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Quercetin, a dietary flavonoid used as a food supplement, showed powerful antioxidant effects in different cellularmodels. However,
recent in vitro and in vivo studies in mammals have suggested a prooxidant effect of quercetin and described an interaction with
mitochondria causing an increase in O

2

∙− production, a decrease in ATP levels, and impairment of respiratory chain in liver
tissue. Therefore, because of its dual actions, we studied the effect of quercetin in vivo to analyze heart mitochondrial function
and erythropoiesis. Mice were injected with 50mg/kg of quercetin for 15 days. Treatment with quercetin decreased body weight,
serum insulin, and ceruloplasmin levels as compared with untreated mice. Along with an impaired antioxidant capacity in plasma,
quercetin-treated mice showed a significant delay on erythropoiesis progression. Heart mitochondrial function was also impaired
displaying more protein oxidation and less activity for IV, respectively, than no-treated mice. In addition, a significant reduction
in the protein expression levels of Mitofusin 2 and Voltage-Dependent Anion Carrier was observed. All these results suggest
that quercetin affects erythropoiesis and mitochondrial function and then its potential use as a dietary supplement should be
reexamined.

1. Introduction

The generation of reactive oxygen species (ROS) due to
normal cell metabolism and the accumulative damage they
cause to DNA, proteins, and lipid membranes have been
associated with the development of many acquired diseases
and aging.Thus, antioxidant therapies, especially through the
intake of nutraceutical pills as food supplement, have become
popular in our communities. However, in vivo studies of the
antioxidant properties of dietary flavonoids have shown some
paradoxical effects on human health [1] making important
to investigate further and deeper the mechanism of action of
these supplements.

Quercetin is one of themost abundant dietary flavonoids,
with the highest antioxidant capability [2, 3], modulating the
expression of different antioxidant enzymes such a catalase
and superoxide dismutase, and increasing the intracellu-
lar levels of glutathione [4–6]. Furthermore, multiple and
diverse functions have been ascribed to quercetin such as
an antihypertensive [7], anticoagulant [8], antiatherogenic
[7], antibacterial [9], and antiproliferative [10]. In last years,
conflicting biological effects of quercetin have been reported,
which might be related to its metabolites, its dose, and the
cellular redox state [11–14]. During ROS scavenging process,
quercetin gets oxidized, and it further reacts with glutathione
and the protein thiol groups, leading to consumption of
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glutathione, an increase in cytosolic calcium concentration
and lactate dehydrogenase leakage [11].

Quercetin may interact directly with mitochondrial
membranes [15, 16] affecting its fluidity. This has also been
associated with mitochondrial dysfunction through the inhi-
bition of respiratory chain or uncoupling [15, 16]. In addition,
quercetin affects mitochondrial calcium regulation, increases
O2
∙− production, and induces the opening of mitochondrial

transition pore (mPTP) in HCT116 cells [17]. The above
studies suggest quercetin could promote oxidation affecting
mitochondrial function, raising concerns about the validity
of quercetin as an antioxidant [17].

At molecular level, quercetin is potent iron chelator,
which is shown to alter the expression of proteins involved in
iron absorption affecting iron homeostasis [18, 19]. Iron is an
essential element in each of the four mitochondrial electron
transfer complexes, either as Fe/S cluster’s or heme’s compo-
nent [20]. Iron deficiency leads to altered cell metabolism
[20] and anemia [21, 22]. Red blood cell development is
the most iron requiring process for oxygen transport as
well as the most active cell generator system involving both
proliferation and differentiation from hematopoietic stem
cells, which are also dependent onmitochondrialmetabolism
[21, 23]. Additionally, iron deficiency-induced anemia can
have deleterious effects on heart [24], and cardiomyopathy
development is related with mitochondrial dysfunction due
to ROS excess [25, 26]. Both erythropoiesis and the cardiac
tissue are then suitable and attractive targets for quercetin
mechanistic studies.

Our working hypothesis is that quercetin interferes with
mitochondrial function exacerbating mitochondrial ROS
generation and altering the physiology of tissues highly
dependent on iron metabolism and mitochondrial function
such as the erythroid and cardiac tissue. We are interested
in addressing the in vivo prooxidant effect of quercetin on
mitochondrial function in these tissues.

