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Abstract

In all organisms, a ribonucleoprotein called the signal recognition particle (SRP) and its receptor (SR) target nascent proteins
from the ribosome to the translocon for secretion or membrane insertion. We present the first X-ray structures of an archeal
FtsY, the receptor from the hyper-thermophile Pyrococcus furiosus (Pfu), in its free and GDPNmagnesium-bound forms. The
highly charged N-terminal domain of Pfu-FtsY is distinguished by a long N-terminal helix. The basic charges on the surface
of this helix are likely to regulate interactions at the membrane. A peripheral GDP bound near a regulatory motif could
indicate a site of interaction between the receptor and ribosomal or SRP RNAs. Small angle X-ray scattering and analytical
ultracentrifugation indicate that the crystal structure of Pfu-FtsY correlates well with the average conformation in solution.
Based on previous structures of two sub-complexes, we propose a model of the core of archeal and eukaryotic SRPNSR
targeting complexes.
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Introduction

Targeting and translocation of proteins across and into

membranes is essential to all life forms. The process is mediated

by evolutionarily related signal recognition particles (SRPs) and

their cognate membrane-associated receptors (SRs also called

FtsYs in Bacteria and Archaea) [1]. The core proteins of SRPs and

SRs are GTPases that each contain a structurally and functionally

conserved NG domain where the G domain adopts a ras-like fold

responsible for GTP binding and the N-domain adopts a four a-

helix bundle fold. In Archaea, the SRP is composed of two

proteins, SRP54 (also called Ffh in Bacteria) and SRP19, and an

SRP RNA. In addition to the NG domain, SRP54 contains a C-

terminal methionine rich (M) domain that binds SRP RNA and

provides the signal-sequence binding site; a flexible linker tethers

this M domain to the NG catalytic core. SRP19 plays an

architectural role in the stabilization of the SRP RNA and its

interaction with SRP54. The SRP RNA is essential for survival

[2,3] and facilitates interaction between SRP and SR [4,5].

SRPs sample polypeptide chains emerging from the ribosome

and bind to those bearing a signal sequence that specifies secretion

or membrane insertion. Targeting of the ribosome-nascent chain-

SRP complex to the membrane embedded translocon is mediated

through a dynamic GTP-dependent interaction between the NG

domains of the SRP54 and the SR subunits. Structural studies

have shown that the two GTPases interact tightly through the so-

called ‘‘twinning’’ of their GTP substrates [6,7]. At the membrane,

upon reciprocal GTP hydrolysis the SRPNSR complex dissociates

triggering transfer of the ribosome-nascent chain to the translocon.

Although the mechanisms driving complex assembly have been

elucidated, very little is known about an essential step of the

targeting cycle: the transfer step. There is growing evidence of

direct interaction between the SR and the translocon at the

membrane in both bacterial and eukaryotic systems [8–10].

In contrast to their eukaryotic homologues, which are

heterodimers containing a separate membrane anchoring subunit

[11,12], bacterial and archaeal receptors are composed of just the

SR core protein, FtsY. While FtsY and some other bacterial

receptors possess an extra N-terminal A domain of variable size

and sequence, most bacterial and archeal receptors are further

streamlined and reduced to the strictly conserved NG core. These

‘‘short’’ receptors, nevertheless, efficiently target the ribosome-

nascent chain-SRP complex to the translocon, raising the question

of what are the structural determinants for the membrane

interaction.

Here we describe the X-ray structures and solution conforma-

tions of FtsY, the SR from the hyper-thermophilic archaeon

Pyrococcus furiosus (Pfu), in its free and GDPNmagnesium-bound

forms. The unique features revealed by these structures, along with

our recently reported structures of Pfu- SRP54 and SRP19 (in press
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in PloS One) have been incorporated into a model of the archeal

SRPNSR targeting complex.

Results

We crystallized and solved the X-ray structures of the apo and

GDPNmagnesium forms of Pfu-FtsY. The structures were solved at 2.2

and 2.0Å resolution for the apo and nucleotide-bound proteins,

respectively (Table 1 and Material and Methods). The apo

receptor was crystallized in two different crystallization conditions in

absence of guanine nucleotide and its structure solved de novo using

single wavelength anomalous dispersion of selenium; the structure is

therefore not biased towards any of the previously solved

homologues. The overall structure of the apo receptor is shown in

Figure 1 with all sequence motifs characteristic of SRP GTPases

well defined.

Two molecules of GDP are bound to the receptor
We tried to co-crystallize Pfu-FtsY in presence of GTP. Although

SRP-GTPases, especially the SR subgroup, are distinguished by

Table 1. X-ray data collection and structure refinement statistics.

Structure apo Pfu-FtsY apo Pfu-FtsY Pfu-FtsY with GDP

PDB ID 3DM9 3DMD 3E70

data set ALS050904 ALS310806 ALS110508

data statistics

wavelength 0.97949Å 1.11588Å 1.11588Å

phasing method Se-SAD MR MR

space group P622 C2 C2

and a = 144.6Å a = 150.0Å a = 113.1Å

cell dimensions c = 70.5Å b = 102.4Å b = 53.0Å

c = 101.8Å c = 61.3Å

b= 119.8u b= 107.4u

AU content 1 molecule 3 molecules 1 molecule

solvent content 54% 63% 50%

resolution limits (last shell) 50.022.2Å (2.322.2Å) 88.422.2Å (2.322.2Å) 58.322.3 (2.122.0 Å)

unique reflections 21,908 (1,738) 65,992 (9,460) 23,541 (3,294)

redundancy 13.7 (11.3) 3.5 (3.1) 2.4 (2.3)

completeness 98.7% (96.1%) 98.1% (97.1%) 95.9% (92.6%)

I/s(I) 14.9 (3.9) 8.9 (1.4) 8.7 (1.7)

Rsym 9.3% (63.0%) 7.4% (76.6%) 4.9% (44.7%)

refinement statistics

resolution range 35.922.2Å 65.122.2Å 29.722.0Å

reflections used work (test) 19,777 (2,000) 63,548 (2,000) 21,449 (1,999)

Rfree/Rfac 23.9%/20.3% 24.6%/20.5% 26.3%/22.8%

overall figure of merit 0.906 0.897 0.825

overall Bwilson 39 Å2 43 Å2 41 Å2

protein atoms 2,344 atoms, 45 Å2 7,417 atoms, 49 Å2 2,349 atoms, 62 Å2

ligand atoms No ligand No ligand 2 GDPs, 45 Å2 (100%) and 65 Å2 (69%)

