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INTRODUCTION 
 

Multiple myeloma (MM) is an aggressive neoplastic 

disease characterized by a collection of several diverse 

cytogenetically distinct plasma cell malignancies  

with a high degree of heterogeneity, accounting  

for about 10% of all hematological malignancies  

[1, 2]. Trisomies and Immunoglobulin heavy chain 

gene (IgH) translocations are considered primary 

cytogenetic abnormalities, and other cytogenetic 

changes, such as gain(1q), del(1p), del(17p), del(13), 

RAS mutations, and translocations involving MYC, 

termed secondary cytogenetic abnormalities, also 

reflect high risk towards MM [3]. Overall survival of 

MM has significantly improved in the last 15 years, 

which has moved to the forefront of clinical interest 

because of the significant advances in medical 

treatment [4]. MM malignant cells and stromal  

cells secrete cytokines and growth factors, which 

explain the biological and clinical manifestations of 
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ABSTRACT 
 

Although novel drugs and treatments have been developed and improved, multiple myeloma (MM) is still 
recurrent and difficult to cure. In the present study, the magenta module containing 400 hub genes was 
determined from the training dataset of GSE24080 through weighted gene co-expression network analysis 
(WGCNA). Then, using the least absolute shrinkage and selection operator (Lasso) analysis, a fifteen-gene 
signature was firstly selected and the predictive performance for overall survival (OS) was favorable, which 
was identified by Receiver Operating Characteristic (ROC) curves. The risk score model was constructed 
based on survival-associated fifteen genes from the Lasso model, which classified MM patients into high-
risk and low-risk groups. Areas under the curve (AUC) of ROC curve and log-rank test showed that the high-
risk group was correlated to the dismal survival outcome of MM patients, which was also identified in 
testing dataset of GSE9782. The calibration plot, the AUC value of the ROC curve and Concordance-index 
showed that the interactive nomogram with risk score could favorably predict the probability of multi-year 
OS of MM patients. Therefore, it may help clinicians make a precise therapeutic decision based on the easy-
to-use tool of the nomogram. 
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the disease, including hypercalcemia, renal failure, 

anemia, bone destruction, and infection [5]. 

 

Immunomodulatory drugs such as lenalidomide and 

pomalidomide, proteasome inhibitors such as 

bortezomib, autologous stem cell transplantation, and 

monoclonal antibodies have significantly improved 

the survival rate of MM patients [6, 7], but recurrence 

and resistance are still a major problem [8]. The 

staging and classification of MM have always been 

the key to MM individualized precision therapy. In 

clinical practice, even if the International Staging 

System (ISS) or Durian Salmon Staging (DSS) are 

similar, the prognosis of MM patients is still different. 

The differences between these patients may result 

from a lot of reasons, of which difference in 

molecular variation may be one of the most important 

reasons [9]. Thus, a better understanding of the 

molecular pathogenesis of MM could help us to 

identify new prognostic and therapeutic targets. With 

the extensive development, validation, and clinical 

applications of molecular techniques such as 

fluorescence in situ hybridization and next-generation 

sequencing, several prognostic and predictive 

biomarkers have been used to predict progression-free 

survival, overall survival (OS), and treatment 

response. 

 

Weighted gene co-expression network analysis 

(WGCNA), a system biology algorithm, is used to find 

the correlation patterns among genes across microarray 

samples, identify modules of high related genes, and 

relate modules to certain clinical phenotypes [10, 11]. 

WGCNA is widely used to facilitate the screening or 

identification of candidate biomarkers or therapeutic 

targets that are critically associated with clinical traits 

[12]. The combined analysis of a panel of biomarkers, 

rather than an individual signature, is the most 

promising approach that is powerful enough to change 

clinical management [13–15]. The least absolute 

shrinkage and selection operator (Lasso), one of the 

machine learning methods, which uses L1 penalty for 

penalizing the squared error loss function of the 

coefficients, is an advanced variable selection 

algorithm for multi-collinear data or high-dimensional 

data [16, 17].  

 

In the present study, we combined WGCNA with 

Lasso regression to simplify the complexity of the 

network of genes and improve the predictive accuracy 

of genes to the OS of MM patients. We also 

constructed a risk score model and an interactive 

nomogram to predict the prognosis of MM, which may 

help the clinicians in the treatment of MM in  

the future. The workflow chart is summarized in 

Supplementary Figure 1. 

