk3) in the RV

of both MCT and SuHx rats. Further, LDHA and pyruvate

dehydrogenase kinase3 (pdk3) are also significantly increased in

the RV of these two groups. Significantly increased expression

of Akt (Akt3), tyrosine kinase (Tyk2) and activation of

Ras signaling (increased Rassf1) were also documented in

the RV of MCT and Su/Hx rats (Supplementary Tables 1,

2: Warburg signaling MCT vs. Ctrl and SuHx vs. Ctrl).

Taken together, increased expression of Warburg Effect-related

signaling strongly suggests that the decompensated RV of these

two groups indeed attains “Warburg phenotype” to support

increased pyruvate to lactate conversion and utilization, through

“aerobic glycolysis” due to the metabolic shift.

Further, secondary reactome analysis on the transcriptomic

data from the decompensated RV of MCT and Su/Hx rats,

confirmed that pathways related to free fatty acid (FFA)

metabolism such as fatty acid metabolism, mitochondrial fatty

acid ß-oxidation, ß-oxidation of saturated fatty acids, and

import of palmitoyl-CoA into the mitochondrial matrix were

significantly decreased in the RV of these two severe models

of PH-induced RVF. Further, ß-oxidation of deconoyl-CoA

to octanoyl-CoA CoA was also found to be decreased in the
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RV of Su/Hx rats. Hence, reactome analysis clearly confirmed

decreased FFA metabolism in the RV of both MCT and Su/Hx

rats (Supplementary Table 3: Downregulated FFA metabolism).

Metabolic reprogramming in RV of
decompensated PH-RVF: Role of
glutaminolysis

In addition to alterations in FAO, glycolytic shift, glucose

oxidation, and OXPHOS, amino acid metabolism particularly

glutaminolysis has also been documented in the decompensated

RVs of ourMCT and Su/Hx rats similar to other previous studies

(72–75). During the stepwise metabolic reprogramming while

transitioning from adaptive to maladaptive RV remodeling,

in addition to the “Warburg phenotype,” increased utilization

of glutamine through glutaminolysis to replenish the carbon

intermediates in the TCA cycle is also documented (27,

28). Glutaminolysis is an anaplerotic deamination reaction

that converts glutamine to glutamate by glutaminase and

subsequently glutamate to α-KG via glutamate dehydrogenase.

TCA intermediates, derived from glutaminolysis, especially

α-KG participate in FA, amino acid, and de novo purine

as well as pyrimidine biosynthesis (76). Glutaminolysis is

an alternative upregulated metabolic pathway, associated

with Warburg phenotype, documented in cancer studies.

MCT-induced decompensated RV remodeling demonstrated

increased glutaminolysis and increased expression of glutamine

transporters, which was not seen in the more adaptive PAB

model (29). Glutamine transporters are also upregulated in the

RV of patients with PAH-RVF (41) consistent with metabolic

remodeling (26).

Metabolic reprogramming in RV of
Decompensated PH-RVF: Role of TCA
cycle

In the current study, we also identified tricarboxylic acid

(TCA) cycle (citric acid cycle) as one of the top common

dysregulated metabolic pathways in RV of MCT and Su/Hx

rats (Figure 7). α-ketoglutarate (α-KG), as a crucial intermediate

metabolite of TCA cycle, regulates ATP production and

mitochondrial energy homeostasis (77–79). Interestingly we

found a significant decrease in α-KG in both MCT and Su/Hx

rats (Figure 3C). α-KG supplementation has been shown to

improve cardiac contractile dysfunction in transverse aortic

constriction (TAC) mice by attenuating pressure overload-

induced cardiac hypertrophy and fibrosis. Further, α-KG exerts

cardioprotective effects in TAC-induced failing myocardium

by: (1) reducing ROS production and oxidative stress, (2)

inhibiting cardiomyocyte apoptosis, (3) promoting autophagy

and mitophagy, and (4) improving mitochondrial membrane

potential (79, 80).

Metabolic reprogramming in RV of
decompensated PH-RVF: Role of inositol
phosphate metabolism

Inositol 1,4,5-trisphosphate (IP3) is a crucial intracellular

second messenger regulating diverse cardiac functions,

including pacemaking, excitation–contraction as well

as excitation-transcription coupling to the initiation

as well as progression of ventricular hypertrophy and

arrhythmias. Furthermore, strategic cytoplasmic and nuclear

compartmentalized localization of IP3-receptors (IP3R) allows

them to participate in subsarcolemmal, cytoplasmic as well as

nuclear Ca2+ signaling in ventricular cardiomyocytes. IP3R

expression levels are shown to be increased in hypertension,

cardiomyocyte hypertrophy, failing myocardium as well as

ischemic dilated cardiomyopathy (81–88). Similarly, our RV

transcriptomic data showed significantly increased IP3R3

and IP3R-interacting protein mRNA transcripts in MCT rats

and only the ITPRIP Like 2 mRNA transcripts in Su/Hx

rats (Supplementary Table 4, Inositol-metabolism-signaling).

