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Rapid recruitment of neutrophils to an inflamed site is one of the hallmarks of an effective
host defense mechanism. The main pathway through which this happens is by the innate
immune response. Neutrophils, which play an important part in innate immune defense,
migrate into lungs through the modulation actions of chemokines to execute a variety of
pro-inflammatory functions. Despite the importance of chemokines in host immunity, little
has been discussed on their roles in host immunity. A holistic understanding of neutrophil
recruitment, pattern recognition pathways, the roles of chemokines and the
pathophysiological roles of neutrophils in host immunity may allow for new approaches
in the treatment of infectious and inflammatory disease of the lung. Herein, this review aims
at highlighting some of the developments in lung neutrophil-immunity by focusing on the
functions and roles of CXC/CC chemokines and pattern recognition receptors in
neutrophil immunity during pulmonary inflammations. The pathophysiological roles of
neutrophils in COVID-19 and thromboembolism have also been summarized. We finally
summarized various neutrophil biomarkers that can be utilized as prognostic molecules in
pulmonary inflammations and discussed various neutrophil-targeted therapies for
neutrophil-driven pulmonary inflammatory diseases.
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INTRODUCTION

Infections of the lower respiratory tract accounts for about 35% of all deaths accruing from
infectious diseases, resulting in a yearly death rate of about 4 million patients (1). They increase the
worldwide disease burden than most infectious diseases such as HIV infection and malaria (1, 2).
The effectiveness of a host defense mechanism against infections of the lung is very crucial and this
is basically dependent on the quick clearance of the disease-causing agent from the airways. The
main pathway through which this happens is by the innate immune response (3, 4). Therefore, any
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inabilities in the host innate immune response can lead to heavy
microbial colonization which can compromise the integrity of
the lung parenchyma. The exact mechanism of immune
activation during pulmonary inflammation and infection
remains unclear. However, some studies have iterated that the
host, through resident and non-resident immune cells and
receptors such as pattern recognition receptors (PRR),
recognizes and destroys these organisms. One of the key
players in innate immunity is neutrophils and their
recruitment to the site of inflammation. Because of their ability
to enter into organs and tissues to execute important host
defense mechanisms, neutrophils are usually refer to as all-
terrain vehicle of the innate immune system. Neutrophils form
the first line of host defense mechanism because of how quick
they are recruited when the lung is challenged with a microbial
infection or other particles. These functions of neutrophils are
highly regulated by signals received from their repertoire of
PRRs, and this allow neutrophils, whose recruitment are
modulated by chemokines to sense both pattern-associated
molecular patterns (PAMPs) and damage-associated molecular
patterns (DAMPs) at the site of inflammation. Robust
recruitment of neutrophils to an inflamed site is the hallmark
of all injuries and acute microbial infections (5, 6). This robust
recruitment is made possible through neutrophil concentration
gradients across the epithelium, extracellular matrix (ECM) and
endothelium (7, 8). Neutrophils are guided to the sites of action
by chemokines expressed by resident cells. It has been confirmed
through animal and clinical studies that, CXC and CC
chemokines play important roles in innate immunity by
recruiting and activating neutrophils during microbial
infections and injuries of the lungs. During some inflammatory
diseases, the levels of these chemokines increase and vary
according to the stage of the disease (9–11). Inappropriate
neutrophil recruitment, or when neutrophil activation is
impaired, it can lead to lung inflammations. Also, when the
recruitment is not controlled or when the activation is not
sustained, this could lead to collateral tissue damage and disease.

Despite the importance of chemokines and pattern recognition
receptors inhost immunity, little has beendiscussedon their roles in
neutrophil-induced immunity. Herein, this review aims at
highlighting some of the developments in lung neutrophil
immunity and focuses on the functions of (1) CXC chemokines,
(2) CC chemokines, (3) pattern recognition receptors and (4)
integrins in neutrophil immunity during lung infections and
inflammations. The pathophysiological role of neutrophils in
COVID-19 and thromboembolism have also been summarized.
Finally, we discussed various neutrophilic biomarkers, and various
neutrophil-targeted therapies for neutrophil-driven pulmonary
inflammatory diseases.
NEUTROPHILS

In humans, neutrophils form the largest proportion of leukocytes
that circulate in the blood and form the major component in
organs such as the lungs. They play a major role in innate
immunity despite being described as having terminal
Frontiers in Immunology | www.frontiersin.org 2
differentiation and being characterized with a short lifespan
after leaving the hematopoietic organ. Their main
distinguishing characteristic is the removal of debris and
pathogens through phagocytosis but can also play important
roles in immune functions. Aside the direct phagocytosis of
bacteria (12) and fungi (13), neutrophils, through the process of
NETosis reduce the spread of microbes by releasing neutrophil
extracellular traps (NETs) (14). Although neutrophils destroy
pathogenic agents, they also have the ability to significantly
modulate the functions of other immune cells. The recruitment
of neutrophils into the lung usually occurs in the small capillaries
of the alveolar network (15, 16). Neutrophils change their shapes
in order to move across the capillary bed because of the small
nature of the lung capillaries (15). In addition, the velocity of
blood flow within the lungs’ capillary network is low (17). The
velocity of blood flow and the change in shape of neutrophils
account for the increase in the time required by neutrophils to
transit during physiological conditions in the pulmonary
microvasculature and this has accounted for the name
‘marginated pool of neutrophils’ (15) (Figure 1A). The
extracellular secretion of oxidases and proteases (e.g.
Myeloperoxidase and neutrophil elastase) following the
mobilization of granule to the surface of a cell is a trademark
of neutrophil activities within an inflamed airway. This
mechanism modulates the upregulation of primary and
secondary granule markers (CD63 and CD66b, respectively) on
the surface of airway neutrophils resulting in high proteolytic
and oxidative activities. Further findings have shown that airway
neutrophils play a role in the regulation of adaptive immune
system, demonstrating the multifaceted significance of
neutrophil plasticity (19). For instance, in cystic fibrosis airway
neutrophils, a significant immunosuppressive feature has been
detected. This feature is immunosuppressive because it causes
the downregulation of T-cell through the activation of arginase I
(20). When neutrophils are activated in cystic fibrosis airways,
they don’t only impact on T cells but also play important role in
the lymphatic compartment by showcasing its antigen-
presenting cell capabilities (e.g., expression of CD80, CD86,
and MHC II). One feature of immature neutrophils is the
expression of CXCR4 and is highly upregulated when airway
neutrophils are activated. This could be responsible for their
acquired ability to migrate from inflammatory tissues into
lymphatic vessels (21–23). The transiting of neutrophils to
lymph nodes has been related to the proliferation of T-cell,
suggesting that neutrophils are also involved in the active
regulation of the adaptive immune response (23, 24).
Intracellular pathogens can use this lymphatic neutrophils as a
“Trojan horse” to spread within the body (25, 26).
INTEGRIN-MEDIATED NEUTROPHIL
INTERACTION WITH ENDOTHELIA AND
EPITHELIAL CELLS

Until recently, adhesion of neutrophils to the endothelium was
known to involve three phases: rolling which is mediated by
October 2021 | Volume 12 | Article 689866
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selectin, chemokine-triggered activation of neutrophils, and firm
arrest of neutrophils initiated by integrins (27, 28). However,
studies have shown that this process is a rather complex event
made up of additional phases such as tethering, slow rolling,
modulation of adhesion strength, intraluminal crawling, and
transcellular or paracellular migration (27, 29). Currently, it is
believed that the first stage in neutrophil and other leukocyte
adhesion to the endothelium is neutrophil capture (or tethering),
which is mediated by interactions between L, E, and P-selectins,
as well as P-selectin glycoprotein ligand (PSGL1) and a4b1
(VLA4) integrin. Leukocytes, inflamed endothelium and
platelets, and inflamed endothelium are known to respectively
express L-selectin, P-selectin and E-selectin. Also, endothelium
and some leukocytes are known to express PSGL1. Subsequently,
an interaction between selectins, PSGL-1 and other glycosylated
ligands mediate the rolling of neutrophils on the endothelium.
More importantly, adhesions which are mediated by L-selectin
and P-selectin require shear stress (30, 31). This phase is ensued
by a selectin-triggered signaling phase (“slow rolling”), followed
by a firm capture of neutrophils on the endothelial surface, a step
that involves b1- and b2-integrins and their respective
binding partners.