RESULTS 
 

Construction of WGCNA 

 

The dendrogram of 554 samples was shown in 

Supplementary Figure 2, and four outlier samples 

(GSM592558, GSM592552, GSM592499, and 

GSM592597) were excluded using the flashclust 

function of R package “WGCNA”. Heat map of the 

sample-associated clinical trait was also displayed in the 

different levels of red color (Supplementary Figure 2). 

To construct the WGCNA network, we determined the 

soft threshold power (β=16) to define the adjacency 

matrix based on the criterion of approximate scale-free 

topology and mean connectivity (Figure 1A). To figure 

out the interactions among these thirteen co-expressed 

modules, the connectivity of eigengenes was analyzed. 

To construct the co-expressed network and identify the 

key module, a hierarchical clustering tree for the 

module was produced using the best-fit β-value (β=16) 

(Figure 1B). Module blue and turquoise below the cut-

off line at 0.25 were merged, resulting in twelve merged 

modules at last (Figure 1C). 

 

Identification of most significant modules and 

eigengenes 

 

The correlation between module eigengenes and clinical 

traits of MM was showed in the heat map of Figure 2A. 

Module magenta was significantly related to event-free 

survival (EFS) (p=4e-08) and OS (p=6e-09). In 

addition, the module magenta had the highest GS 

relating to EFS (p value=2.5e-130) and OS (p value=9e-

251) in boxplot (Supplementary Figure 3). Therefore, 

the magenta module containing 400 eigengenes was 

used for subsequent analysis. As a result, the 

relationships between module membership and gene 

significance of 400 hub eigengenes from the magenta 

module for OS and EFS were significant, implying that 

hub genes in the scatter plot also tend to be highly 

correlated with OS and EFS (Figure 2B, 2C). 

 

Lasso penalized Cox regression 
 

After the Lasso was performed using 400 hub 

eigengenes using the training dataset, the coefficients 

were shown in Figure 3A. Genes with non-zero 

coefficients were considered to have strong prognostic 

potential in the Lasso penalized regression model. Two 

tuning parameters (Log λ.min = -2.86 and Log λ.1se = -

1.96) were obtained using 10-fold cross-validation via 

minimum criteria (Figure 3B). Therefore, the fifteen-

gene group and one-gene group were obtained based on 

Log λ.min and Log λ.lse. Wilcoxon test showed that the 

fifteen-gene group had better survival prediction 

potential than the one-gene group in MM patients 
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(p<0.05) (Figure 3C). The ROC curves showed that the 

AUCs of the fifteen-gene group and the one-gene group 

were 0.756 and 0.69, respectively, indicating that the 

fifteen-gene group had a more predictive ability of 

prognosis (Figure 3D). 

The testing dataset and whole samples of GSE24080 

were used to validate the constructed fifteen-gene and 

one-gene prognosis models respectively. Wilcoxon test 

showed that the fifteen-gene prognostic model had 

better survival prediction potential than the one-gene

 

 
 

Figure 1. WGCNA constructs a gene network related to the status of MM. (A) Analysis of the scale-free fit index and mean 
connectivity for various soft-thresholding powers. The red line indicates the appropriate scale-free topology fit index at 0.9. The best β value 
was estimated at 0.9. (B) Dendrogram of consensus module eigengenes obtained by WGCNA on the consensus correlation. The red line at 
0.25 indicates the merge threshold; groups of eigengenes below the threshold represent modules whose expression profiles were merged 
owing to their similarity. (C) Merged modules were identified by the Dynamic Tree Cutting method of WGCNA. Each module is assigned a 
color as an identifier. According to the correlation between the modules, twelve modules are generated after the merge. 
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group in both datasets (p<0.05) (Figure 4A, 4B). The 

AUCs of the fifteen-gene group and the one-gene group 

were 0.65 and 0.62 in the testing dataset, respectively, 

and were 0.71 and 0.66 in the whole sample dataset of 

GSE24080 (Figure 4C, 4D). As the fifteen-gene model 

has more accurate prognostic power than the one-gene 

model, the following studies focused on the fifteen-gene 

prognostic model. 