1 MPD, 47 Å2 6 glycerols, 61 Å2 1 magnesium, 45 Å2

4 phosphates, 84 Å2 10 sulfates, 66 Å2

solvent atoms 137 waters, 52 Å2 469 waters, 50 Å2 83 waters, 60 Å2

r.m.s.d. bonds 0.007 Å 0.006Å 0.016Å

r.m.s.d. angle 1.062u 0.939u 1.368u

Ramachandran Analysis

residues in preferred regions 95.6% 97.3% 95.7%

residues in allowed regions 3.7% 2.4% 2.5%

outliers 0.7% 0.3% 1.8%

MR indicates phasing by molecular replacement. Se-SAD indicates phasing performed using single wavelength anomalous dispersion of selenium. AU stands for
asymmetric unit.
r.m.s.d is the root-mean square deviation from ideal geometry.
Rsym =ShklSi |Ihkl,i2,Ihkl,i.|/ShklSi |Ihkl,i| where ,Ihkl,i. is the average intensity of the multiple hkl, i observations for symmetry-related reflections.
Rcryst =S|Fobs2Fcalc|/S|Fobs|. Fobs and Fcalc are observed and calculated structure factors, Rfree is calculated from a set of randomly chosen 5 to 10% of reflections, and Rcryst

is calculated over the remaining 90 to 95% of reflections.
The refined occupancies of 100% (catalytic GDP) and 69% (external GDP) and atomic displacement factors of the two GDPs are indicated.
doi:10.1371/journal.pone.0003619.t001

Archeal SRP Receptor Structure
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their low intrinsic GTPase activity and nucleotide specificity [13],

the crystal structure we obtained showed the presence of

GDPNmagnesium bound in the catalytic site suggesting that

nucleotide hydrolysis took place during the course of crystallization.

Identical crystals could be obtained in presence of GDP but not in

presence of non-hydrolyzable GTP analogs. The resulting structure

was solved at 2.0Å resolution by molecular replacement using the

apo structure as template. Two bound GDP molecules were

identified (Figure 2A) and placed in the initial experimental

electron density maps. Refinement to consistent atomic displace-

ment factors shows that the GDP observed in the cognate binding

site is present at full occupancy while the external GDP is present at

only 69% occupancy despite the fairly high concentration (10 mM)

of nucleotide used for crystallization; this lower occupancy probably

reflects the lower affinity of this binding site.

The cognate nucleotide-binding site
In both apo structures, the guanine nucleotide-binding cleft

contains either a phosphate or a sulfate ion that occupy the b-

phosphate binding site observed in GDP- or GTP- bound forms [14]

(Supplementary Figure S1). This position constitutes a substrate-

anchoring site. The GDP in the catalytic site is accompanied by a

hydrated magnesium ion (Figure 2B). The sidechains of two

conserved aspartates, the catalytic aspartate Asp160, and Asp212,

converge towards the b-phosphate of the GDP and the magnesium.

The side-chain from the conserved Arg163 (motif II) contributes to

electrostatic balance within the binding site. Upon GDP binding,

motif IV shifts about 1.8Å bringing the carboxylic group of the

conserved, nucleotide specifying Asp273 into position to establish two

hydrogen bonds, 2.7Å and 2.9Å long, with the guanine ring nitrogen

atoms N1 and N2. The guanine ring is also sandwiched between the

sidechains of residues Lys271 (motif IV) and Gln299 from the closing

loop that also undergoes a 1.8A shift. In presence of GDP, the

conformation of the catalytic site represents an intermediate between

the apo and ‘Ffh-bound’ FtsY conformation; a similar observation can

be made when comparing the Pfu and Taq GDP-bound structures

[15] (Supplementary Figure S1). In particular both structures

show that the conserved DTAGR motif III is not locked in the

conformation observed in the complex.

A GDP bound at the surface next to the Insertion Box
Domain (IBD)

The external nucleotide lays on a relatively flat surface delineated

by residues Lys180, Ile182, His184, Asp196, His200 and Arg204

(Figure 2C). The nucleotide is bound at a crystal lattice contact

with its purine ring stacked against its symmetry related molecule,

the distance between the planes of the two stacked purine rings is

about 3.2Å similar to the distance observed in a RNA helical chain.

His200 is hydrogen-bonded with the N7 nitrogen from the guanine

ring. The sidechains of Arg204 and Lys180 point towards the a and

b phosphates of the stacked and symmetry-related nucleotide.

Asp196 which hydrogen-bonds with the 29OH of the ribose and the

N2 guanine ring, is held in place by His184. This binding surface

exhibits some degree of conservation. Asp196 is conserved in all

receptors with the interesting exception of receptors belonging to

the subgroup of chloroplast SRPs that do not involve an SRP RNA

to mediate protein targeting [16]. This area maps next to the

conserved IBD (motif II) specific to all SRP-GTPases.

Clusters of charged aminoacids stabilize the N domain
The N domain of Pfu-FtsY is very rich in charged residues (30

acidic and 25 basic residues out of a total of 110 residues representing

Figure 1. The FtsY from Pyrococcus furiosus. (A) Sequence alignment of FtsY/SRs of known structure including Pfu, Thermus aquaticus (Taq),
Thermotoga maritima (Tma), Mycoplasma mycoides (Mmyc) and Arabidopsis thaliana (Atha) (chloroplast). The protease sensitive sites observed in E.coli
and Taq FtsYs upon FtsYNFfh complex formation are indicated (x). The ELEX2LX3D in the N domain is indicated. (B) Overall structure of the apo
monomer of Pfu-FtsY. Two views related by a 180u rotation along a vertical axis are shown. The secondary structure elements of Pfu-FtsY are
indicated. a-helices and conserved motifs of the SRP/SR-GTPases subfamily are labeled.
doi:10.1371/journal.pone.0003619.g001
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50%). These residues contribute to the high thermo-stability of Pfu-

FtsY through an intricate network of intra-molecular salt bridges and

hydrogen bonds that stabilize the overall fold of the N domain

(Figure 3A). At the C terminal end of helix aN1 the carboxylate

groups from residues Glu21 and Glu24 interact with the amino group

of Lys89 of helix aN3. In a similar fashion, Glu23 on helix aN1

interacts with Lys44 from helix aN2. Such extended ion-pair

networks contribute to thermostability in proteins [17]. The N-

terminus of helix aN1 is characterized by solvent exposed basic

residues (Figure 3B) and packs tightly against the G domain; in

particular with helices a6 and the C-terminal helix a7. Sequence

analysis suggests that these features are conserved throughout all

archeal receptors (Supplementary Figure S2). These clusters of

solvent-exposed basic residues on one face of aN1 and the surface of

the N domain seem to be in an ideal position for either membrane

anchoring, for example, through lysine or arginine ‘‘snorkeling’’ to

negatively charged phospholipidic head groups, or for interaction

with the ribosomal and/or the SRP RNAs.