Adaptive responses of mitochondria to maintain cell’s
bioenergetics capacity under stressful conditions involve the
remodeling of mitochondrial respiratory complexes to build
up or down supramolecular structures called supercom-
plexes; and themitochondrial fusion and fission events called
mitochondrial dynamics. The former will allow a better
substrate channeling to preclude extreme production of ROS
from the normal respiratory chain function [27–29]. The
latter will control energy expenditure and metabolic repro-
gramming [30–33]. Upregulation of Mitofusin 2 (MFN2)
protein, involved inmitochondrial fusion and thenwith elon-
gated mitochondria, has been associated with a protective
role against apoptosis, hypoxia, and ROS [32, 34, 35], as
well as with higher oxidative capacity by regulating in part
the respiratory complex proteins expression [35–38]. MFN2
expression is regulated in turn by the peroxisome proliferator
activated receptor-gamma coactivator-1𝛼 (PGC-1𝛼) under a
variety of conditions characterized by energy expenditure
[39]. PGC-1𝛼 is cofactor that participates in the regulation
of mitochondrial biogenesis and activation of peroxisome
proliferator activated receptor-𝛾 (PPAR 𝛾) pathway [40, 41].

Our results showed that quercetin clearly affected mito-
chondrial function inmice. Interestingly, quercetin decreased

erythropoiesis and reduced the expression levels of mito-
chondrial proteins that control mitochondrial dynamics.
These results proposed that the antioxidant properties of
quercetin need to be reevaluated given their widespread use
[42].

2. Materials and Methods

2.1. Animals and Experimental Design. Male C57BL/6 mice
(12 months of age) were daily administered intraperitoneally
(i.p.) with 50mg/kg quercetin (Cat # Q4951, Sigma) or with
vehicle (5% DMSO) and PBS for control animals, during 15
days. Animals were daily checked for weight and health con-
ditions. Right after the treatments, animals were submitted to
different tests indicated below and then sacrificed for heart
and bone marrow dissections. I.p. injections of quercetin in
rodents have been reported previously in [43–47], and the
dose of 50mg/kg of quercetin has been reported in [47–50].

2.2. Strength Test. To evaluate strength, resistance, and exer-
cise abilities, mice performed the Kondziela’s test and a
weightlifting test. Briefly, Kondziela’s inverted screen is a test
for muscle strength using all four limbs, in which eachmouse
was placed in the center of a screen, and then rotated, to
an inverted position with the mouse’s head declining first;
the mice falling time was recorded. The performance of each
mouse in the inverted screen was scored as follows: Falling
between 1–10 sec = 1; 11–25 sec = 2; 26–60 sec = 3; over 60 sec
= 4 [51]. On the other hand, the weightlifting is a test for
forelimbs muscle strength. The weightlifting assessed the
ability to raise seven weights ranging from 20 g to 98 g (20,
33, 46, 59, 72, 85, and 98 g). First, the mouse was allowed to
raise the lightestweight (20 g) for 3 sec andup to 3 times.After
a 10 sec rest in between each lift, the second and third raises
were performed to move onto the next heaviest weight. The
trial finishes when the mouse fails to lift or hold the weight
after three attempts, recording the maximum time/weight
achieved. The score calculations was made according to [51]
and normalized by the body weight.

2.3. Bone Marrow Analyses. Bone marrow was isolated from
both legs and immunostained with the antibodies phy-
coerythrin- (PE-) conjugated anti-TER119 and fluorescein
isothiocyanate- (FITC-) conjugated anti-CD71 according to
[30, 52]. Progression of erythropoiesis was then assessed by
flow cytometry [30].

2.4. Total Antioxidant Capacity. Antioxidant capacity was
evaluated using OxiSelect Total Antioxidant Capacity (TAC)
Assay Kit (Cat # STA-360, Cell Biolabs, Inc.) according to
manufacturer’s instructions. Results are expressed as “𝜇M
Copper Reducing Equivalents” and compared with control
and quercetin-treated samples.