Univariate and multivariate Cox regression for 

fifteen hub genes 

 

To obtain a more accurate and sensitive risk score 

model, univariate and multivariate Cox regression 

analyses for fifteen genes were performed. The 

univariate Cox regression showed that 14 genes could 

be independent biomarkers for the prediction of OS

 

 
 

Figure 2. Identify modules related to the clinical features of MM. (A) Heat map of the correlation between module eigengenes and 
clinical traits of MM. Red means high adjacency and blue means low adjacency. The correlation coefficient and p-value were listed in the heat 
map. (B, C) Scatter plot of module eigengenes related to EFS and OS in the magenta module. 
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(p<0.05) (Table 1). Three genes, AURKA, FAM72A, and 

NUF2, were probably more closely correlated to OS 

after the multivariate Cox regression performing in the 

forest plot (p<0.1) (Figure 5A and Table 1). Kaplan-

Meier survival analysis also showed that three genes 

contributed to independent survival prediction (Log-

rank p<0.05) (Figure 5B). 

 

Establishment of a fifteen-gene risk score model 

 

A fifteen-gene risk score model was built by 

multivariate Cox hazard regression analysis. The 

Concordance-index value was 0.69 and the global log-

rank p-value was 7.764e-11 (p<0.05) in the forest plot 

(Figure 5A), indicating that the risk score model 

containing fifteen hub genes could be used to predict 

OS. MM patients with a risk score ≥ 0 were classified 

into the high-risk group, whereas MM patients with a 

risk score<0 were divided into the low-risk group. 

Compared to the low-risk group, the distribution plot 

of survival status showed that the samples of death 

events were enriched in the high-risk group (Figure 

6A, 6B). All genes were overexpressed in the high-

risk group in the heat map (Figure 6C). Consistently, 

the Kaplan-Meier curve showed that the high-risk 

group had lower survival possibility, compared to the 

low-risk group (Log-rank p < 0.0001) (Figure 6D). 

Time-dependent ROC curves further verified and 

depicted the excellent prediction performance of the 

fifteen-gene risk score model with the AUC of 1-year 

was 0.692, 3-year AUC =0.712, 5-year AUC =0.676, 

7-year AUC =0.757 (Figure 6E). The mean of time-

dependent AUC was over 0.7 during the different time, 

which imply that the risk score model of fifteen genes 

may contribute to accurate survival prediction  

(Figure 6F). Six hub genes were selected from the 

testing dataset of GSE9782 and used to construct a 

risk score model in Supplementary Table 1.  

The similar results showed that this risk score model 

was also beneficial for the prediction of survival 

based on log-rank test p<0.0001 and AUC value  

was 0.638. 

 

 
 

Figure 3. Construction of Lasso Cox regression model using training dataset of MM. (A) A coefficient profile plot was produced 
against the log (λ) sequence. (B) Tuning parameter (λ) selection in the Lasso model used 10-fold cross-validation via minimum criteria. Dotted 
vertical lines were drawn at the optimal values by using the minimum criteria and the 1 standard error of the minimum criteria (the 1-SE 
criteria). (C) Survival probabilities (Prob-min and Prob-lse) were predicted by two Lasso models based on two ideal parameters Log λ.lse and 
Log λ.min. The Wilcoxon test was used to compare the different survival outcomes. (D) ROC curves analysis and the values of AUC were used 
to compare two Lasso models based on Log λlse and Log λmin. 
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Establishment and validation of the nomogram 
 

Clinical traits and the fifteen-gene risk score were also 

analyzed by univariate and multivariate Cox regression 

to identify the survival-related variable. The risk score 

and clinical signatures including AGE, CREAT, LDH, 

ALB, Cyto_Abn were found to be significantly related 

to OS (p<0.05) (Supplementary Table 2). Since five 

clinical traits and risk scores were vital variables for the 

prediction of OS of MM, we rebuilt the multivariate 

Cox regression model and visualized it by nomogram. 

Total points were summated by adding each point of 

AGE, CREAT, LDH, ALB, Cyto_Abn, and the fifteen-

gene risk score (Figure 7A). The calibration curves of 1 

to 7-year survival demonstrated favorable prediction 

performance of nomogram (Figure 7B). To illustrate the 

significant influence of the fifteen-gene risk score in the 

nomogram, the ROC curve further verified that AUC 

for the model containing the risk score was 0.785, 

higher than 0.730 without risk score (Figure 7C, 7D).

 

 
 

Figure 4. The validation of the Lasso model using testing and the whole dataset of GSE24080. (A, B) Survival probabilities (Prob-
min and Prob-lse) were predicted by two Lasso models based on two ideal parameters Log λ.lse and Log λ.min using testing and the whole 
dataset of GSE24080. The Wilcoxon test was used to compare the different survival outcomes. (C, D) ROC curves analysis and the values of 
AUC were used to compare two Lasso models based on Log λ.lse and Log λ.min using testing and the whole dataset of GSE24080. 
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Table 1. Univariate and multivariate Cox regression analysis for fifteen genes. 