Integrins are ab heterodimeric, transmembrane proteins that
mediate both cell-substrate and cell-cell interactions with a
diverse group of ligands (32). Integrins have numerous
functions, one of which is to mediate cell migration. Integrins
are made up of several a subfamily (a2b1, a3b1, a4b1, a5b1,
a6b1 and a9b1) which are usually expressed and upregulated on
Frontiers in Immunology | www.frontiersin.org 3
neutrophils (33, 34). Integrins, including those of the b1 and b2
subfamilies are known to be expressed by human neutrophils.
Proteins of the extracellular matrix (ECM) binds to the b1 family
integrin upon recognition of the amino acid sequences Arg-Gly-
Asp (RGD) and Leu-Asp-Val (LDV) (35). The b2-integrins
consist of a common b-chain (CD18) and a variable a-chain
(CD11a, b, c, or d). Interactions between CD11a/CD18 (LFA-1),
a4b1 (VLA-4), a4b7 and some intercellular adhesion molecules
such as ICAM-1, VCAM1, and MADCAM1 mediate neutrophil
arrest. A series of outside-in and inside-out intracellular
signaling pathways are then activated, resulting in the
strengthening of adhesion followed by the spreading of
neutrophils. Conformational changes in the structure of
inserted (I) domain of the aL subunit of LFA-149 enhance
firm neutrophils adhesion under shear flow (36, 37).
Neutrophils then crawl along endothelial cells (“intraluminal
crawling”) by a process involving interactions between CD11b/
CD18 (amb2 or Mac-1) and ICAM-1. Neutrophils, through a
paracellular or a transcellular route, finally transmigrate across
the endothelium. In a murine experiment, integrin a4b1 was
found to be involved in neutrophil adhesion during pneumonia
caused by Streptococcus pneumoniae (38). Also, in a study by
Ulyanova et al., it was opined that integrin a4b1 plays a key role
in adhesion and migration during lung inflammation, and
mediates integrin b2-independent neutrophil accumulation
(39). However, the expression of integrin a4b1 on neutrophils
in early stage acute respiratory distress syndrome (ARDS), was
found to be downregulated (40). During lung infection, it has
A

B

C

FIGURE 1 | Schematic representation of how neutrophils are recruited to the lung. (A) Neutrophils change their shapes in order to move across the capillary bed
because of the small nature of the lung capillaries. The increase in time required by neutrophils to transit in the lungs accounts for the name ‘marginated pool of
neutrophils’. Neutrophil stiffening by cytoskeleton rearrangement after stimulation participates in neutrophil recruitment into the lung. (B) 12-HETE, a lipid mediator
made by 12/15-LO in lung macrophages regulates the balance of chemokine-chemokine receptors and increases vascular permeability and neutrophil recruitment in
the lungs. (C) The increase in chemokine concentration gradient in the alveolar region coupled with the presentation of chemokines by glycosaminoglycans,
modulates the recruitment of neutrophils to this region of the lung (18).
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been reported that extravasation of neutrophils to the site of
inflammation is aided by integrin a9b1 (33). In a study involving
older people with aspiration pneumonia, it was found that
integrin a9b1 and CD11b expression levels on circulating
neutrophils were increased (41).
NEUTROPHIL DEGRANULATION

Pro- and anti-inflammatory substances are the major
components of neutrophil granules and these can be released
to destroy pathogenic organisms. This process is termed as
degranulation (42). Neutrophils play important roles by
releasing granules that aid in the killing of invading pathogens.
Primary (azurophilic), secondary (specific) and tertiary
(gelatinase) granules, as well as secretory vesicles are the four
types of granules found in neutrophils. Each of these granules has
a different protein content (43). They have distinct functions and
are released sequentially to cell surface or to the microbe-
containing phagolysosome by exocytosis in response to various
signals. Following initial contact of neutrophils and endothelial
cells, secretory vesicles are released via exocytosis which results
in the expression of some key surface membrane proteins leading
to the rolling of neutrophils through the endothelial monolayer
in blood vessels. This then initiates extravasation at the infection
site (43). The release of a secretory vesicles is respectively
followed by the release of tertiary, primary and secondary
granules (16). The release of the contents of the primary and
secondary granules into the phagolysosome, or degranulation
into surrounding tissues, initiates a series of antimicrobial
activities. Antimicrobial enzymes and peptides such as serine
proteases and defensins, as well as myeloperoxidase, which
converts H2O2 to antiseptics hypobromous acid, hypochlorous
acid and hypoiodous acid are all constituents of the primary
granules (44). Lactoferrin, lipocalin, lysozyme, LL37 and matrix
metalloproteinases are among the overlapping proteins
contained in secondary and tertiary granules (44). The actions
of these molecules within the granules are required for effective
pulmonary immunity without causing significant tissue
damage (45).
NEUTROPHIL EXTRACELLULAR TRAPS

Until recently, neutrophils were mainly known to utilize both
extracellular killing by exocytosis and intracellular killing by
phagocytosis to recognize and kill pathogenic organisms.
Recently, the release of extracellular “traps” or complexes created
by cationic effectors (including neutrophil myeloperoxidase and
elastase), histones, and decondensed nuclear DNA (e.g., after
histone citrullination), have been identified as the third effector
mechanism utilized by neutrophils. The release of neutrophil
extracellular traps (NETs) (Figure 2), through a process call
“NETosis”, is believed to immobilize pathogens and probably
destroy them while also precipitating neutrophil death (47, 48).
Although NETs have been linked to a variety of diseases, including
Frontiers in Immunology | www.frontiersin.org 4
viral, fungal, and bacterial infectious diseases as well as other
autoimmune disorders, their functions in chronic and acute
inflammation is still not fully elucidated (47, 49). Studies focusing
on NETs have demonstrated both advantageous and harmful
impacts of these systems in the context of airway diseases (50).
NET can increase the killing efficiency and reduce the burden
caused by pathogens because of its ability to spread out and trap
these pathogens. A lot of organismshavedeveloped amechanism to
evade these destructive impacts of the NET system and this can
result in the accumulation of host DNA, histones, neutrophil
elastase, and myeloperoxidase thereby causing direct or indirect
cell toxicity and subsequent lung injury (51–53). This can also lead
to obstruction in the airways because the presence of these proteins
and enzymes may result in an increased mucus viscosity (54–56).
REGULATORY ACTIVITIES OF
NEUTROPHILS DURING PULMONARY
INFLAMMATION AND INFECTION

The most common lung infectious disease which is characterized
by inflammation in the interstitial lung, alveolar and the airways
is pneumonia. Pneumonia development hinges on the interplay
between mucosal immunity and mucosal colonization by the
etiological agent (57). During pneumonia, there is recruitment of
neutrophils into the lung. Neutrophils can act in unison with
other immune cells to regulate infections caused by pathogens
(58). In recent times, evidence have been documented on the
roles of neutrophils in pneumonia pathogenesis. According to
Onishi et al. (59), the level of neutrophil in bronchoalveolar
lavage fluid (BALF) was greater in the relapse category of
organizing pneumonia patients. On the other hand,
FIGURE 2 | Neutrophils releasing neutrophil extracellular traps (NETs). NETs
are stained to visualize neutrophil myeloperoxidase (red) and DNA (blue) (46).
October 2021 | Volume 12 | Article 689866
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community-acquired pneumonia patients had lower levels of
neutrophils in peripheral blood (60). During acute lung injury
(ALI), chemokines present on the inflamed pulmonary
endothelial cells play important roles in the recruitment of
neutrophils into the lung (61). Intracellular signaling cascade is
initiated through the binding of chemokines to their neutrophil
receptors which leads to integrin activation and cytoskeleton
rearrangement. This process is essential for the recruitment of
neutrophils (61). As a response to lung injury, resident pulmonary
macrophages produce and transmit chemokines, and also server as a
major source of pro-inflammatory mediators, such as IL-1, tumor
necrosis factor- (TNF-a), 12-hydroxyeicosatetraenoic acid (12-
HETE), and interleukin (IL)-8 (CXCL8) (62, 63). During
inflammation, the lung macrophages/monocytes express 12/15-
lipoxygenase (12/15-LO). The 12-HETE lipid mediator, a product
of 12/15-LO, has been involved in the regulation of vascular
permeability and recruitment of neutrophils into the lungs during
lipopolysaccharide-induced injury in the lungs (Figure 1B) (63, 64).
The 12/15-LO is known to be essential for the mobilization of
neutrophil into the lung’s intra-alveolar and interstitial regions by
hematopoietic cells. However, trafficking of neutrophils to the lung’s
microvasculature is controlled by non-hematopoietic 12/15-LO (64).
This was confirmed when the vascular permeability was drastically
reduced inboth12/15-LO-deficient and12/15-LO-blockedWTmice
during an ALI-induced experiment. A CXCR2-dependent
mechanism has also been shown to mediate vascular permeability
(Figure 1B) (63, 64). A concentration gradient of chemokine within
the intravascular, interstitial and the alveolar space has beenobserved
during the development of ALI, with the maximum accumulation
been observed in the alveolar area (Figure 1C) (65, 66). The
migration of neutrophils into the alveolar area is stimulated by this
gradient. Distinct chemokines presented by glycosaminoglycans get
stuck to endothelial cells (67, 68). CXCL8’s monomer-dimer
equilibrium is vital for the attachment of CXCL8 to
glycosaminoglycans which influences its capacity to mobilize
neutrophils (69). CXCR2 receptors on neutrophils have been found
to be among the key significant chemokine receptorswhich are active
in lung neutrophil mobilization during ALI animal models
(Figure 1C) (70–73).