Inositol-polyphosphate 5-phosphatases (Inpp5) and inositol

polyphosphate-4-phosphatases (Inpp4) are enzymes catalyzing

the conversion of inositol triphosphates to bisphosphates and

may be involved in regulating cardiomyocyte hypertrophy

and contractility. Specifically, inositol polyphosphate-5-

phosphatase 5f (Inpp5f) is reported as a key player in

regulating cardiac hypertrophic responsiveness (89). Our

transcriptomic data also revealed significant elevation in all

the inositol polyphosphate-5-phosphatases in the RV of both

these groups (Supplementary Table 4, Inositol-metabolism-

signaling). However, significantly decreased mRNA transcripts

of inositol monophosphatase a (Impa) 1/2 and Inpp4b were

documented in MCT and Su/Hx rats (Supplementary Table 4,

Inositol-metabolism-signaling). The genes involved in complex

IP3/IP3R signaling as well as inositol metabolism, metabolic

intermediates and derivatives showed very similar signature in

the RV of both MCT and SuHx rats.

Our metabolomics data demonstrated significantly reduced

inositol in RVs of both MCT and Su/Hx rats and inositol

monophosphate (IMP) in the MCT group (Figures 3–5).

Similarly, a recent study demonstrated reduced levels of

myo-inositol in the RV myocardium of rabbits with myocardial

infarction (90). Further, oral supplementation of myo-and

d-chiro-inositol rescues cardiac function and remodeling

in diet-induced obese mice (91). We postulate that during

the decompensatory stage, hypoxic and hypertrophied

RV cardiomyocytes may utilize the pool of inositol and

IMP to combat hypoxia-induced stress. These hypoxic and
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hypertrophied cardiomyocytes may also channelize inositol

and IMP to balance Ca2+/IP3 dynamics and maintain their

contractile function.

Metabolic reprogramming in RV of
decompensated PH-RVF: Role of amino
acid metabolism

Metabolomic analysis from other studies have revealed

increased flux into non-oxidative pathways especially amino

acid metabolism, which is well-documented in hypertrophic

and failing hearts (27, 29, 92–94). Further, majority of

the significantly altered amino acids are involved in the

TCA cycle, nucleotide metabolism as well as arginine/urea

cycle as metabolic intermediates (27, 29, 40, 92, 93, 95).

Interestingly, we found significantly increased aspartic acid

in both models. Further, we found increased methionine,

valine, proline, and tyrosine in MCT rats and decreased valine,

leucine/isoleucine, lysine, arginine, histidine and asparagine

in Su/Hx (Figures 3–6). Although amino acids offer minor

contribution to overall cardiac OXPHOS due to their low

availability under normal conditions (94), branched-chain

amino acids (BCAAs) oxidation is considered as a major

source of ATP production in the heart (96). Of note, we

found significantly decreased BCAAs such as valine and

leucine/isoleucine in Su/Hx rats.

Limitations

As a limitation of this study, we did not investigate

metabolomic changes in RV of compensated RVH, or RVF

secondary to pure RV pressure overload such as PAB or in

female rats. We also did not investigate LV metabolomics in

rats with decompensated RVF. Additionally, we performed

targeted analysis of a set of 150 central carbon metabolites

and detected ∼125 metabolites as not all metabolites were

detectable in all samples, depending on the abundance of

the metabolites and/or matrix effects. As a result, we may

have missed some key metabolites linked to pathways such as

fatty acid oxidation. Furthermore, although the metabolomic

signatures in our study most likely represent the metabolites

predominantly found in cardiomyocytes, however recent studies

have highlighted the contribution of other cardiac cell types

and non-cardiomyocyte populations, especially fibroblasts (97).

Future studies highlighting single cell metabolomic signatures

are certainly warranted.

Conclusions

In conclusion, in the current study, unbiased metabolic

profiling provided a comparative and comprehensive

understanding of metabolic reprogramming that occurs in

the RV of two severe rat models of decompensated RVF and

resulted in the discovery of previously unappreciated biological

pathways that contribute to PH-RVF pathogenesis (Figures 7,

8). Further, comparative analysis of metabolic reprogramming

of RV revealed common and distinct metabolic signatures from

MCT and Su/Hx PH-RVF rats. These metabolic signatures

may serve as novel, targeted and effective therapeutic targets

for PH-RVF.
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