Variable 
Univariate Cox analysis 

p 
Multivariate Cox analysis 

p 
Beta HR 95% CI HR Beta HR 95% CI HR 

ABHD3 3.5 34 2.7-440 0.006* 1.205 3.336 0.157-70.765 0.440 

ACN9 3.5 32 6.3-160 0.000** 1.461 4.310 0.754-24.640 0.101 

ANLN 1.9 6.6 2.1-21 0.001** -0.097 0.908 0.262-3.145 0.879 

AURKA 5 150 31-710 0.000** 2.442 11.43 1.412-93.551 0.023* 

CTNNAL1 0.79 2.2 0.34-14 0.410 -0.931 0.394 0.059-2.628 0.336 

FAM210A 6.5 660 24-18000 0.000** -0.292 0.747 0.017-32.382 0.880 

FAM72A 4.1 62 19-200 0.000** 2.301 9.983 1.282-77.727 0.028* 

HAUS3 4.9 140 5.6-3400 0.003* 1.835 6.264 0.204-191.915 0.293 

KNSTRN 7.3 150 54-39000 0.000** 2.991 19.99 0.433-915.781 0.126 

LINC00998 5.3 200 16-2600 0.000** 1.084 2.958 0.159-54.955 0.467 

LOC81691 1.3 3.7 1.9-7.5 0.000** 0.387 1.472 0.666-3.253 0.339 

NUF2 2.3 10 4.1-26 0.000** -1.105 0.331 0.099-1.108 0.073# 

SMCHD1 5.1 160 10-2400 0.000** 2.310 10.08 0.421-240.952 0.154 

TIMM21 6.6 710 41-12000 0.000** 1.788 5.980 0.154-232.174 0.338 

ZNF92 6 380 27-5600 0.000** 1.026 2.791 0.148-52.590 0.493 

#, p<0.1, *, p<0.05, **, p<0.001. 
 

Meanwhile, the C-index of the model with the risk score 

was 0.754, higher than 0.722 of the C-index without the 

risk score (Table 2). The patient sample of GSM592833 

was randomly selected and used to illustrate the 

nomogram (Figure 8A, 8B). It should be noted that the 

patient died on the following day of 2016. The death 

probability of this sample was 0.661 predicted by 

nomogram with a risk score, but only 0.445 predicted 

by the nomogram without risk score. These results 

indicate that the nomogram with risk score has better 

predictive performance thus is more reliable. According 

to the equation of nomogram, after inputting the values 

of clinical traits and risk score, the prediction of OS was 

estimated via nomogram tool in Microsoft Excel 

(Supplementary Table 3). 

 

DISCUSSION 
 

Although several new drugs have been introduced into 

clinical practice, MM is still incurable with dismal 

clinical outcomes in MM patients [18, 19]. Molecular 

risk stratification basing on hub gene expression of MM 

has opened an avenue for clinicians to conduct 

personalized medicine [20, 21]. Therefore, it is critical 

to developing novel molecular biomarkers that are 

closely related to the clinicopathological characteristics 

and clinical survival outcomes of MM patients. 

 

To reveal the relationship between clinical information 

and gene expression matrix, many bioinformatics 

methods are developed. A prognosis-associated long 

noncoding RNA-mRNA network for multiple myeloma 

was constructed by WGCNA based on the microarray 

of MM (GSE24080) [22]. In the present study, we 

firstly comprehensively investigate the influence of 

genes on the prognosis of MM patients via WGCNA. 

The key module magenta was screened out according to 

the p-value and Pearson’s coefficients in the module-

trait heat map. The bar plots of gene significance also 

showed that the module magenta was highly correlated 

to EFS and OS (p<0.05). Dot plot of gene significance 

and module membership revealed that 400 hub genes 

within the magenta module were significant. 

 

To further screen hub genes involved in the prognosis 

of MM, Lasso was introduced to improve the prediction 

accuracy by forcing the sum of the absolute value of the 

regression coefficients to be less than a fixed value. We 

incorporated the 400 hub genes into the Lasso model, 

fifteen hub genes with non-zero coefficients in the 

model were identified based on log λ.min. The ROC 

curves indicated that the fifteen-gene model showed 

better performance of prediction ability compared to the 

one-gene model based on log λ.lse. Multivariate Cox 

regression analyzed the predicted attribution of 

individual genes within the fifteen-gene model and 

three genes (AURKA, NUF2, and FAM72A) were found 

to be significantly correlated to survival outcome 

(p<0.1) the same as independent indicators using the K-

M curve (Log-rank p<0.01). Considering the interaction 

and influence among hub genes, we constructed the risk 

score model to weigh the efficacy of fifteen genes on 

OS. The low-risk score group had a better survival 

outcome compared to the high-risk score group. The 

classifier based on risk score was well performed to 

distinguish the status of OS by time ROC curve. The 
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risk score model containing six hub genes was 

constructed using the testing dataset of GSE9782, which 

also showed favorable prediction ability. 