One of the hallmark of acute respiratory distress syndrome
(ARDS) is the infiltration of neutrophils to the inflamed lung
(74). Endothelial cells stimulate and arrest circulating
neutrophils in patients with ARDS (75). The formation of
neutrophil extracellular traps (NETs), oxidative stress and the
release of proteases usually occurs when there is activation of
neutrophil during ARDS. During ARDS, selectin sequesters
neutrophils, leading to an “inside-out” activation of CD11a/
CD18, which then binds to intercellular adhesion molecules
(ICAMs) of the endothelium (76). During ARDS, neutrophils
help to repair the damaged lung tissue by releasing MMP-9 and
activating the Wnt/b-catenin pathway (77). The role of
neutrophil recruitment in ARDS is complicated, and more
research is required. Some researchers have shed light on the
pathogenic function of neutrophils in inflammatory ARDS (78).
Higher levels of neutrophils have been observed in patients
presenting with ARDS and this can serve as a predictor of
Frontiers in Immunology | www.frontiersin.org 5
poor prognostic outcome (79). As a result, it has been
projected that strategies to reduce neutrophils in lung tissue,
including the reduction of neutrophil recruitment and the
activation of its immune functions, would reduce lung injury.
Elevated levels of neutrophils in pulmonary tissues contribute to
the pathogenesis of ARDS, while decreasing levels reduce the
generation of cytotoxic mediators (80). The assembly and
activation of reactive oxygen species (ROS)-producing
nicotinamide adenine dinucleotide phosphate (NADPH)
oxidase complex (NOX2) by neutrophils can contribute to the
progression of ARDS (81). NOX2, which is found on
membranes, converts oxygen to superoxide anion, which is
then released to the outside of the cells. The highly reactive
superoxide anion spontaneously dismutates into a more stable
hydrogen peroxide (H2O2). H2O2 can pass through the cell
membrane and disseminate to the extracellular or intracellular
environment. H2O2 is used by the enzyme myeloperoxidase to
generate hydroxyl radicals, hypochlorous acid, and other reactive
products (82). Since ROS are harmful to pulmonary tissues, it is
desirable to reduce ROS production in order to reduce lung
inflammatory injury (83).
PATTERN RECOGNITION RECEPTORS
IN PULMONARY INFECTIONS
AND INFLAMMATION

The identification of pathogens during infection is one of the
most significant roles of the innate immune system and this
recognition is driven by cell-surface pattern recognition
receptors (PRRs) (84). Intracellular and extracellular PRRs
ligation can mediate chemokine/cytokine expression and also
induce neutrophil recruitment into the lungs during lung
inflammations. PRRs specifically recognize unique molecular
patterns found on the surfaces of microbes and this leads to a
series of upstream and downstream events. This eventually
causes the migration of neutrophils to the lungs followed by
the influx of monocyte/macrophage to the site of infection (57).
The first host cells that encounter antigens of microorganisms
during infection are the airway epithelial cells, dendritic cells,
and alveolar macrophages. These cells trigger proinflammatory
or anti-inflammatory downstream immune responses. PRRs are
present in soluble forms like mannan-binding lectin (MBL) and
in the form of transmembraneous or intracellular molecules that
directly mediate cellular immune responses. The major families
of airway epithelial PPRs include protease-activated receptors
(PAR), Toll-like receptors (TLRs), Nod-like receptors (NLRs),
C-type lectin receptors, RIG-I-like receptors (RLRs), and the
bitter- and sweet-taste receptors (Table 1). These PRRs initiate a
cascade of downstream signal transduction pathways which leads
to the recognition of PAMPs and DAMPs in response to
pulmonary infections (Figure 3). PAMPs are highly conserved
structures presented by several groups of microorganisms.
PAMPs may include bacterial lipopolysaccharide (LPS),
peptidoglycan (PGN) or lipoteichoic acid (LTA).
October 2021 | Volume 12 | Article 689866
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In order to ascertain the role of NOD-receptors in COPD,
Barton et al. studied the expression of NOD1 in some alveolar
epithelial type II cells, airway epithelial cells, endothelial cells as
well as alveolar macrophages (109). They found that patients
with chronic bronchitis had decreased expression of NOD1 in
their lung tissues (109). DAMP-activated inflammasome may
also have a contributing role in the pathophysiology of COPD.
Conditions such as infections, hypercapnia, inhaled toxic agents,
focal hypoperfusion, oxidative stress, tissue acidification,
necrotic cell death and hypoxia may induce damaged lung
tissues to release DAMPs (e.g., uric acid, ATP), leading to the
activation of NLRP3 inflammasome. NLRP3 activation protects
Frontiers in Immunology | www.frontiersin.org 6
the host from infections caused by several pneumonia-causing
bacteria such as C. pneumoniae, S. pneumoniae, K. pneumoniae,
S. aureus, and L. pneumophila (110–112). Aged mice had
decreased NLRP3 expression and function, which made them
more susceptible to pneumonia, ALI, and death (113). Due to a
diminished expression and function of NLRP3 in the lungs of an
aging population, their susceptibility to secondary pneumonia
caused by S. pneumoniae was enhanced (114). NLRP3 also
increases the incidence and mortality rate of ALI (115).
Decreased expression of NLRP3 also inhibited the onset of
severe necrotic pneumonia caused by S. aureus by enhancing
bacteria clearance (116). When NLRP3 is activated by
TABLE 1 | Summary of some pattern recognition receptors and their functions in innate immunity.

Ligand
(adaptors in
parentheses)

PRRs Ligand (origin in
parentheses)

Localization Function in neutrophil Signals Response Ref

TLRs
(TRAM, Trif,
Mal, MyD88)

TLR1 Triacyl lipopeptides
(bacterial lipoprotein)
Di-/triacyl lipopeptides

Cell surface Migration, Inhibit apoptosis, NET formation, Respiratory burst,
Degranulation, Phagocytosis

IRFs
NF-kB
MAPKs

Pro–IL-1,
pro–IL-18
Antiviral
proteins
Chemokines
Cytokines

(85,
86)

TLR2 Multiple lipoproteins,
Lipoteichoic acid,
Zymosan (fungi)

Cell surface Formation of heterophilic dimers with TLR1 and TLR6,
Respiratory burst, Neutrophil migration, Degranulation,
apoptotic regulator, Phagocytosis

(87,
88)

TLR4 LPS (Gram-negative
bacteria)

Cell surface Recognition of LPS together with myeloid differentiation factor
2, Respiratory burst, NET formation, Neutrophil migration,
Phagocytosis, Inhibit apoptosis, Degranulation

(89–
91)

TLR5 Flagellin (flagellated bacteria) Cell surface Activation of lung epithelial cells to induce inflammatory
cytokine, NET formation, Inhibit apoptosis, Phagocytosis,
Degranulation

(92,
93)

TLR6 Triacyl lipopeptides
(bacterial lipoprotein)

Cell surface Formation of heterophilic dimers with TLR2, Respiratory burst,
Inhibition of apoptosis, Phagocytosis, NET formation,
Degranulation,

(94)

TLR8 ssRNA (viruses); small
antiviral compounds

Endosome Recognition of synthetic compound imidazoquinoline,
Neutrophil migration, NET formation, Respiratory burst,
Degranulation, Inhibition of apoptosis, Phagocytosis

(90,
91)

TLR9 Unmethylated CpG
DNA

Endosome Degranulation, Phagocytosis, Respiratory burst, Inhibit
apoptosis, NET formation, Migration, Proinflammatory
cytokines

(95,
96)

TLR10 Unknown No neutrophil function described (94,
97)

NLRs
(MyD88)

NLRC4
(IPAF)

Bacterial flagellin and other
components of the bacterial
secretion apparatus

Cytoplasm Trigger the secretion of IL-1b from neutrophils. NF-kB
Caspase-
1

IL-1, IL-18 (98,
99)

NOD1 Peptidoglycan
(Gram-negative
bacteria)

Cytoplasm Recognition of intracellular bacterial cell products,
Phagocytosis, Bacterial killing, neutrophil migration

(100,
101)

NOD2 Peptidoglycan
(Gram-positive bacteria)

Cytoplasm Recognition of intracellular bacterial cell products,
Phagocytosis, neutrophil migration, Bacterial killing,
Degranulation

(100,
102)

NOD5/
NLRX1

dsRNA (viruses) In response to TLR2 ligands, NLRX1 induces the production
of neutrophil ROS.

(103)

NLRP1 Muramyl dipeptide moiety of
PGN
(bacterial cell wall);
Anthrax lethal toxin (Bacillus
anthracis)

No neutrophil function described (98,
104)

NLRP3 PAMPs, virulence factor,
DAMPs

Endosome Response to multiple stimuli via forming a NALP3
inflammasome and secreting IL-1b, caspase-1 activation

(98,
100)

NLRP6 Unknown It negatively regulates TLR-induced canonical NF-kB and
MAPK pathways in murine

(105,
106)

NLRP12 It mediates the secretion of IL-1b induced by inflammasomes
in neutrophils.