Figure 2. The two bound GDP nucleotides in the G domain. (A) General view showing the relative positions of the two GDP molecules. The
two GDPs are about 31Å apart. (B) The GDPNmagnesium bound in the active site is represented with its hydrated magnesium ion. (C) The external
GDP (yellow) is bound near the insertion box domain. Another stacked external GDP (GDP*) molecule belonging to a symmetry-related molecule is
also represented (light pink) to emphasize the crystal packing contact. In (B) and (C) the residues involved in the interaction with a nucleotide are
labeled. Hydrogen bonds are shown.
doi:10.1371/journal.pone.0003619.g002

Archeal SRP Receptor Structure
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Compared to other SRs, the Pfu N-domain is unusual and
highly elongated

To date structures of six SRs have been reported; these include

the bacterial receptors, [18,19], Taq [20], Tma [21], Mmyc [14],

and the eukaryotic organelle-specific chloroplastic SR from Atha

[22,23]. Our Pfu-FtsY structure is the first representative from the

Archaea kingdom. The Pfu-FtsY N domain is unusual in several

aspects. While it retains the canonical four a-helical bundle fold

observed in all SRP GTPases, it has an additional two-stranded

anti-parallel b-sheet not seen in the other FtsY structures; bN1 is

inserted between helices aN1-aN2, and bN2 is inserted between

aN3-aN4 (Figures 1A). bN1 and bN2 assemble together to form

a flat surface exposed at the tip of the N domain (Figure 1B). The

aN1 helix of Pfu-FtsY, whose N terminus is perfectly defined, is

44Å-long and is a single secondary structure element with no

bending or disorder. This helix protrudes out of the N domain

(Figure 1B and 4A). While the position of the C-terminal helix

a7 is conserved in all SRs (Figure 4B), helix aN1 of the non-

archeal homologues is bent, resulting in an N terminal extension

that packs against the surface of the N/G domain including C

terminal helix a7 (Figures 4A and 4B). The aN1 helix of Pfu-

FtsY is not bent and its axis is shifted towards the core of the four

a-helix bundle resulting in an overall more compact, albeit

extended, N domain.

The average solution conformation observed by SAXS
agrees with the crystal structure

Compared to Pfu, Taq-FtsY is characterized by a short and

compact N domain (Figure 4C). Both receptors can be modeled

as prolate ellipsoids, similar in their short semi-axes but markedly

different in their long semi-axes. Based on the X-ray structures the

longest dimensions in the Pfu and Taq receptors are 91Å and 73Å,

respectively. This difference is entirely due to the shape of the N

domain. SAXS (Small Angle X-ray scattering) and AUC

(Analytical Ultracentrifugation) (Material and Methods) al-

lowed us to compare the relative shape anisotropy of the two

receptors in solution and validate the differences observed between

the two receptors as revealed by the X-ray structures.

The apparent sedimentation coefficients of Pfu-FtsY

(s = 3.760.1S) and Taq-FtsY (s = 2.460.1S) were determined

Figure 3. The N domain. (A) Stabilization of the highly charged N domain of apo Pfu-FtsY through an intricate network of salt bridges and
hydrogen bonds. 2.2Å resolution likelihood-weighted 2mFo-DFc Fourier difference electron density map contoured at 1.4s showing the most
solvent-exposed tip of the N domain. A subset of basic and acidic side-chains is shown. (B) Properties of the N-terminal helix aN1 of the N domain.
The helix aN1 packs tightly against the G domain helices a6 and a7 (C-terminal helix). Conserved hydrophobic residues contributing to the
interaction between the N-terminus of the N domain and the C-terminus of the G domain at the N/G interface are labeled. Solvent exposed basic
residues are also indicated. Helices are labeled. These properties appear to be conserved in all archeal receptor sequences.
doi:10.1371/journal.pone.0003619.g003
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(Table 2 and Figure 5A) and both receptors appeared as

monomers in solution. The apparent monomeric association state

established by velocity sedimentation was rigorously confirmed by

equilibrium sedimentation experiments carried out over a wide,

but still dilute, range of protein concentrations. Equilibrium

experiments yielded molecular weight estimations of

34,90061,780 Da and 32,64061,610 Da for Pfu and Taq,

respectively, in good agreement with the calculated values of

35,810 Da and 33,055 Da (Table 2 and Figure 5B).

SAXS was used to investigate the oligomeric state, size and

molecular shapes of the two receptors. A concentration depen-

dence study of the apparent radius of gyration was done from

concentrations ranging from 2.5 to 25 mg. ml21 in the small angle

region (Guinier analysis). All solutions appeared to be monodis-

perse with Guinier plots linear over an appropriate angular range

(0.5,QRG,1.25) (data not shown). There were no signs of protein

aggregation or association over the concentration range used in

this study. Solutions of Pfu- and Taq- FtsYs thus behaved ideally

with little effect of protein concentration on the apparent radius of

gyration as measured by SAXS.

The experimental intensity curves were fitted against the

theoretical curves calculated from the X-ray structures using

CRYSOL [24] with adjustment of the contribution due to the

hydration shell (Material and Methods). The resulting fits

(Figure 5C) are of good quality with respective x2 values of 1.077

and 1.211 for Pfu- and Taq- FtsYs. The corresponding pair-

distance distribution functions P(r) derived from experimental or

theoretical intensities were determined by Fourier transformation

using GNOM [25] and superimposed (Figure 5D). Based on the

experimental P(r), the maximum distance values of Dmax = 9465Å

and Dmax = 7265Å, for Pfu and Taq, respectively, are in very good

agreement with those of 91Å and 71Å derived from the

corresponding X-ray structures (Table 2). Calculation of the

distance distributions also allowed estimation of the radius of

gyration independently from the Guinier analysis (Material and
Methods). The experimental values for the radius of gyration of

RG = 25.660.1Å and RG = 22.860.1Å, for Pfu and Taq respec-

tively, are in very good agreement with those of 25.4Å and 22.6Å

calculated from the X-ray structures (Table 2). The experimental

values of molecular dimensions obtained from the analyses in the

low (RG) or high angle (RG and Dmax) regions are in close agreement

with those obtained using the X-ray structures. Thus our solution

data show that the average conformations adopted by the two

receptors in solution are similar to those observed in their

crystalline environments and that the relative shape anisotropy of

Pfu-FtsY is due to its long and extended N domain.