2.5. Insulin Determination. For the quantitative determina-
tion of insulin in mouse plasma was used the Mouse Insulin
ELISA kit (Cat # 80-INSMS-E01, APLCO) according with the
manufacturer’s instructions [53].
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2.6. Western Blot. Mitochondrial proteins were prepared
from fresh isolated mitochondria solubilized in 20mM
HEPES, 2mMEDTA, 0.5%Triton-X100, 150mMNaCl, 1mM
PMSF, and a HALT protease cocktail inhibitor [30]. These
were then buffered and fractionated in 8% Bis-Tris polyacry-
lamide gel with MOPS and a 5mM sodium bisulfite running
buffer before being transferred onto a 0.2 𝜇m PVDF mem-
branewithNUPAGE transfer buffer in the semidry apparatus.
The antibodies PGC1-𝛼+𝛽 (Cat # ab72230, Abcam), MFN2
(Cat # ab50843, Abcam), VDAC1/Porin (Cat # ab15895,
Abcam), ceruloplasmin (Cat # ab8813, Abcam), and 𝛽-actin
(Cat # ab8227, Abcam) were used according to a previous
study [30, 32]. Detection of carbonyl groups introduced into
proteins by oxidative stress was performed with the OxyBlot
Protein Oxidation Detection Kit (Cat # S7150 Millipore)
according to [30, 32]. The quantity of ceruloplasmin was
evaluated in plasma samples, mixing 5𝜇L of plasma, 5 𝜇L
of sample buffer, and 15 𝜇L of H

2
O. The sample was boiled

at 95∘C for 10min and centrifuged and run in a protein
electrophoresis and blotted in PVDF membrane for cerulo-
plasmin immunodetection [30].

2.7. Blue Native Polyacrylamide Gel Electrophoresis (BN-
PAGE). Mitochondria were isolated by differential centrifu-
gation. Mitochondrial proteins were solubilized with the
NativePAGE Sample Prep Kit, and 80 𝜇g per well were loaded
onto a 3–12% polyacrylamide gradient NativePAGE Novex
Bis-Tris Gel (Invitrogen, Carlsbad, CA) [30].

2.8. In-Gel Activity Assay (IGA). Complex I in-gel activity
(CI-IGA) was detected by incubating BN-PAGE gels right
after electrophoresis in 100mM Tris-HCl, pH 7.4, with
1mg/mL nitro blue tetrazolium and 0.14mMNADH at room
temperature for 60min in the dark with gentle rocking
[54]. Complex IV in-gel activity (CIV-IGA) was detected by
incubating the gel with 0.1% (w/v) 3,3󸀠-diaminobenzidine,
0.1% (w/v) cytochrome c, and 24 units/mL catalase in 1mM
Tris-HCl, pH 7.4, at 37∘C for 6 h in the dark with gentle
rocking [28, 55]. Complex II in-gel activity (CII-IGA) was
detected by incubating the gel in 5mMTris-HCl, pH 7.4, with
20mM sodium succinate, 0.2mM phenazine methosulfate
and 2.5mg/mL nitro blue tetrazolium [30, 56].

2.9. Statistics. Statistical analyses were performed with Ori-
gin Pro8 with a significance level set at 𝑃 ≤ 0.05. Unpaired
Student’s 𝑡-test was used when comparing 2 average values.

3. Results

3.1. Effects of Quercetin on Metabolism and Strength Support
in Mice. Evidence suggests that quercetin is able to modulate
metabolism in mice [57, 58]; to evaluate the metabolic
status of quercetin-treated mice, we measured body weight
and plasma insulin levels. Mice body weight was measured
daily for 15 days, decreasing significantly up to 25% upon
the treatment with quercetin at 50mg/kg as compared
with control mice (Figure 1(a)). Along with the weight loss,
quercetin-treatedmice had significantly lower plasma Insulin

levels (0.5 ng/mL ± 0.1) than control ones (2.1 ng/mL ± 0.6)
(Figure 1(b)), confirming an altered metabolism. Normal
average plasma insulin level in mice is 0.6 ± 0.1 ng/mL [59],
and the range of native insulin level could be found between
0.1 and 2.9 ng/mL.

Previous reports of epidemiological and clinical studies
in humans showed that treatment with quercetin improved
cardiovascular health [58]. To test cardiovascular benefits
induced by quercetin, we evaluate if quercetin treatment
affects exercise abilities enhancing muscle strength and resis-
tance by the weightlifting capability test for forelimbs muscle
strength (Figure 1(c)) and the Kondziela’s inverted test for
resistance and strength (Figure 1(d)).Our studies showed that
quercetin-treated mice performed similarly on both strength
tests than control mice.