(107)
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a-hemolysin during S. aureus-induced pneumonia, it causes
necrotizing pneumonia or necrotic lung injury that is
independent of IL-1b signaling (116, 117). S. aureus-induced
pneumonia does not only stimulate NLRP3 inflammasome but
also stimulates NLRC4 inflammasome which induces
necroptosis by inhibiting IL-17A-induced neutrophil trafficking
to the lungs and the production of IL-18 (118). NLRC4
deficiency promotes neutrophil infiltration in the lungs,
reduces necroptosis, improves pathogen clearance, and
improves host survival. Thus, NLRC4 deficiency in both
hematopoietic and non-hematopoietic cells protects the host
from S. aureus-induced pneumonia (118). Activation of
NLRC4 stimulates the production of IL-1 b, IL-17A, and
Frontiers in Immunology | www.frontiersin.org 7
neutrophil chemoattractants in the lung, which prove
beneficial to the host during pneumonia caused by Gram-
negative bacteria such as K. pneumoniae and P. aeruginosa
(119). NLRC4 activation, on the other hand, causes
inflammatory lung injury, increases lung bacterial burden, and
causes necroptosis during P. aeruginosa-induced pneumonia
(120). Furthermore, following S. aureus infections, NLRC4
suppressed IL-17A-dependent neutrophil accumulation by
triggering necroptosis and IL-18 activation in the lungs (118).
NLRP6-/- mice were more resistant to pulmonary infection
caused by S. aureus than their wild-type counterparts, as they
recorded improved survival rates and increased bacterial
clearance in the lungs (121).
FIGURE 3 | The NLR and TLR signal-transduction pathways. The PRRs identify DAMPs and PAMPs. Endosomal TLR3, and TLR4, TLR1/6+TLR2 heterodimers
stimulate the TRIF pathway, followed by NF-kB and IRF induction. The MyD88 pathway is activated by TLR5 and endosomal TLR9 and TLR7, followed by IRF7, NF-
kB and MAPK activation. NOD2 and NOD1 which are cytoplasmic PRRs, induce the recruitment of NALP3 inflammasome, trigger the release of NF-kB, and activate
the caspase-1 pathway (108).
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TLR2, TLR4, and NLRP3 expressed by mRNA in patients
with COPD were significantly increased in neutrophils during
acute exacerbation compared to stable disease. However, TLR9
expression by mRNA did not differ significantly between stable
disease and exacerbation. Increased expression of TLR2, TLR4,
and NLRP3 on neutrophils could make peripheral blood
neutrophils more sensitive to DAMPs generated during COPD
exacerbations. This means that, elevated TLR2 and TLR4
expression in neutrophils, along with higher DAMP levels,
may contribute to DAMP-induced neutrophilic airway
inflammation during COPD exacerbation (122). TLR2 and
TLR4 are not receptors for only DAMPs but also pathogen-
associated molecular patterns (PAMPs). Thus, PAMPs may play
a role in the inflammatory response during airway infection-
associated exacerbations. ATP, a recently classified DAMP, is
known to activate NLRP3 and has been shown to be elevated in
BAL fluid of COPD patients (123). Pro-inflammatory cytokines
IL-1 and IL-18 are released when NLRP3 is activated on
neutrophils, and this has been linked to the development of
COPD (123, 124). Exposure to cigarette smoke extract is known
to increase TLR4 expression in bronchial and nasal epithelial
cells during pulmonary inflammation (125, 126).

Airway epithelial cells recognize different pathogens during
pneumonia due to the expression of various PRRs. These PRRs
can be either extracellular TLRs (TLR1, TLR2, TLR4, TLR5, and
TLR6), intracellular TLRs (TLR3, TLR7, TLR8, and TLR9) or
NLRs inflammasome (127–129). In response to TLR activation
during K. pneumoniae-induced pneumonia, TRIF signaling
pathway can provide some antibacterial defense by inducing
interferon (IFN)-x03B3 in the lungs (85). Due to the attenuation
of neutrophil sequestration and the production of MIP-2, TNF-,
IL-6, and LIX, Toll/IL-1R Domain-Containing Adaptor Protein
(TIRAP), has been reported to play a critical role in pneumonia
caused by K. pneumoniae (130). During a P. aeruginosa-induced
pneumonia, it was evident that TIRAP is not required for
neutrophil infiltration, LIX production, and bacterial clearance
(130). Also, TLR2-induced MyD88 activation was not required
for the clearance of S. aureus during pneumonia. However,
TLR2-induced MyD88 activation is known to trigger an
important inflammatory immune response and it is very
critical for the clearance of P. aeruginosa-induced pneumonia
(131). When compared to airway neutrophils from healthy
subjects, a large fraction of neutrophils isolated from the BALF
of patients suffering from chronic airway inflammation had
upregulated levels of TLR2, TLR4, TLR5, and TLR9, as seen in
CF and non-CF-bronchiectasis. These changes are associated
with neutrophil respiratory burst activity, and is concomitant
with de novo protein synthesis, granule exocytosis, and later
induction of apoptosis (21, 96, 132). For mucosal intrinsic
defense activity against non-pathogenic E. coli, S. enterica, S.
pneumoniae, and P. aeruginosa, TLR5 has been confirmed to
play such critical role in a rodent model (133, 134). TLR9-
deficient mice are unable to produce Th1 effector cells, resulting
in a higher bacterial load in the lungs (135). Thus, TLR9 plays a
detrimental role in pneumonia caused by both P. aeruginosa
pneumonia and methicillin-resistant S. aureus (136).
Frontiers in Immunology | www.frontiersin.org 8
ROLES OF CHEMOKINES IN LUNG
NEUTROPHIL IMMUNITY

Chemokines have a low molecular weight that ranges from 7 to
15kDa and are the largest family among small cytokines.
Together with their receptors, chemokines are able to regulate
the migration and residence of all immune cells. Although some
chemokines are considered pro-inflammatory because they are
influenced by immune reactions, others are considered
homeostatic and operate to regulate the migration of cells
during tissue growth and repair. Chemokines are very
important because of their specific physiological role, i.e. they
induce the recruitment of specific subset of leukocytes (137, 138).
Through subtraction hybridization process, several chemokines
were originally recognized as early response genes that are
stimulated by growth factors. The assumption was that,
chemokines, based on this property, acted as nuclear factors
and took part in the proliferation of cells. However, based on
complete amino acid sequencing, chemokines were confirmed as
secretory proteins. CXC chemokines: CXCL1-8 and CXCL12,
and CC chemokines: CCL2, CCL17 (TARC), CCL18 (PARC),
and CCL20, are the most important chemokines involve in the
recruitment of neutrophils into the airways (Table 2) (151).
Different cytokines produced by local airway cells (Thymic
stromal lymphopoietin and IL-33, IL-25, IL-23, IL-17, IL-10,
IL-1-b, IL-1-alpha), are those that transmit the relevant
biological impact of chemokines.