The low-resolution structures of Pfu- and Taq- FtsYs were

restored using the ab initio simulated annealing procedure

implemented in DAMMIN [26] (Material and Methods). This

approach was used to independently assess the average confor-

mation adopted in solution by the two receptors. The recon-

structed shapes are very close to the crystallographic envelopes

Figure 4. Comparison of the different SRP receptors. (A) The six available FtsY structures shown in the same relative orientation. In each case
the helix aN1 in the N domain and the a7 C-terminal helix in the G domain are colored in yellow and red, respectively. An asterisk indicates the N-
terminal extension observed in all FtsYs except Pfu. The sites of proteolysis observed in E.coli and Taq FtsYs upon FfhNFtsY complex formation are also
indicated (x). (B) Close-up view of the overlaid six FtsY structures showing the aN1 and a7 terminal helices. (C) Superposition of the Pfu and Taq
FtsYs emphasizing the shape anisotropy of Pfu-FtsY due to the long aN1 terminal helix in its N domain. Distances along the longest axis of inertia are
indicated.
doi:10.1371/journal.pone.0003619.g004
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(Figure 5E). Superposition of the reconstructed shapes with

crystal structures show that the main differences lay in the region

corresponding to the N domain. The shapes of both receptors

were faithfully restored and agree well with their respective

crystallographic apo structure. Superposition of the SAXS-derived

envelope and the crystal structure also suggests that the apical part

of the N domain is more dynamic, as indicated by the slight lack of

overlap between the SAXS reconstruction and the most solvent-

exposed extremity of the aN1 helix. These results correlate well

with the different crystal structures that show that the loops

connecting helices aN1-aN2 and helices aN3-aN4 are more

dynamic and in some cases disordered.

Relative conformations of the N and G domains and
formation of the FtsYNSRP54 complex: Implications for
the SRP-dependent protein-targeting cycle

In the FtsYNSRP54 complex the interface involves both N and

G domains: In particular, the N domain ELEX2LX3D motifs

present in both SRP54 and FtsY (see the sequence alignment in

Figure 1A) come in close contact upon complex formation. A

model of the Pfu-FtsYNSRP54 complex was assembled based on

our structure of the Taq complex. The N and G domain were

aligned independently to generate an NG conformation similar to

the one observed in the Taq complex (Figure 6A). In the case of

Pfu-FtsY, the N domain has to undergo a rotation and translation

to adopt the complexed conformation (Figure 6B). This rotation

causes the terminal helices aN1 and a7 to clash, highlighting the

requirement for a substantial displacement of aN1. The extent of

such steric hindrance is likely to be more important than our

model suggests, since the Taq complex structures have shown that

a7 repacks more tightly against the NG core interface upon

complex formation. The area of overlap maps to the stretch of

solvent-exposed basic aminoacids in aN. A recent structure of

GDP-bound Taq-FtsY with its aN1 helix deleted revealed that this

truncated version of the receptor adopts a conformation close to

the one observed in the Taq complex [15].

A model for the interaction between SRP and SR in the
archeal and eukaryotic core of the targeting complex

The targeting complex is formed when SRP interacts with its

receptor (Figure 7A). A functional archeal SRP is organized

around two proteins, SRP19 and SRP54 that assemble on SRP

RNA. We have also recently reported the structures of the SRP54

and SRP19 from Pfu (in press in PloS One). The present structure of

the associated receptor complements this work. Pfu is the first

organism where separate structures of all of the proteins present in

the targeting complex are available at high resolution. We

generated a model of this complex, based on three FtsYNFfhNG

heterodimer structures from Taq [6,7,27,28] and the SRP

structure from Methanococcus jannaschii (Mja) [29]. In the model,

we superposed the Pfu-FtsY (with its two GDPs) and the Pfu-

SRP54 NG domain onto the Taq-FtsYNFfhNG structure to

generate the equivalent Pfu-FtsYNFfhNG interface (Figure 6A).

The NG domain of Mja-SRP was superposed on the FtsYNFfhNG

core to model the relative position of the SRP RNA. The Pfu-

SRP19 subunit and the Pfu-SRP54 M domain (with the omission

of the G-M linker) were then docked, assuming similar, but not

necessarily identical relative configurations of the NG and M

domains in the SRP and the SRPNSR complexes (Figure 7B and
Supplementary Movie S1).

Discussion

We describe the X-ray structure of FtsY, the SR from the hyper-

thermophilic archaeon Pfu, in its free and GDPNmagnesium bound

states. The Pfu-FtsY construct used in this study encodes the full-

length receptor. The low resolution, solution scattering data

complements our high-resolution crystallographic analysis and

shows that the crystallographic structure and the average

conformation adopted in solution are similar. While the overall

architecture of the archeal receptor resembles its previously

described bacterial homologues from the SRP/SR GTPases

family, the structure of Pfu-FtsY reveals novel features: The

elongated N domain lacks the N-terminal extension observed in all

other bacterial FtsYs and is instead characterized by a long N-

terminal helix aN1 that packs against the NG core in a different

way; sequence analysis suggests that archeal receptors may cluster

apart from their bacterial homologues.

This is the first structure of a full-length GDPNmagnesium

bound SR. The previously reported Taq-FtsYNGDP structure was

obtained with a receptor that lacked the first 20 aminoacids [15]

and contained no magnesium, which is required for the association

between FtsY and Ffh. [14]. The structure reveals two nucleotide

molecules, one in the catalytic site and one located at the surface of

the protein next to the IBD motif unique to all SRP-GTPases. The

GDPNmagnesium bound receptor adopts a conformation close to

the one observed in the Taq-FtsYNFfh complex.