3.2. Quercetin Treatment Affects Iron Metabolism and Ery-
thropoiesis. The ferroxidase ceruloplasmin can be used as
markers of iron deficiency [60, 61]. Ceruloplasmin is essential
for iron homeostasis by favoring cellular iron release [62] and
has been described to decrease upon iron deficiency [61–63].
In our study, the levels of ceruloplasmin were significantly
reduced in 50% (𝑃 < 0.05) as compared with control
mice (Figures 2(a) and 2(b)). Furthermore, the plasma’s Total
Antioxidant Capacity (TAC) was evaluated showing a no sig-
nificant decrease upon the quercetin treatment (Figure 2(c)).

The erythropoiesis process is highly dependent on iron
transport and metabolism. Flow cytometry on bone mar-
row isolated cells from quercetin-treated mice displayed
a significant delay on erythropoiesis progression as com-
pared with control mice. Immature erythroid populations R1
(CD71med-TER119low) and R2 (CD71high-TER119low) showed
a significant increase as compared with vehicle-treated
mice (Figures 3(a) and 3(b)). On the other hand, the
iron dependent cell populations of erythropoiesis for heme
and hemoglobin biosynthesis, R3 (CD71high-TER119high), R4
(CD71med-TER119high), and R5 (CD71low-TER119high) were
all of them significantly decreased in quercetin-treated mice
(Figures 3(a) and 3(b)). These observations suggest that
quercetin treatment may induce anemia given the significant
delay on erythropoiesis progression (Figures 2 and 3).

3.3. Effect of Quercetin on Heart Mitochondrial Function.
Previous work showed the prooxidant effect of quercetin
in vitro in the HCT116 human colon tumor cells and liver
tissue [15, 17]. In addition, heart function is highly dependent
on aerobic metabolism and then mitochondrial function,
that is, the oxidative phosphorylation system (OXPHOS) for
energy generation [25, 26]. We analyzed the effect quercetin
on heart mitochondrial function analyzing respiratory com-
plexes activity in response to quercetin treatment. In-gel
activity (IGA) was tested for mitochondrial Complexes I,
II, and IV as well as for supercomplex rearrangements,
using heart mitochondrial proteins from quercetin- and
vehicle-treated mice. For Complex I, no significant changes
were observed at the level of monomeric Complex I, nor
supercomplex rearrangement (Figures 4(a) and 4(b)). Similar
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Figure 1: Effects of quercetin treatment on weight and plasma insulin levels in mice. Quercetin modulates mice metabolism. (a) Mice were
treated with quercetin (grey circles) for 15 days and body weight was evaluated. Quercetin-treated mice lost around 25% of body weight as
compared with untreated mice (black squares). ∗𝑃 < 0.05, control mice (𝑛 = 11), quercetin-treated mice (𝑛 = 9). (b) Insulin plasma levels
were measured using mouse insulin ELISA. Quercetin-treated mice showed a significant decrease in the plasma levels of insulin as compared
with control mice. ∗𝑃 < 0.05. (c) and (d) Quercetin treatment affects metabolic performance and exercise abilities. (c) Weightlifting test of
forelimbs muscle strength test and (d) Kondziela’s inverted test muscle strength and resistance using all four limbs (d). Quercetin-treated
mice performed similarly on both strength tests than control mice (c, d). The score obtained in the strength test was normalized by the body
weight. Average values were analyzed by two-sample 𝑡-test (𝑃 < 0.05), control mice (𝑛 = 11), and quercetin-treated mice (𝑛 = 9). Significant
differences (∗) were detected between control and quercetin-treated mice. (e) Box chart shows the 25th and 75th percentiles. The whiskers
show the 5th and 95th percentiles. Additional values are show in box chart, including the minimum (∗), median, mean (⬞), maximum (∗),
the 1st and 5th percentiles, and 95th percentiles.



Oxidative Medicine and Cellular Longevity 5

Control Quercetin

Cp

IgG

(a)

Control Quercetin

30000

25000

20000

15000

10000

5000

0

Re
lat

iv
e c

er
ul

op
la

sm
in

 le
ve

l (
a.u

.)