Both CXC and CC chemokines play important roles in the
stimulation of neutrophil chemotaxis. Under normal conditions,
CXCL1 levels are negligible, however, they increase substantially
during active infections in the lungs. According to Paudel et al.,
Cxcl1-/- mice showed impaired neutrophil recruitment and poor
bacteria elimination from their BALF and lungs when challenged
with a S. pneumoniae (152). In a pneumococcal infection of the
lungs, CXCL1 was known to regulate neutrophil recruitment
through a CD62L- and CD49d-dependent process. Results from
Batra et al. showed that CXCL1 is an important chemokine for
neutrophil influx and the production of Leukotriene B4 (LTB4)
in the lungs during K. pneumoniae infection and is also very
important for ROS regeneration in the lungs (153). Their
analysis also validated the significance of CXCL1 in NADPH
oxidase expression and the formation of NO and free radicals of
oxygen in neutrophils after K. pneumoniae infections in the
lungs. Studies have shown that CXCL1 is essential in NF-kB
activation within the lungs after K. pneumoniae infection
(Figure 4). NF-kB protects the lungs by avoiding excessive
injury and inflammation during pneumococcal and E. Coli-
induced pneumonia (155, 156). NF-kB has again been shown
to be important in antibacterial host defense (157, 158) and
hence reiterating the importance of CXCL1 in neutrophil
recruitment (154). After infection with an influenza A virus
(IAV), CXCL1, CXCL2, and neutrophils were found in lung
tissues and airways of neonatal mice (159, 160). Furthermore,
non-endothelial cells, non-epithelial cells (ATII cells) and lung
stromal cells were shown to be important for the induction of
Cxcl1 in a MyD88/TRIF signaling dependent manner during
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infection with a respiratory syncytial virus (RSV) (161). The
precise source of neutrophil chemoattractants during viral
infection is an important research topic for future targeted
neutrophilic inflammation therapies. During viral infections,
many neutrophil chemoattractants such as CXCL1, CXCL2,
and IL-17 (161, 162) are produced in the lungs and airways,
which cause neutrophil trafficking into the lungs of mice and
ferrets (161, 163). By the activation of CXCR2 on neutrophils
and their interaction with GAGs, CXCL2/3 chemokines can
orchestrate the recruitment of neutrophils to the lungs during
pulmonary infections. By binding to its receptor (CXCR2),
CXCL5 chemokine, also known as lipopolysaccharide-induced
chemokine (LIX), plays a significant role in the trafficking of
neutrophils to the lungs during infection and inflammation (57).
According to Gibbs et al., clock-controlled-CXCL5 mediates
Frontiers in Immunology | www.frontiersin.org 9
circadian variation and activates the rhythmic recruitment of
neutrophils to the lung during pulmonary infection (164).
CXCL8, also known as IL-8, is one of the most effective
chemo-attractants (165), which can bind to the G protein–
coupled receptors CXCR1 and CXCR2 on neutrophils (166).
One of its numerous functions is to guide neutrophils through
the tissue matrix until they reach the inflammation site. By using
different signaling mechanisms, CXCL8 induces specific
intracellular signaling cascades that result in rapid neutrophil
recruitment (167–170). CXCL8 influences the movement of
neutrophils across the endothelium (171), pulmonary
epithelium (172), and fibroblasts (173). CXCL-12 is expressed
in the lungs by cells such as the endothelial and epithelial cells
(146). Both the ligand (CXCL12) and its receptor (CXCR4), play
an important role in neutrophil influx to the lungs during
FIGURE 4 | A Schematic representation of the importance of CXCL1 in neutrophil influx when the lung is challenged with K. pneumoniae. CXCL1 influences the
activation of both NF-kB and MAPK which leads to an increase in MIP-2 and LIX chemokines, and other adhesion molecules such as VCAM-1 and ICAM-1. This
cascade of events leads to an influx of the lungs with neutrophils followed by the clearance of the bacteria (154).
TABLE 2 | Main murine and human chemo-attractants and their receptors expressed in neutrophils during pulmonary infection and inflammation.

Chemo-attractants Receptors Ref

Systemic name Name in Human Name in Murine Human neutrophils Murine neutrophils

CXCL1 GROa KC CXCR2 CXCR2 (139, 140)
CXCL2 GROb MIP-2 CXCR2 CXCR2 (141)
CXCL5 ENA-78 LIX CXCR2 CXCR2 (142, 143)
CXCL6 GCP-2 NA CXCR1/CXCR2 NA (144)
CXCL8 IL-8 NA CXCR1/CXCR2 CXCR2 (65, 145)
CXCL12 SDF-1a SDF-1a CXCR4 CXCR4 (146)
CCL3 MlP-la MlP-la NA CCR1 (147, 148)
CCL5 RANTES RANTES NA CCR1 (140, 149)
CCL7 MCP-3 MARC NA CCR1 (150)
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infection (174–176). The signaling pathway of CXCL12/CXCR4
plays a crucial role in modulating neutrophil action in ALI not
only by enhancing chemotaxis but by preventing cell death.
CXCR4 inhibition reduces the trans-endothelial and trans-
epithelial trafficking of neutrophils in pulmonary inflammation
(175). Following a tissue damage, there was an increase in the
local production of CXCL12; an important chemokine in the
reparative cascade, which resulted in the guidance and
recruitment of stem cells to the lungs (173). Although some
studies have iterated the role of CXCR4 in the augmentation of
pulmonary fibrosis (177), others have also reported on their role
in neo-alveolarization (178). In a recent study, it was also
discovered that CXCR4hi neutrophils are more likely to induce
NETs, which increase the uptake of house dust mite by
inflammatory dendritic cells, thereby increasing the risk of
allergic asthma (179). The overexpression of neutrophil
chemoattractants such as CXCL1, CXCL2, CXCL3, CXCL5, IL-
8 (CXCL8), and CCL20 in the lungs of COVID-19 patients
suggest that these cells can express neutrophil chemokines after
SARS-CoV-2 infection (180). Chemokines also play important
roles in metastasis and apoptosis. It has been shown that CXCL1
promotes cell migration. Because of this, Guo et al., performed a
cell-proliferation inhibitory experiment by using Jinrong
granule. Their results showed that Jinrong granule could
inhibit the ability of CXCL-1 to promote the migration and
proliferation of breast cancer cells and it could also reverse the
promoting effect of CXCL-1 on breast cancer through the CXCL-
1- CLCR2/CCL20 pathway (181). By using this analogy,
therapies can be designed to target the cell migratory and
proliferation potential of CXCL-1 during pulmonary infections
and inflammation.

Some CC chemokines are classified as inflammatory (CCL2,
CCL3, CCL4, CCL5, CCL11 and CCL13) while others are
classified as homeostatic (CCL18, CCL19, CCL21, CCL25 and
CCL27). However, some are considered as having both
homeostatic and inflammatory function (CCL14, CCL15,
CCL16 and CCL23) (182). Under normal conditions, there is
no expression of CC chemokine receptors (CRs) (183), and these
receptors do not respond to their CC chemokine ligand even
upon stimulations. However, it has been shown that under
inflammatory conditions in the lungs, neutrophils after their
migration, expand their CR expression repertoire (21, 184).
Functions of neutrophils which include chemotaxis,
phagocytosis and respiratory bust are usually altered when
there is an induction of CC chemokines and their receptors
(CRs) (21, 184). The expression of these receptors are modulated
by pro-inflammatory cytokines including IFN-g, TNF-a, and
GM-CSF. Macrophage inflammatory protein 1 (MIP-1/CCL3),
which is one of the important members of the CC chemokine
family, mediates the development of neutrophils and regulates
their recruitment to the lungs during infection. MIP-1 has been
reported to be chemotactic for neutrophils (185). In a study by
Bonville et al., it was confirmed that neutrophil recruitment to
the lung parenchyma in response to heterologous CCL3
expression in the respiratory epithelium, is directly dependent
on IFNg signaling (186). During a S. pneumoniae-induced
Frontiers in Immunology | www.frontiersin.org 10
inflammation, CCL2 chemokine binds to its receptor (CCR2),
which triggers a PI3Kg-dependent downstream signaling
cascade, resulting in neutrophil immigration into the lung
(187, 188). Also, CCL2 and CCL7 chemokines are known to
work synergistically with CXCL8 to drive neutrophil trafficking
to the lungs during acute respiratory distress syndrome (ARDS)
(150). Grommes et al., indicated that the recruitment of
neutrophils during an LPS-, acid-, and sepsis-induced ALI, is
made possible because of the release of CCL5-CXCL4
heterodimer from platelets, and any disruption of this
heterodimer decreases the amount of neutrophils recruited to
the lungs (189). CCR1, CCR2, CCR3, CCR5, CXCR3, and
CXCR4 were upregulated by a large fraction of neutrophils
isolated from the BALF of patients suffering from chronic
airway inflammation, as seen in CF, COPD, and asthma (190).
NEUTROPHIL OXIDATIVE BURST

Oxidative burst is a critical antimicrobialmechanismofneutrophils
and is mediated by nicotinamide adenine dinucleotide phosphate
(NADP) oxidase (191). Despite having the ability to protect against
pulmonary infection, neutrophils, if left uncontrolled, can cause
pathogenic effects through a variety of functions (192). Reduced
NADP (NADPH2), thiocyanate, ergothioneine, thiosulfate,
reduced glutathione (GSH), reduced nicotinamide adenine
dinucleotide (NADH2), azide, Tapazole, thiourea, cyanide,
cysteine, and tyrosine are the main components of the
myeloperoxidase system, which performs this antibacterial
activity. Genetic mutations in the NADPH oxidase subunit, gp91
(also referred to as NOX2), are associated with chronic recurrent
and life-threatening microbial infections. When neutrophils are
stimulated by microbes or by integrin-dependent adhesion to the
ECM, they release reactive oxygen intermediates (ROIs). In mice,
both the Vav family of Rho GTPase guanine nucleotide exchange
factors (GEFs) and phospholipaseC–g2 (PLC-g2) have been shown
to be critical mediators of adhesion-dependent ROI production by
neutrophils. Vav is critical for neutrophil-dependent host defense
against S. aureus- and P. aeruginosa-induced hospital-acquired
pneumonia (193). Compared to healthy controls, PMBCs and
erythrocytes isolated from patients with tuberculosis had a
significantly decreased levels of GSH (194). However, elevated
levels of GSH have been shown to improve the inhibition capacity
of T-cells against the growth ofM. tuberculosis during pulmonary
inflammation (195).