Several studies on E.coli FtsY have shown that the A domain is

involved in membrane anchoring [30], interaction with the

translocon, and possibly regulation of the GTPase cycle. In

particular, a positively charged, cleavable N-terminal sequence is

involved in membrane binding [31]. The A domain is important

for the initial attachment to the membrane; however, once bound

Table 2. Solution study by Analytical Ultracentrifugation and Small-Angle X-ray Scattering.

Method
Analytical Ultracentrifugation
Sedimentation Velocity Analytical Ultracentrifugation Sedimentation Equilibrium

experimental Mr calculated MW

apo Pfu-FtsY s = 3.760.1S Mr = 34,90061,780Da MW = 35,810Da

apo Taq-FtsY s = 2.460.1S Mr = 32,64061,610Da MW = 33,055Da

Method SAXS (Guinier analysis) SAXS (Distance distribution analysis)

experimental RG calculated RG experimental RG and Dmax calculated Dmax

apo Pfu-FtsY RG = 25.860.2Å RG = 25.4Å RG = 25.660.2Å Dmax = 9465Å Dmax = 9165Å

apo Taq-FtsY RG = 22.560.2Å RG = 22.6Å RG = 22.860.2Å Dmax = 7265Å Dmax = 7165Å

doi:10.1371/journal.pone.0003619.t002
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Figure 5. AUC and SAXS characterization of the Pfu and Taq FtsYs. Pfu data are represented in red and Taq in blue. (A) Sedimentation
velocity analysis. Data are presented in g(S*) format using the time-derivative method analysis. The curves fitted against Gaussian functions (solid
lines) are shown with their corresponding residual deviations. (B) Sedimentation equilibrium analysis. Radial distributions of concentrations along
with the fitted exponential curves (solid lines) are plotted with their corresponding residual deviations. Two representative fits are shown for each
protein. In all cases curves were fitted assuming a single species system. (C) and (D) High-angle analysis of SAXS data. (C) Scattered intensity curve
fits. The experimental I(Q) curves (circles) displayed with errors bars were fitted using CRYSOL against the theoretical curves (solid lines) calculated
from the crystal structures. (D) Distance distribution analysis. The experimental distance distribution functions P(r) are displayed (circles) with errors
bars and compared with the ones calculated (solid lines) from the crystal structures using CRYSOL and GNOM. (E) Ab Initio 3D shape restoration by
simulated annealing minimization. The protein envelopes are described using spherical harmonics expansion (fifth order). The retrieved shapes are
rendered with ASSA [52] (drawn as transparent envelopes) with their corresponding crystal structures after optimal superposition along their
respective inertia axes using SUPCOMB [53]. The final x2s are 0.943 and 1.109 for Pfu and Taq receptors respectively. Four different orientations are
shown to emphasize the quality of the reconstructions. Red asterisks indicate the areas of poorest overlap that correspond to the disordered regions
in the crystal structures.
doi:10.1371/journal.pone.0003619.g005
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its proteolytic cleavage from the NG catalytic core does not affect

receptor function [32,33]. Subtle changes introduced at the

boundary between the A and the N domain [19,34], also seem

to greatly affect the ability of the receptor to interact efficiently

with the membrane and target ribosomes. In E.coli the N-terminal

extension of the N domain also plays a role in membrane

interaction [19]. In Pfu-FtsY, the N-terminus of helix aN1 is

positively charged and could constitute the primary membrane

interaction site supporting initial attachment of the targeting

complex to the membrane and/or interaction with the membrane-

embedded translocon. Similar properties of the N-terminal

extensions present in the Mmyc and Tma FtsYs have been

described [14].

The N and C terminal ends of all SRP/SR GTPases are closely

apposed and are proposed to play a regulatory role in the SRP-

dependent targeting cycle [15]. In the case of FtsY, the rotation of

the G domain relative to its C-terminal a7 helix and its N domain

is coupled with the displacement of the N-terminal extension.

Upon complex formation systematic proteolysis of the N-terminal

helix of the Taq-FtsY and unfolding of the N-terminus of its

partner Ffh have been observed in vitro [35] and in all Taq-

FtsYNFfhNG complex structures. In E.coli and Taq FtsYs the

Figure 6. Model of domain rearrangement in Pfu-FtsY upon its interaction with SRP54. (A) The overall structure of the Pfu model is based
on the structure of the Taq-FtsYNFfhNG. For Pfu-FtsY, the N and G domain have been colored red and green respectively except for the aN1 and a7
terminal helices highlighted in red and pink. The stretch of basic aminoacids present at the N terminus of aN1 (yellow) clashes with a7. For the N
domain, the DX4ELEX2LX3D motifs (Glu47-Asp61 (Pfu) on Glu29-Asp43 (Taq)) were aligned. The entire G domains (Val125-Phe307 (Pfu) on Val104-F292
(Taq)) with the omission of the C-terminal a7 helix were aligned. A similar alignment was made for the Pfu-SRP54 NG (light blue) including Leu39-
Asn45 (Pfu) on Leu38-Asn44 (Taq) for the N domain, and Val106-Phe284 (Pfu) on Val104-Phe282 (Taq) for the G domain. The Pfu-SRP54 structure (pdb
code 3DM5) used for modeling is reported in a previous article (in press in PloS One). The N-G linkers were omitted. (B) Detail showing the
rearrangement undergone by the aN1 and a7 terminal helices at the N/G interface upon complexation.
doi:10.1371/journal.pone.0003619.g006
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proteolysis sites have been mapped at position Ser216 and Pro23

respectively. It remains unclear whether this alteration of the N-

terminus of the receptor is a required step during SRP-mediated

protein targeting. A recent study of E.coli FtsY and Ffh has shown

that truncation of the first helix of the N domain of both proteins

dramatically accelerates complex formation; the aN1-truncated

Ffh and FtsY interact at nearly the RNA-catalyzed rate in the

absence of the SRP RNA [36]. Furthermore, in the case of FtsY in

presence of GMPPNP, NMR experiments showed that truncation

of helix aN1 mimics the conformational changes associated with

FtsYNFfh complex formation [36]. Such results have not been

transposed yet to either archaeal or eukaryotic systems that exhibit

an increased level of structural complexity. However, in the model

of the Pfu-FtsYNSRP54 complex that we present here, truncation

or some other displacement of the N-terminus of aN1 is required

for the FtsY to achieve the NG conformation observed in the Taq-

FtsYNFfh complex; these findings seem transposable to the SRP54

partner although the presence of the linker connecting the G and

M domains complicates analysis.