∗

Median

Minimum value

Maximum value∗

∗

95th percentile

75th percentile

25th percentile

5th percentile

󳴞 Mean (󳴞)

(b)

Control

Plasma

Quercetin

C
op

pe
r r

ed
uc

in
g 

eq
ui

va
le

nt
s (
𝜇

M
)

1000

900

800

700

600

500

400

300

200

100

Median

Minimum value

Maximum value∗

∗

95th percentile

75th percentile

25th percentile

5th percentile

󳴞 Mean (󳴞)

(c)

Figure 2: Effect of quercetin treatment on mice iron metabolism. (a) Plasma ferritin levels from quercetin-treated mice were measured by
ELISA, as it was described in Section 2. Treatment with quercetin did not affect ferritin levels as compared with untreated mice. (b) Total
Antioxidant Capacity was measured in plasma samples from quercetin-treated mice using TAC Oxyselect kit and results are expressed as
“𝜇MCopper Reducing Equivalents.” The value of the Copper Reducing Equivalents is directly proportional to the total antioxidant capacity.
(c) Mice were treated for 15 days with quercetin and then ceruloplasmin plasma levels were measured by western blot. (d) Densitometry
analysis of ceruloplasmin levels performed with the ImageJ software. Ceruloplasmin plasma levels of mice treated with quercetin significant
decreased 57%, compared to untreated mice ∗𝑃 < 0.05 compared to control. Control mice, 𝑛 = 11; quercetin-treated mice, 𝑛 = 9. Each bar
(box charts) represents the mean ± SD, analyzed by two-sample 𝑡-test (𝑃 < 0.05). Significant differences (∗) were found between control and
quercetin-treated mice. ∗𝑃 < 0.05.

results were obtained for Complex II (Figures 4(e) and 4(f)).
However, at the level of Complex IV (Figures 4(c) and
4(d)), quercetin treatment significantly reduced the activity
of monomeric Complex IV (not being part of the super-
complexes CI:CIII

2
:CIV
1−4

). Altogether, these observations

indicate that quercetin significantly altered mitochondrial
function through deregulation of Complex IV activity.

The effect of quercetin on heart mitochondrial function
was also studied at the level of mitochondrial biogen-
esis and mitochondrial dynamics. Protein expression for
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Figure 3: Erythropoietic progression in bonemarrow cells is altered in quercetin-treatedmice. (a) FACS plots. (a) Five erythroid populations
from immature to mature (R1, R2, R3, R4, and R5) are distinguished by CD71 and TER119 expression levels in freshly isolated bone marrow
through flow cytometry (CD71med-TER119low, CD71high-TER119low, CD71high-TER119high, CD71med-TER119high, and CD71low-TER119high). (b)
Quantitative analysis of cell progression. CTR mice, 𝑛 = 11 (red bars); quercetin-treated mice, 𝑛 = 9 (green bars). Each bar represents the
mean ± SD, analyzed by two-sample 𝑡-test (𝑃 < 0.05). Significant differences (∗) were found between control and Quercetin-treated mice.
∗
𝑃 < 0.05 compared to control.

PGC-1𝛼, MFN2, and VDAC was analyzed by immunoblots
(Figure 5). PGC-1𝛼, the master regulator of mitochondrial
biogenesis is upregulated upon energy expenditure and
demand [39]. Mitochondrial dynamics (MtDy), given by
the balance between fusion and fission events, control not
only mitochondrial morphology but rather mitochondrial
function, mitochondrial turnover, and bioenergetics. MFN2,
a mitochondrial fusion protein located on the outer mito-
chondrial membrane, has been shown to be upregulated
upon stressful conditions [36, 37]. The Voltage-Dependent
Anion Carrier (VDAC) also performs several key functions,
including regulating the shape and structure ofmitochondria,
interaction with hexokinase, and apoptosis signaling [64].
The immunoblot results showed quercetin treatment did

not affect the expression of PGC-1𝛼. On the other hand,
VDAC andMFN2 protein expression levels were significantly
decreased in quercetin-treated mice (Figures 5(a) and 5(c)).
Mitochondrial dysfunction is normally correlated with an
increase in the reactive oxygen species (ROS). To evaluate
redox status in heart mitochondria, protein oxidation was
assessed by the OxyBlot methodology [65]. Treatment with
quercetin showed a significant increase in mitochondrial
protein oxidation as compared with control (Figures 5(b) and
5(d)).