During oxidative burst, neutrophils produce reactive oxygen
specie (ROS) which has been shown to induce necrosis cause by
M. tuberculosis (196). Rapid assessment of neutrophil oxidative
burst capacity has been proposed as an effective way to identify
patients at risk of excessive immune responses during pulmonary
inflammation (197). Therefore, the correlation between GSH
and/or NADPH2 levels in TB patients and neutrophils oxidative
burst capacity can provide host-targeted therapies. While some
authors have reported an increased ROS production by blood
PMN in cystic fibrosis (198, 199), others reported that the
production of ROS is dependent on the pathogenic agent (200)
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or the detection method employed to measure the respiratory
burst activity (201). Montemurro et al. (202) have demonstrated
that blood neutrophils of CF patients had higher ROS release
than their control counterparts. Lung ischemia-reperfusion
injury has been linked to the production ROS and oxidative
burst (203).
PATHOPHYSIOLOGICAL ROLE OF
NEUTROPHILS, NETS IN COVID-19

Numerous studies have suggested that the recruitment of
neutrophils to the lungs is linked to disease severity during
viral infection. During an RSV-induced severe bronchiolitis,
neutrophils accounted for nearly >90% of the BAL cell
composition, confirming the role of neutrophils in disease
pathogenesis (204, 205). Elevated levels of neutrophils and
their markers in the lungs have also been observed in both
rhinovirus and hMPV-infected children and in severe cases of
influenza and SARS-CoV-2 infection (206, 207). Elevation in
neutrophil level is one common phenomena observe during
severe respiratory viral infections, and it is reasonable to
postulate that their recruitment to the lungs and subsequent
activation can exacerbate tissue pathology and cause disease. The
current global pandemic, COVID-19, is a multisystem
inflammatory disease caused by the SARS-CoV-2 virus. The
innate immune response has been widely linked to COVID-19
immunopathogenesis. After reaching the alveoli, SARS-CoV-2
activates alveolar macrophages, which induces innate immune
responses. A complement cascade is then activated by the viral
particles through the lectin pathway. C3a and C5a are
complementary peptides which are generated after the
activation of the complement system. This then stimulate the
migration of neutrophils to the site of infection. SARS-CoV-2 S-
protein induces the release of proteins such as epithelial
membrane protein 2 (Emp2) by the lung epithelial cells. The
Emp2 of alveolar epithelial type 1 cells upregulate neutrophil
migration. COVID-19 pathogenesis has been linked to
neutrophil infiltration into the lungs. However, the numerous
functions of neutrophils which include its interaction with other
immune cell population, virus internalization and killing,
cytokines release, degranulation, oxidative burst, and the
production of neutrophil extracellular traps (NETs), helps to
improve antiviral defenses (208, 209). Degranulation and the
activation of neutrophils are the highly activated processes in
SARS infection (210).

Neutrophilia has been identified as one of the markers linked
with poor prognosis and severe respiratory symptoms in COVID-
19 patients (211–213). According to Wang et al., neutrophilia is
associatedwith lung injury inpatientswith severeCOVID-19 (214).
During autopsies ofCOVID-19 victims, neutrophilicmucositis was
found in the lungs, indicating that the entire LRTwas inflamed(215,
216). Byusing aMyeloperoxidase (MPO),NeutrophilElastase (NE)
and aCitrullinatedHistoneH3 (citH3) stainingmethod, neutrophil
infiltration via neutrophilic plugs was detected in patients with
COVID-19 (217). Similarly, elevated levels ofneutrophils havebeen
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found in peripheral blood of both severe and non-surviving
COVID-19 patients (218, 219). According to a research by
Parackova et al., neutrophils enhance the stimulation of Th17 in
patients with COVID-19, and these cell population have been
implicated in immune-mediated injury (220). It has been revealed
that the infiltration of lungs with immature and/or dysfunctional
neutrophils, as defined by the expression of CD11b, CD16, CD24,
CD34, and CD38 and the infiltration with recently activated
neutrophils which is characterized by the expression of CD64,
RANK, RANKL and reduced CD62L, have been implicated as the
causes of imbalance immune response during severe COVID-19
cases (220, 221). Severe COVID-19 pathophysiology is also
characterized by altered neutrophil quantity, phenotype, and
neutrophil functioning. Increased numbers of neutrophils have
been reported in the nasopharyngeal epithelium (222) and later in
the more distant regions of the lung following SARS-CoV-2
infection (223). An increase in the number of neutrophils has also
been detected as a characteristic feature in the blood of COVID-19
patients (224–226) and markers of neutrophil activation are an
important feature of blood transcriptomes in severe cases (227,
228). Increased levels of CXCL2 and CXCL8 have been shown
through Transcriptional analysis of peripheral blood mononuclear
cells and BALF from COVID-19 patients, to contribute to the
recruitment of neutrophils to the lung, which then exacerbate the
inflammatory response (206). Moreover, activated neutrophils
express properdin, factor B, and C3, thus driving complement
activation (229), a marker of severe COVID-19 disease (230, 231).

Infiltration is not the only mechanism by which neutrophils
cause pathology in COVID-19 patients. Indeed, several
inflammatory conditions including thrombosis, sepsis, and
respiratory failure have all been linked to the pathological effects
of NETs (232–234). A disproportionate release of virus-induced
NEThave been reported inCOVID-19 patients and this is linked to
the pathogenesis of this disease. The release ofNETs by neutrophils
has been linked to organ damage and death in COVID-19 patients
(215). Another recent study found that markers of NET release
(myeloperoxidase-DNAand citrullinated histoneH3) in the sera of
COVID-19 patients potently triggered NETosis in control
neutrophils (235). COVID-19 patients have elevated levels of IL-
6, which is a likely driver ofNETosis. Similar in other inflammatory
diseases, IL-6 stimulates the release ofNETs throughout the bodyof
COVID-19 patients (236, 237). Virus-damaged epithelial cells (56,
238), activated endothelial cells (239), activated platelets (240, 241),
and inflammatory cytokines like IL-1b are all triggers of NETosis
(242, 243). Higher levels of NETs have been seen in COVID-19
patients (235, 244, 245), and an increase in plasma NETs has been
linked to increased COVID-19 severity (245), lung damage and
microvascular thrombosis (244). Uncontrolled NETs can
potentially trigger thrombosis.
PATHOLOGICAL ROLE OF NEUTROPHILS
IN THROMBOEMBOLISM

Rather than platelets, neutrophils can play the lead role in
thrombotic complications associated with COVID-19
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(Figure 5). NETs have been demonstrated to exert thrombogenic
activity in several inflammatory diseases by expressing
functionally active tissue factor (TF). Thrombin-antithrombin
(TAT) activity which indicates the activation of a TF/thrombin
axis has been strongly linked with the levels of myeloperoxidase
(MPO)/DNA complexes. NET release has also been identified as
a key contributor to neutrophil-related thromboinflammation,
providing the scaffold for platelet entrapment and activation. An
in vitro and ex vivo models have been used to demonstrate the
role of NETs in neutrophil-related thromboinflammation (247,
248). Leppkes et al. concluded that the development of NETs
inside the microvessels of patients suffering from COVID-19 is
associated with the severity of the disease. Rapid vessel occlusion
caused by the intravascular development of NETs with platelet
aggregation results in organ damage (249). In a study by Nicolai
et al., it was noted that the kidney, lung, and heart of patients
with COVID-19 had inflammatory microvascular thrombi
which contained NETs and platelets (250). Thrombotic
complications contribute to morbidity and mortality in severe
COVID-19 (251, 252). In COVID-19 patients, abnormal
coagulation parameters and elevated levels of proinflammatory
cytokines are correlated with disease severity, poor prognosis,
and incidence of venous thromboembolism. Thrombosis affects
circulation in both the veins and the arteries of patients with
COVID-19, leading to deep vein thrombosis, acute coronary
syndrome, pulmonary embolism, stroke and microvascular
thrombosis (253, 254). NET-remnants, such as citrullinated
H3, circulating cell-free DNA, or MPO-DNA complexes have
been found in abundance in the blood of COVID-19 patients
(244, 249). Furthermore, patients with severe illness had elevated
levels of both neutrophil activation markers and neutrophil-
platelet aggregates (250, 255). Importantly, tissue factor is
abundant in NETs from COVID-19 patients (TF). The release
of thrombogenic NETs decorated with TF have been associated
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with activation of the complement system (256). Vascular injury
is one of the outcome of excessive formation of NETs (257).
Excessive NET can leads to the formation of autoantibodies that
determine the appearance of various forms of autoimmune
vasculitis (258). Immunothrombosis associated with NETs
release has been shown via a histopathological study, to be
linked to organ damage in severe COVID-19 (259). Occlusion
of small pulmonary vessels caused by aggregated NETs was
found in lungs during autopsies from victims of COVID-19-
related ARDS (244). In a K18-hACE2 transgenic mice infected
with SARS-CoV-2, neutrophils were seen infiltrating the alveolar
and interstitial areas, which resulted in severe pulmonary
pathology (162). Aggregated NETs may clog microvessels and
this contribute to poor outcomes in COVID-19. DNAses prevent
vascular occlusions which are caused by non-canonical NET-
driven thrombosis during a steady-state condition (260).
Thisfinding suggests that NET-dissolving mediators in patients
can be impaired or elevated (261). In a quest to understand the
role of neutrophil-lymphocyte in SARS-CoV-2 infection,
Nicholai and his team compared histopathological lung
specimens of COVID-19 with that of a viral pneumonia caused
by H1N1 or seasonal influenza virus. Their findings highlighted
neutrophil-driven immunothrombosis as a key element of severe
COVID-19, as immunothrombotic vessel occlusion and NETosis
were strongly elevated compared to influenza pneumonia (262).
NEUTROPHILIA AND NEUTROPHILS IN
LUNG DESTRUCTION AND RESOLUTION