We have built a model of the core of the archeal targeting

complex based on structures of the Taq-FtsYNFfh complex and an

archeal SRP. Our model places SRP RNA on the same side of the

FtsYNSRP54 core as a structural model of the E.coli targeting

complex inferred from chemical footprinting [37]. Both models

introduce asymmetry in the otherwise symmetric heterodimeric

catalytic core. An external nucleotide-binding site identified in the

Taq-FtsYNFfhNG complex [27] is adjacent to one of the two exits

of the catalytic chamber. Residues from both Ffh and FtsY

contribute to this external site that exhibits conserved sequence

and structural features. In our model, this site maps on the

FtsYNSRP54 interface that faces the SRP RNA. Our FtsY

structure identified a second and distinct external nucleotide-

binding site located on the surface of the receptor. In our model,

this site represents a potential site of interaction with ribosomal

RNA or regions of the SRP RNA that are not present in the

models or available structures. Altogether, this suggests that a

potential direct interaction with the SRP RNA could regulate the

activity of the receptor in the targeting complex. The aN1 helix of

the receptor is freely accessible to promote interactions with the

membrane and/or the translocon, while the equivalent region in

SRP54 is not accessible because of its vicinity with the SRP RNA.

If the latter were also to regulate membrane interaction, the SRP

RNA would have to move away.

The N-terminus of SRP receptors appears to play a crucial role

in the assembly of the targeting complex and its regulation, while

the symmetrical arrangement of the two SRP-GTPase twins seems

to be mirrored in the conformational changes observed in their N

termini. The SRP RNA has been shown to control a conforma-

tional switch regulating the interaction between the two SRP

GTPases. As signal sequences bind to SRP54/Ffh in presence of

SRP RNA, and the catalytic core of the targeting complex

undergoes the structural changes priming it for interaction with

Figure 7. A model for the association between the SRP and it receptor SR in the targeting complex. (A) Schematic showing the overall
organization of the Pfu targeting complex. The core of the SRP RNA is shown with helices 6 and 8, the respective binding sites for the proteins SRP19
and SRP54. In SRP54 the M domain, responsible for both SRP RNA and signal sequence recognition, is connected to the NG domain (GTPase) through
a flexible linker (red). Although the NG of SRP54 domain has also been shown to interact loosely with the core of the SRP RNA, for the sake of clarity
this is not represented on this schematic. (B) The Pfu protein structures were used to generate this model based on the Taq-FtsYNFfhNG and Mja-SRP
complexes structures. FtsY, SRP54 and SRP19 are colored in green, blue and orange respectively. The core of the Mja-SRP RNA, composed of helices
5,6 and 8 is represented in pink. In the SRP54 subunit, the GM linker, colored in red, has been manually repositioned. Nucleotides are represented
using space-filling models. At the FtsYNSRP54 interface, the twinned GTP substrates are colored in yellow and the two external nucleosides observed
in the Taq-FtsYNFfhNG structure bound to GDP-AlF4 (red asterisk) and in the Pfu-FtsY structure (magenta asterisk) are colored in white. aN1 helices are
labeled. The Pfu-SRP19 structure (pdb codes 3DLU and 3DLV) used for modeling has been reported in a previous article (in press in PloS One).
doi:10.1371/journal.pone.0003619.g007
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the membrane and/or the translocon, the SRP RNA is likely to

coordinate those events by regulating the activity of the receptor.

This attractive hypothesis awaits further structural evidence.

Materials and Methods

Protein Expression and Purification
The gene encoding full-length Pfu-FtsY (PF1766) was amplified

by PCR using genomic DNA and cloned in the pET28b vector

(Novagen). The corresponding protein expressed as a fusion with a

N-terminal hexahistidine tag cleavable with thrombin. Protein was

expressed in BL21(DE3)-rosetta2 E.coli cells grown in auto-

induction media [38] and seleno-substituted protein was expressed

in B843(DE3)-rosetta2 E.coli cells grown in minimal media with

glucose as carbon source and using the aminoacid pathway

starvation method [39]. Purification was achieved in four steps

combining heat selective precipitation, cobalt-chelating affinity

chromatography, gel filtration and ion-exchange chromatography

after removal of the purification tag. No detergent was used during

purification or crystallization. The Taq-FtsY was expressed and

purified as described previously [6,20].

Protein Crystallization
For crystallization, protein was concentrated at 20 mg. ml21.

Crystals of apo Pfu-FtsY were obtained at room temperature from a

variety of conditions in hanging drops by the vapor diffusion

method using a Mosquito nanoliter-scale robotic workstation

(TTP Labtech). Two crystals forms were obtained for the apo

protein. The hexagonal form (space group P622) grew in 1.1–

1.5 M ammonium phosphate and 100 mM sodium acetate

pH 5.0. The monoclinic form (space group C2) grew in 0.9–

1.2 M lithium sulfate, 0.4–0.6 M ammonium sulfate and 100 mM

sodium citrate pH 5.0. For the GDP-bound structure, soaking

crystals of apo Pfu-FtsY failed but co-crystallization in presence of

10 mM GTP yielded several crystallization conditions. Best

crystals grew in 14–17% PEG 8000 and 100 mM Tris pH 8.0

and belong to the monoclinic space group C2.

X-ray Data Collection and Structure Determination
X-ray diffraction data were collected at beamline 8.3.1 at the

Advanced Light Source (Berkeley, California) on Quantum 210 or

315r CCD detectors. The hexagonal crystals of apo Pfu-FtsY cryo-

protected in 2-methyl-2,4-pentanediol diffracted to 2.2Å resolu-

tion. The monoclinic crystals of apo Pfu-FtsY cryo-protected in

glycerol diffracted to 2.2Å resolution. The monoclinic crystals of

holo Pfu-FtsY cryo-protected in ethylene glycol diffracted to 2.0Å

resolution. Data were indexed, reduced and scaled with HKL2000

[40] or MOSFLM [41] and Scala [42] using Elves [43]. The

hexagonal form of apo Pfu-FtsY was solved using anomalous

dispersion of selenium. SAD phasing and density modification

were performed in Phenix [44]. Following location of the four

expected seleniums, the figure of merit of 0.39 was further

improved to 0.61 after density modification. The monoclinic form

of apo Pfu-FtsY and the GDPNmagnesium-bound structure were

solved using the hexagonal structure as search model for molecular

replacement in Phaser [45]. Partial automatic building and

refinement were done using Phenix without use of non-crystallo-

graphic symmetry restraints in the case of the monoclinic crystal

form. Model building was done in Coot [46]. In all structures the

region encompassing residues T219-N221 following the conserved

DTAGR motif (motif III) is poorly defined. The hexagonal form

apo structure lacks residues 21–40 and 86–89. The hexagonal apo

structure and the holo structure lack residues 25–37 and 85–89 at

the tip of the N domain. For the GDPNmagnesium bound

structure, two GDP molecules were introduced and their relative

occupancies refined to consistent atomic displacement parameters.