Altogether, our results suggest that in vivo quercetin treat-
ment is associated with a severe mitochondrial dysfunction
drastically affecting erythropoiesis and heart mitochondria.
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Figure 4: Quercetin treatment affects complexes OXPHOS properties in mice isolated mitochondria. Heart mitochondria isolated from
quercetin-treated mice were digitonin solubilized and fractionated by BN-PAGE and then followed by Complex I (a), Complex II (b), and
Complex IV (c) in-gel activity assays. (a) IGAComplex I densitometry analysis for supercomplex andmonomer fraction. (b) IGAComplex IV
densitometry analysis for supercomplex and monomer fraction. Images show three independent experiments. Each bar represents the mean
± SD, analyzed by two-sample 𝑡-test (𝑃 < 0.05). Abbreviations used are as follows: blue native polyacrylamide gel electrophoresis (BN-PAGE),
Complex I (CI), Complex IV (CIV), in-gel activity assay (IGA), and supercomplexes (SC). SC1:CI:CIII
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Figure 5: Effect of quercetin treatment on the expression of PGC-1𝛼, Mitofusin 2, VDAC, and protein oxidation. (a) Detection of carbonyl
groups was performed with the OxyBlot Protein Oxidation Detection Kit. (c) Densitometry quantification of carbonyl groups was made
with the ImageJ software. Carbonylation of proteins was normalized by Ponceau staining and Complex V (CV) expression. (b) Expression
of mitochondrial proteins. Protein expression of MFN2, PGC-1𝛼, and VDAC1 was analyzed in heart isolated mitochondria from control
and quercetin-treated mice. 𝛽-actin was used as a loading control. (d) Densitometry analysis. MFN2, PGC-1𝛼, and VDAC1 expressions were
normalized by 𝛽-actin expression. Each bar represents the mean ± SD, analyzed by two-sample 𝑡-test (𝑃 < 0.05). Control mice, 𝑛 = 11;
quercetin-treated mice, 𝑛 = 9. Each bar represents the mean ± SD, analyzed by two-sample 𝑡-test (𝑃 < 0.05). Significant differences (∗) were
found between control and quercetin-treated mice. 𝑃 < 0.05.

4. Discussion

In vitro and in vivo studies showed that quercetin may exert
dual antioxidant and prooxidant properties that depend on
tissue and cellular redox state [11–14]. This study shows that
quercetin clearly affects heart mitochondrial function and
erythropoiesis in mice. We observed the prooxidant capacity
of this polyphenolic flavonoid which induces higher levels of
carbonylated (oxidized) heart mitochondrial proteins when
injected in mice (Figures 5(a) and 5(c)). Associated with this
prooxidant property, quercetin treatment induced a signif-
icant decrease in the activity of the monomeric Complex
IV (Figures 4(e) and 4(f)). In addition, quercetin treatment
clearly decreased MFN2 and VDAC levels (Figures 5(b) and
5(d)). All these results are in agreement with the effects of
quercetin on mitochondria previously observed in vitro [15,
16]. Previous evidence suggests that quercetin interacts with
the mitochondrial inner membrane, inducing an inhibition

of respiratory chain and decreasing ATP levels [15]. This
is relevant because quercetin enters into cytosol and may
also reach the mitochondria [4, 66]. Flavonoids can also
induce apoptosis in association with prooxidant activities
inducing the mitochondrial transition pore (mPTP) [67, 68].
Quercetin induces the opening of mPTP mediated by Fe and
Cu [17], to release Ca2+ accumulated in mitochondria [15].