Increased pulmonary vasculature permeability, accumulation of
neutrophils in alveoli and disruption of the alveolar epithelium
are all characteristic features of acute inflammatory response
(263). Alteration in alveolar function i.e. leakage of plasma and
interstitial fluid into airspace, is linked to damaged alveolar
epithelial cells caused by transmigration of neutrophils from
the alveolar capillaries to the airspace. Excessive neutrophils can
cause tissue damage by increasing inflammatory response and by
directly releasing toxic effectors. At high concentrations, many
neutrophil effector mediators can cause tissue damage. For
instance, although NE plays a role in digesting extracellular
matrix (264) and induces mucus production (helps in pathogen
clearance), when produced in excess, it can contribute to airway
pathology because mucus plugs can obstruct the airways (265).
The combination of mucus production and NET release can
damage tissues and impair lung function (56, 266). Increase in
bloodneutrophil levels can predict severe respiratory damage and is
an early stage marker for SARS-CoV-2 infection (267, 268). Thus,
cytokines release and respiratory failure may be as a result of
neutrophilia and excessive NETs. Excessive NETs can directly kill
epithelial and endothelial cells (191, 269), damage the epithelium
in pulmonary fungal infection (270) and cause severe injury to the
endothelium during acute lung injury (271).

However, some researchers have opined that transmigration of
neutrophils can occur without any destruction to major barriers
and that, neutrophil accumulation can lead to the repair and
FIGURE 5 | Neutrophil rather than platelet activation are associated with
thrombotic complications in COVID-19 patients (246).
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regeneration of lung epithelium. The ability of accumulated
neutrophils to repair tissues is partly due to the clearance of
epithelial debris from the damaged sites which creates a clean
matrix for regeneration of the epithelium (272). Furthermore,
neutrophils can induce a repair response by activating the
proliferation of lung epithelial cell (273) and by secreting pro-
resolution products such as Annexin A1 (274). Neutrophil
transmigration through an elastase-mediated cleavage of E-
cadherin has been shown to activate the b-catenin signaling in
alveolar type II epithelial cells in mice treated with keratinocyte
chemokine or intratracheal LPS (275). In an acid-induced acute
lung injury model, neutrophilia was essential for the proliferation
of type II pneumocytes, which are necessary in regenerating
alveolar epithelium. Neutrophilia, according to proteomic
analysis, promote multiple regenerative pathways, including
MMP9, MMP2, and FGF1 (276).
DIAGNOSTIC NEUTROPHILIC
BIOMARKERS OF PULMONARY
INFLAMMATIONS

Biomarkers have been defined as “a characteristic that is
objectively measured and evaluated as an indicator of normal
biological processes, pathogenic processes, or pharmacologic
responses to a therapeutic intervention”. Many neutrophilic
biomarkers associated with pulmonary inflammation have been
studied (Table 3). The large number of biomarkers studied reflect
the complex pathophysiology of pulmonary inflammations and
the heterogeneity of the host response. This portion of the review
summarizes some of these molecular biomarkers.

Alpha-1 antitrypsin and CD16b (AAT : CD16b) protein
complex released by primed neutrophils has been found to be
significantly elevated in sera of patients with CF, making it a
potential biomarker to diagnose exacerbated cystic fibrosis. The
expression of these neutrophil priming-associated biomarkers in
peripheral blood can be used to expound the inflammatory
process in CF (301). Adenosine monophosphate and purines
adenosine triphosphate have also been identified as potential
neutrophilic biomarkers of pulmonary inflammation in CF. In
chronic obstructive pulmonary disease, research have shown
that, the development of systemic inflammation (302–305),
exacerbations and other lung functioning parameters (306,
307) are positively linked with the levels of fibrinogen, C-
reactive protein, and IL-6. COPD exacerbation has been linked
to elevated levels of neutrophil gelatinase associated lipocalin
(NGAL), osteoprorotegerin and soluble TNF receptor-1
(sTNFR-1) (308, 309). Additionally, vascular endothelial
growth factor (VEGF) and MPO were predicting factors in
determining the severity of lung function impairment and
dyspnea (310). There have been numerous studies reporting
decreased concentrations of Clara cell protein (CC-16) in the
blood of people suffering from COPD, supporting the notion that
this protein may be an important biomarker in the prediction of
bronchial epithelial cell dysfunction (311–315). Compared to
Frontiers in Immunology | www.frontiersin.org 13
their control counterparts, people with COPD had elevated levels
of NGAL, heparin-binding EGF-like growth factor (HB-EGF),
extracellular newly identified RAGE-binding protein (EN-
RAGE; also known as S100A12), MPO, fibrinogen and
transforming growth factor alpha (TGF-a). Conversely, COPD
patients had lower levels of soluble receptor for advanced
glycation end products (sRAGE) than the control group (316).
Active neutrophil elastase (NE), a serine proteinase secreted by
neutrophils in response to inflammation and pathogen invasion
is elevated during exacerbations of COPD and may be a viable
biomarker for distinguishing a bacterial exacerbation in patients
with COPD (317). A number of biomarkers have been used as
predictive biomarkers for pneumonia. These include copeptin,
CRP, proadrenomedullin (proADM), and procalcitonin (PCT)
(318–322). Calprotectin, PCT, plasma pentraxin 3 (PTX3) and
presepsin have been used as promising acute-phase molecular
predictive markers for community-acquired pneumonia (323).
von Willebrand factor (VWF), adhesion molecules (such as E-
selectin, L-selectin, intercellular adhesion molecule [ICAM], and
vascular cell adhesion protein-1), thrombomodulin (TM),
protein C, and plasminogen activator inhibitor-1 (PAI-1) are
also known as important markers of endothelial activation and
injury in acute respiratory distress syndrome (ARDS). A number
of coagulation biomarkers including protein C, thrombomodulin
and PAI-1 have been shown to be abnormal in ALI (324). The
epithelial mucin protein, Kerbs von den Lungren-6 (KL-6), has
also been studied as a potential biomarker. KL-6 is unregulated
when type II pneumocytes become injured (325).

Inflammation and immunity play a critical role in many
chronic diseases. Neutrophil-lymphocyte ratio (NLR) is a
biomarker that reflects the balance between acute and chronic
inflammation (neutrophil count) as well as adaptive immunity
(lymphocyte count). It can be computed as the ratio between
neutrophils and lymphocytes in peripheral blood. NLR, as
determined by a recent meta-analysis (326), appeared to be a
predictive biomarker for acute exacerbations in patients with
COPD. In patients with COVID-19 infection, NLR was shown to
have a good predictive value on disease severity and mortality
(327). Data from recent studies suggest that NLR is an important
predictor of mortality among patients with the novel
Coronavirus disease (79). Numerous studies have implicated
NLR in the development of COPD. In an examination of acute
episode of COPD, Lee et al. reported that the NLR in the acute
episode was significantly higher than that in the stable period and
in the healthy control group. However, the NLR significantly
decreased in the recovery stage patients with acute exacerbations
(328). According to Taylan et al, NLR gradually increased with
the severity of COPD, suggesting that NLR can be used as an
early biomarker of COPD (329). The results of these studies
confirm that NLR has great value in the assessment of COPD
severity and acute exacerbations. Although not related to
pulmonary inflammation, Huang et al., through a research to
explore the applicative value of preoperative NLR combined with
serum carcinoembryonic antigen (CEA), carbohydrate antigen
(CA) 19-9, CA 125 and CA 72-4 levels, proved that NLR can
reflect the inflammatory and immune status in gastric cancer
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patients and that, these combinations are closely related to
clinical pTNM stage in gastric cancer (330).
CLINICAL TRIALS TARGETING
NEUTROPHILS IN NEUTROPHIL-DRIVEN
PULMONARY INFLAMMATORY DISEASES

All around the world, clinical trials are being conducted with the
aim of targeting neutrophils in order to improve the conditions
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of patients with pulmonary infections and inflammations. Once
a clear definition of the roles of neutrophils in pulmonary
infections is established, researchers will be able to design
effective treatments to target neutrophil dysregulation and
development . Cl in ica l t r ia l s of var ious promis ing
pharmacological modulators of neutrophil recruitment/
activation and NETosis are currently in Phase II and III. These
include agents targeting NADPH oxidase, colony-stimulating
factors and receptors, as well as CXCR2. In humans, CXCR2
appears to be the predominant neutrophil chemokine receptor
despite having overlapping functions with CXCR1. CXCR2 has
TABLE 3 | Neutrophilic biomarkers of pulmonary inflammations.