TLS-refinement was also used for the holo structure by considering

two separate groups encompassing the N domain (residues 1–110)

and the G domain (residues 111–318). Structure qualities were

assessed with MolProbity [47].

Analytical Ultracentrifugation
Sample preparation and data measurement. For AUC

experiments, the top-peak fractions from gel filtration were diluted

as required and used immediately. Centrifugation was carried out

in buffer, 20 mM Hepes pH 7.5, 250 mM KCl, 0.5 mM EDTA

and 5 mM MgCl2, at 20uC using a Beckman Optima XL-A

(Beckman Instruments Inc., Palo Alto, CA) with absorbance

monitoring at 280 nm. Protein concentrations were in the range of

0.35–3.5 mg. ml21, corresponding to molar concentrations of 10

to 100 mM. Partial specific volumes of proteins were calculated

using amino-acid compositions; the values used for data analysis

were 0.7307611 cm3. g21 and 0.732851 cm3. g21 for Pfu- and

Taq- FtsYs, respectively.

Sedimentation velocity. The net sedimentation behavior of

macromolecules is described by the Svedberg equation. For a

species with a sedimentation coefficient s:

s~
MD 1{nrð Þ

RT

where M is the molecular weight, D the diffusion coefficient and n̄
the partial specific volume of the solute in a solvent of density r.

The apparent sedimentation coefficients s* at the boundary can be

determined using time-derivative analysis methods allowing

derivation of the sedimentation coefficient distribution function

g(s*) as implemented DCDTplus program [48]. To achieve the best

hydrodynamic resolution, samples were spun at 50 000 rpm.

Consecutive scans were recorded at regular intervals until

complete depletion of the solute. Distribution functions were

fitted against a Gaussian function.

Equilibrium sedimentation. At equilibrium, the

concentration distribution generally approaches an exponential;

for a mixture of non-interacting and ideally-sedimenting solutes,

a(r) the measured absorbance as a function of the radial position r

can be formalized as [49]:

a rð Þ~
X

i

ci,0eide

Mi 1{ni rð Þv2

2RT
r{r0ð Þ2

h i
zd

where the summation is over all i species; ci,0 represents the molar

concentration of species i at a reference position r0; v, Mi, ni and ei

respectively represent the angular velocity, the molar mass, partial

specific volume, and extinction coefficient; d is the optical path

length and d a baseline correction accounting for differences in

non-sedimenting solutes between sample and reference and small

non-idealities in cell assembly and data acquisition. Samples (3 to 9

concentrations) were spun at 4 different speeds (8500, 12 000,

17 000 and 20 000 rpm). Data were analyzed in WinNonLin (from

David Yphantis at http://spin6.mcb.uconn.edu/winnonlin/

winnonln.html) using non-linear least squares analyses and

assuming a single component model. Determination of the

reduced molecular weights (s) yielded the molecular weights.

Small Angle X-ray Scattering
Sample preparation and data collection. For SAXS

experiments, the experimental buffer was 20 mM Hepes pH 7.5,
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250 mM KCl, 0.5 mM EDTA and 5 mM MgCl2 and 10 mM

DTT. For measurements at low Q, the top-peak fractions from gel

filtration were used without further concentration (concentration

range 2.5–12.5 mg. ml21). For measurements at high Q, samples

were concentrated up to 25 mg. ml21. SAXS data were recorded

at beam line BL4-2 [50] at the Stanford Linear Accelerator

(Stanford, USA). Samples contained in 1.2 mm path cells with

thin mica windows were thermostated at 15uC. The X-rays

wavelength was l= 1.38Å. For Taq-FtsY, scattered X-rays were

detected using one-dimensional position sensitive proportional

counters. The short distance setup for the high-angle analysis with

a sample-to-detector distance of 960 mm and a He2/CO2 gas-

filled detector corresponded to an angular range of

0.018Å21,Q,0.30Å21. The long distance setup for the small-

angle analysis with a sample-to-detector distance of 1960 mm and

an Ar2/CH4 gas-filled chamber detector corresponded to an

angular range of 0.009Å21,Q,0.175Å21. For Pfu-FtsY, scattered

X-rays were recorded using a MarCCD165 detector using two

different detector-to-sample distances (0.5 and 2 m). For each

sample or buffer, 30 frames of 30 seconds were recorded,

individually inspected to check for X-ray induced sample

damage. The Q-axes of the detectors were calibrated using the

{1,0,0} and related reflections of a cholesterol myristate powder

sample.

Data analysis and processing. Individual scattering curves

were normalized to the incident beam intensity, corrected for

background and radially averaged using the programs Otoko, Sapoko

and MarParse [50]. Two scattering curves, one recorded at low

concentration and low angle and one recorded at high

concentration and high angle region, were merged and scaled

together using the program GNOM before calculation of the

distance distribution function or fit against a theoretical scattering

curve. No geometrical corrections were applied on experimental

curves.

Guinier analysis. The data in the lowest angle range when

plotted as lnI(Q) versus Q2 give the radius of gyration RG and I(0)

the forward scattering intensity extrapolated at zero angle with:

ln I Qð Þ~ln I 0ð Þ{ Q2

3
R2

G with Q~
4p sin h

l

Q is the scattering vector for a scattering angle of 2h. For a sphere,

this expression is valid in a QRG range up to 1.3 which can be

extended up to 2 in some cases, the most conservative limit being

in the range of QRG = 1. The values of I(0) allow the calculation of

an apparent molecular mass Mr of the particle in solution as far as

the solute concentration has been determined accurately. Guinier

analyses were performed using the program PRIMUS [51].