Larocca et al. reported in bone marrow from humans
adult patients suffering acute leukemia that quercetin could
inhibit leukemic cell growth without suppressing normal
hematopoiesis [69]. In that study, bone marrow isolated
from the patients (in vitro experiments) was treated with
quercetin every two days during two weeks and the ability
of human CD34+ cells to form both BFU-E and CFU-GM
was not affected by quercetin, but the quercetin concentration
was just 2 × 10−5 M (approximately 6mg/kg) [69]. Bakheet
reported that quercetin was not cytotoxic (DNA strand
breaks) to bone marrow at the tested doses of 50mg/kg
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and 100mg/kg. In addition, bone marrow ROS production,
lipid peroxidation, and GSH/GSSG ratio (reduced and oxi-
dized glutathione) did not show significant variation after
treatment of mice [70]. However, these experiments were
made for a short time, two days. The effect that we observed
on the bone marrow from quercetin-treated mice (in vivo
experiments) was an evident and significant delay on the
erythropoiesis progression (Figure 3), which suggests the
development of anemia. In the present study a decreased
activity of Complex IV inmice treated with quercetin is clear.
This is well correlated with decreased levels of ceruloplasmin
(Figure 2). Our previous research [30] exposed that mild
copper deprivation in mice is correlated with a decreased
protein expression and activity of Complex IV at the level
of OXPHOS supercomplexes along with a decrease in the
ceruloplasmin levels. Our present results are suggesting a
potential interaction between quercetin and copper ions,
which is in accordance with in vitro observations made by
Pękal et al. [71]. Laccases are multicopper oxidases struc-
turally and functionally similar to ceruloplasmin. Laccases
and ceruloplasmin exhibit reactivity in the hemoglobin-
flavonoid system. Then, quercetin as a flavonoid in the
presence of ceruloplasmin may oxidize hemoglobin affecting
the viability of red blood cells [72]. Galati et al. reported that
the generated phenoxyl radicals from flavonoid oxidation are
responsible for oxidation of oxy-hemoglobin directly in red
cells and lysis of red cells. It is known that hemoglobin is
prone to oxidative damage and unable to transport molecular
oxygen [73].

Quercetin has been proposed to increase mitochondrial
biogenesis through the regulation of PGC-1𝛼 pathway. Davis
et al. treated mice (and HepG2 cells) with quercetin at
12.5mg/kg and 25mg/kg for one week and showed that
quercetin increases brain andmusclemitochondrial biogene-
sis through the activation of PGC-1𝛼 and sirtuin 1, increasing
the levels of mtDNA and cytochrome c in HepG2 cells and
mice [74]. On the other hand, Casuso et al. supplemented
rats by oral gavage with 25mg/kg of quercetin combined
with exercise during 6-week [13] observing that quercetin
supplementation during exercise compromises both the
exercise and the quercetin effects on brain mitochondrial
content by disrupting the SIRT1-PGC-1𝛼 pathway. Quercetin
impedes exercise-induced adaptations in the brain.Quercetin
induced oxidative damage which, in the sedentary condition,
is counteracted by modulating antioxidant activity [13]. In
this work, we observed that quercetin treatment for two
weeks, at 50mg/kg, did not affect the expression of PGC-1𝛼
in heart. In contrast, VDAC andMFN2 protein levels showed
a significant decrease in quercetin-treated mice (Figures 5(b)
and 5(d)). These results suggest that quercetin affects mito-
chondrial dynamics compromising metabolism, substrate
oxidation, and the oxidative phosphorylation system [38].
Alterations in the expression of MFN-2 have been reported
to cause a parallel change in protein expression levels of
Complexes I, III, and IV [34]. These effects could be related
with our observations reported here, where quercetin affects
Complex IV activity.

Quercetin-treated mice displayed a weight loss and
lower insulin levels, which confirmed an altered metabolism

(Figure 1). Vessal et al. show an antidiabetic effect of quercetin
in diabetic rats [75]. Li et al. show a decrease in insulin levels
and weight loss in fructose-induced hyperinsulinemia [57].
Xia et al. proposed that under a nutritional balanced situation
quercetin exerts prooxidant effects, affecting cognition [12].
Thus, depending on the diet, quercetin might have protective
or detrimental effects on cell physiology.

5. Conclusion

Quercetin is widely used as a dietary supplement in healthy
people as an antioxidant. However, our results suggest that
quercetin intake affects mitochondrial function in cardiac
tissue and also erythropoiesis, which is a warning about the
nutraceutical use of this compound.
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Pineda, M. Lamprea-Rodriguez, E. Osorio, and G. P. Cardona-
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