Type of Pulmonary
inflammation

Biomarkers Tissue/Detection level Ref Type of Pulmonary
inflammation

Biomarkers Tissue/Detection level Ref

ARDS Von-Willebrand Factor Plasma/
351% ± 265% (277)

Pneumonia CRP (mg/L) fingerstick blood/
60 (18-134) (278)

SP-D (ng/ml) Plasma/
275 (80 – 462) (279)

PCT (ng/ml) Serum/
3.64 ± 12.32 (280)

LDH (IU/L) Serum/
274 ± 104 (281)

sTREM-1 (pg/ml) Serum/
183.9 (119.8-232.1) (282)

TNF-a (pg/mL) Plasma/
7.5 (3.8–13.4) (283)

ProADM (nmol/
L)

Venous blood/
2.341 (1.188-4.226) (284)

IL-6 (pg/mL) Plasma/
240 (139-498) (283)

IL-6 (pg/mL) Serum/
242.2(92.33-473.97) (285)

IL-10 (pg/mL) Plasma/
77 (31-169) (283)

Angiopoietin-2
(ng/ml)

Serum/
5.92 (3.48–9.99) (286)

Protein C Pulmonary edema fluid
and plasma/
37% ± 14%

(287)
Presepsin (pg/
mL)

Plasma/
1734 (1014-3128) (288)

Plasminogen Activator
Inhibitor (ng/ml)

alveolar fluid and plasma/
2687 ± 1498 (289)

Calprotectin
(mg/L)

Serum/
7.43 (4.60, 10.33) (290)

CC16 (ng/ml) Plasma/
14.3 (9.0 - 19.0) (279)

FGF21 (pg/mL) Serum/
456.5(181.2−1127.9) (291)

KL-6 (U/l) Plasma/
477 (287-636) (279)

NETs (U/mL) BALF/
223 (40.6–766) (292)

sRAGE (ng/ml) Plasma/
1932 (960-4267) (293)

PTX3 (ng/ml) BALF/
≥1 (294)

sE-selectin (ng/mL) Serum/
53.0 ± 17.8 (281)

TNF-a (pg/mL) Plasma/
44 (37–62) (295)

CRP (mg/dL) Serum/
18.6 ± 11.0 (281)

D-dimer (mcg/L) Plasma/
2080 (1050–3410) (296)

COVID-19 (MPO)-DNA (AU) Serum/
1.31 ± 0.18 (297)

NE (ng/mL) Plasma/
144 (84–248) (298)

NLR Serum/
8.78 (5.76-25.10) (299)

TAT (µg/mL) Plasma/
7.30 (4.50-12.2) (300)

VWF Plasma/
306% (200-421) (300)

ADAMTS13 Plasma/
47.3% (25.8-66.1) (300)

PAP (ng/mL) Plasma/
984 (648-2377) (300)

CRP (mg/L) Serum/
81.49 (19.40-107.42) (299)
October 202
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ADAMTS13: a disintegrin and metalloproteinase with a thrombospondin type 1 motif, member 13; CRP, C-reactive protein; CC16, Clara cell secretory protein; FGF21, fibroblast growth
factor 21; IL-6, interleukin-6; KL-6, Krebs von den Lungen-6; LDH, lactate dehydrogenase; MR-proADM, midregional-proadrenomedullin; (MPO)-DNA, myeloperoxidase (MPO)-DNA; NE,
neutrophil elastase; NLR, neutrophil-to-lymphocyte ratio; NETs, neutrophil extracellular traps; PAP, plasmin-antiplasmin complex; PCT, procalcitonin; PTX3, pentraxin 3; sRAGE, soluble
receptor of advanced glycation end products; SP-D, surfactant protein; sE-selectin, soluble endothelia-selectin; sTNF, soluble tumor necrosis factor receptors TNF-a: tumour necrosis
factor alpha; TAT, thrombin-antithrombin complex.
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been implicated in several functions, including neutrophil egress
from the bone marrow (331) and the activation of other cell
types. CXCR1/CXCR2 have been a target for a number of
pharmacological studies. For instance, patients with cystic
fibrosis who were treated with a CXCR2 antagonist, SB-
656933, had a decreased level of sputum inflammatory
biomarkers (332). Another CXCR2 inhibitor, navarixin (MK-
7123), improved pulmonary function in COPD, and the blockage
ofCXCR2 inpatients suffering frommoderate neutrophilic asthma,
reduced the accumulation of neutrophil in the lungs (333).
AZD5069, a selective CXCR2 antagonist, has been ineffective in
controlling acute exacerbations in severe cases of refractory asthma,
in spiteof its ability todecreaseneutrophilnumbers in sputum(334)
(Table 4). A phase II clinical trial of QBM076, another CXCR2
antagonist, was terminated due to elevated liver transaminase levels
in patientswithCOPD (Table 4). In amurine experiment to inhibit
CXCR2, an orally active CXCR2-antagonist molecule was used. It
was confirmed that the molecule reduced inflammation caused by
neutrophils, reduced infiltration of neutrophils to the lungs and
decreased the level of enzymes that cause tissue damage (335).
Danirixin, another CXCR2 antagonist, has also shown positive
effects on respiratory symptoms and health status (336). Targeting
the CXCL12-CXCR4 axis may also provide an effective treatment
option for COPD. Plerixafor was found to reduce lung damage in
mice with emphysema caused by cigarette smoke exposure (337).
Although there are potential adverse effects in antagonizing the
CXCL12-CXCR4 axis, it still provides a promising strategies in the
Frontiers in Immunology | www.frontiersin.org 15
treatmentofpulmonary infectionsand inflammations (Figure6).A
summary of some selected clinical trials based on therapeutic
strategies that specifically target neutrophils are provided
in Table 4.
CONCLUDING REMARKS

Neutrophils, which destroy pathogenic agents, have the ability to
significantly modulate the functions of other immune cells and
their recruitment into the lung. They play a major role in innate
immunity during pulmonary inflammation. It is becoming
increasingly clear that all of these processes are highly
regulated by the signals they receive from their repertoire of
PRRs which allow neutrophils, whose recruitment are modulated
by chemokines, to sense PAMPs and DAMPs at the sites of
inflammation. A holistic understanding of neutrophil pattern
recognition pathways and the roles of CXC and CC chemokines
in host immunity may allow for new approaches in the treatment
of infectious and inflammatory disease of the lungs. In this
review, we have demonstrated the roles and importance of
PRRs, CXC and CC chemokines in host immunity during lung
pathogenesis. We have herein summarize some of the signal
transduction pathways through which neutrophils are recruited
and guided to the lungs. The pathophysiological role of
neutrophils in COVID-19 and thromboembolism have also
been summarized. Finally, we discussed various neutrophilic
TABLE 4 | Selected clinical trials targeting neutrophils in neutrophil-driven pulmonary inflammatory diseases.

Target Name of drug Company/sponsor Indication Phase Identifier Comments

CXCR2 AZD5069 AstraZeneca Asthma II NCT01704495 Completed in 2014; the
frequency
of severe exacerbation in patients
with severe asthma was not
reduced

QBM076 Novartis
Pharmaceuticals

COPD II NCT01972776 Part 1 was completed; part 2
was
terminated (for safety reasons)
in 2015

AZD5069 AstraZeneca Asthma I NCT01890148 Completed in 2014. The inhibitor
decreased sputum neutrophil
numbers

NETs Fostamatinib NHLBI COVID-19 II NCT04579393 Ongoing
Eculizumab Hudson Medical COVID-19 II NCT04346797 Ongoing

AIR DNase™ Protalix Cystic
fibrosis

II NCT02722122 Status unknown

PDE4 Roflumilast QuantumLeap Healthcare
Collaborative

COVID-19 II NCT04488081 Ongoing

NE Alvelestat
(AZD9668)

Mereo BioPharma COPD II NCT03636347 Ongoing

Lonodelestat
(POL6014)

Santhera Pharmaceuticals Cystic
fibrosis

II NCT03748199 Status unknown

Elafin Peking University Third Hospital ARDS I NCT02944279 Completed in 2014
CXCR2 Danirixin

(GSK1325756)
GlaxoSmithKline COPD II NCT03034967 Completed in 2018

PDE4 Ensifentrine
(RPL554)

Verona Pharma plc COVID-19 II NCT04527471 Ongoing

IL-6, IFNs,
NETs

Baricitinib Hospital of Prato COVID-19 II/III NCT04320277 Not yet recruiting
October 2
021 | Volume 12 | Article 689866

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Effah et al. Pulmonary Neutrophil-Immunity
biomarkers, and neutrophil-targeted therapies for neutrophil-
driven pulmonary inflammatory diseases.
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