Distance distribution function P(r). Indirect transfor-

mation of the scattering intensity I(Q) in reciprocal space into

that in real space were carried out using the program GNOM [25]

since:

I Qð Þ~
ðDmax

0

P rð Þ sin Qrð Þ
Qr

dr

As P(r) corresponds to the distribution of distances r between any

two volumes elements within one particle, it offers an alternative

calculation of I(0) its zeroth moment, RG its second moment and

gives also Dmax the chord or maximum dimension of the

macromolecule:

P rð Þ~ 1

2p2

ð?
0

I Qð ÞQr sin Qrð ÞdQ with
P r~0ð Þ~0

P r§Dmaxð Þ~0

(

and R2
G~

Ð?
0

r2P rð Þdr

2
Ð?
0

P rð Þdr

As calculation of P(r) includes an estimate of the chord, Dmax was

determined from the values of r when P(r) became zero at larger r

values; a range of maximum chords was systematically tested for

integration and the final choice of Dmax was based on four essential

criteria: (i) the restriction P(r = 0) = 0; (ii) P(r) should exhibit

positive values; (iii) the RG from GNOM should agree with the ones

derived from the Guinier analysis; and (iv) the curve should also be

stable as Dmax is increased beyond the estimated maximal

macromolecular length with P(r$Dmax) = 0.
Scattering curves calculations and fitting. The scattering

intensity I(Q) from particles in a solvent with scattering length ro
and with an hydration shell of contrast dr can be evaluated as:

I Qð Þ~S A0 Q
!� �

{roAe Q
!� �

zdrAhs Q
!� ���� ���2TV

with Q
!

~ Q,Vð Þ

The particle has a scattering density ra and is surrounded by a

solvent with an average scattering density of ro; the hydration shell

is depicted by a border layer of effective thickness D and density rb

different from ro. Here A0 Q
!� �

, Ae Q
!� �

and Ahs Q
!� �

are the

amplitudes from the particle in vacuo, the excluded volume and the

hydration shell, respectively. V is the solid angle in reciprocal

space. I(Q) is an average over all orientations of the particles in

solution. The particle shape is described as an angular envelope

function. The scattering from the hydration shell is simulated by

surrounding the envelope function with a layer of thickness D= 3Å

and density rb. Experimental curves Iexp(Q) are fitted against

calculated curves Icalc(Q) by adjusting two parameters, the total

excluded volume V and the contrast between of the border layer

dr = rb2ro to minimize the discrepancy x defined as:

x2~
1

N{1

XN

i~1

Iexp Qið Þ{Icalc Qið Þ
s Qið Þ

� �2

N is the total number of experimental points and s(Qi), their

associated standard deviations. In practice, theoretical scattering

curves were calculated using CRYSOL [24] programs and

automatically fitted against experimental curves. The resulting

fitting parameters adjusted in CRYSOL corresponded to a

reasonable description of the hydration properties of the particles

in solution.
Ab initio three-dimensional reconstruction of molecular

shapes. Low resolution shape retrieving from one-dimensional

small angle X-ray scattering data in solution was performed using

the program DAMMIN [26]. A Dummy Atom Model (DAM) is

randomly generated and composed of an array of given contrast

spheres densely packed on a hexagonal face-centered cubic lattice

of given lattice constant. The scattering intensity from any given

DAM is calculated by global summation over all dummy atoms
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using spherical harmonics expansion to represent partial

amplitudes. Ab initio reconstruction consists in finding a DAM

configuration corresponding to a minimal value of a goal energy

function and minimizing the discrepancy between experimental

and DAM-based scattering curves. Compactness, connectivity and

looseness of the DAM are described by functions that are taken

into account during the global minimization procedure that uses

simulated annealing. The algorithm proceeds iteratively through a

single dummy atom move. No shape constraints were introduced

during the calculations. Ten independent reconstructions trials

were performed for each receptor.

Supporting Information

Figure S1 Conformational changes in the active site of FtsY.

The apo and GDPNmagnesium structures of Pfu-FtsY are

superposed together with the GMPPCP-bound Taq-FtsY (as seen

in the FtsYNFfhNG complex) and GDP-bound truncated Taq-

FtsY. The GDPNmagnesium (Pfu), anion (Pfu), GDP (Taq) and

GMPPCPNmagnesium (Taq) are shown in yellow, blue, orange

and red respectively. Residues are numbered for Pfu and Taq (in

italic). In the GDP-bound Taq-FtsY structure, Arg142 is on a

disordered loop and was not seen. The conserved SRP-GTPase

motifs I, II, IV and V are indicated.

Found at: doi:10.1371/journal.pone.0003619.s001 (2.09 MB TIF)

Figure S2 Alignment of archeal FtsY sequences. The sequence of

Pfu-FtsY is aligned against 12 FtsY sequences from archeons

representative of all families constituting the archeal kingdom. The

secondary structure elements of Pfu-FtsY are indicated. The

sequences correspond to Pyrococcus furiosus, Sulfolobus solfatar-

icus, Methanococcus jannaschii, Archaeglobus fulgidus, Thermo-

coccus zilligii, Halobacterium salinarum, Pyrobaculum aerophilum,

Methanothermobacter thermoautotrophicus, Methanoculleus,

marisnigri, Aeropyrum pernix, Thermoplasma acidophilum and

Methanosaeta thermophila. The alignment is restricted to the N

domain. All sequences are truncated at the strictly conserved glycine

residue (Gly130 in Pfu) delineating the start of motif I (the P-loop) in

all SRP/SR GTPases and indicated by a red asterisk. Note the long

insertion present in the N domain from Methanococcus. Note the

extreme difference in size observed between the N domains from

Methanococcus (200 residues) or Thermoplasma (88 residues).

Sequence and domain-size variability mainly arises in the insertion

located between region the aN1 and aN2 helices (blue line). The N-

terminal end of the aN1 helix is characterized by a conserved

phenylalanine residue and its high content in basic residues (red

line).

Found at: doi:10.1371/journal.pone.0003619.s002 (0.72 MB EPS)

Movie S1 A model for the association between the SRP and its

SR in the targeting complex. The movie shows the model as

presented in Figure 7. The N-terminal helices aN1 of both FtsY

and SRP54 are highlighted (yellow) to emphasize their positions

relative to the a7 helices (magenta) at the C-terminus of each G

domain.

Found at: doi:10.1371/journal.pone.0003619.s003 (4.77 MB

MOV)
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