 

Univariate and multivariate Cox regression analyses 

were also used to identify favorable clinical risk 

characteristics, at last, AGE, LDH, CREAT, Cyo_Abn, 

and ALB were selected due to the high correlation to 

prognosis (p<0.05). Compared to the previously 

published nomogram, it is worth mentioning that we 

considered gene risk score as a continuous variable 

which was more accurate to predict prognosis. This 

research not only considered one aspect of gene 

expression, but the clinical characters and risk gene 

combination, eventually integrated into the nomogram, 

intuitively reflect effects of each part on the prognosis 

of patients with MM, and ultimately to the scores, for 1 

to 7 years survival rate of prediction. Thus, an 

interactive nomogram was established, taking into 

account a variety of survival-related five clinical traits 

and the fifteen-gene risk score. ROC curve analysis and 

C-index showed that the nomogram with risk score had 

higher reliability than the model without a risk score. 

Meanwhile, the nomogram model without the fifteen-

gene risk score was also validated in the same sample of 

GSM592833, but with less accuracy. 

 

Compared to the R-ISS system, LDH and 

cyto_abnormaty were also considered as indicators in 

the nomogram. The continuous values of LDH were 

transferred to points of the nomogram, which was more 

accurate for the prediction of the survival of each

 

 
 

Figure 5. Effects of hub genes on survival outcome of MM patients of GSE24080. (A) Forest plot of multivariate Cox regression 
analysis for fifteen genes. FAM72A, AURKA, and NUF2 were significantly associated with survival in multiple myeloma patients (p<0.1). (B) 
Kaplan-Meier analysis of FAM72A, AURKA and NUF2 to predict patient survival. MM patients with the high and low expression levels of three 
genes were divided into two groups according to the cut-off value of medium expression levels. p-value of the Log-rank test less than 0.05 
was considered as a statistical difference. 
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patient. Another prognostic model containing the ISS 

system, the expressions of two miRNA (let-7b and miR-

18a) in serum and cytogenetics, could improve the 

identification of patients with newly diagnosed MM 

with poor outcomes [23]. The AUC was near 0.73 lower 

than the AUC value of 0.785 in our nomogram model. 

Other models using Gaussian process regression and 

random forests model also illustrated that the AUC 

value was near 0.70 lower than the AUC value of 0.785 

in our nomogram model [24]. 

 

The molecular signature of these hub genes has been 

demonstrated to be associated with the proliferation or 

invasion of several human cancers. AURKA encodes a 

serine/threonine kinase located in the centrosomes and 

plays a vital role in the distribution of chromosomes to 

two daughter cells in mitosis by participating in the 

replication, separation, and maturation of centrosomes 

[25, 26]. Studies have shown that overexpression of 

AURKA leads to chromosome instability and promotes 

malignant transformation of cells [27]. AURKA 

phosphorylates p53 serine 315 residues, promoting 

MDM2-mediated degradation, while AURKA silencing 

reverses this process. Besides, reduced AURKA levels 

led to greater stability, while increased AURKA 

expression undermined the response to cisplatin-

 

 
 

Figure 6. Construction of risk score model using the fifteen-gene expression profile in MM patients of GSE24080. (A) Fifteen-
gene risk score distribution of MM patients based on risk score levels. The best cut-off value was used to divide the patients into two groups. 
(B) The survival status of all patients was distributed and classified by risk score group. (C) The expression profiles of the fifteen genes in high-
risk and low-risk groups. (D) Kaplan-Meier analysis of the fifteen-gene risk score model. (E) Time-dependent ROC curves for the fifteen-gene 
risk score model to predict overall survival of MM patients. AUCs for 1 to 7-year survival were shown in the figure. (F) Time-dependent AUCs 
for the risk assessment model. 
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induced apoptosis [28, 29]. AURKA protected ovarian 

cancer cells from chemotherapeutic drug-induced 

apoptosis by activating the Akt pathway in a p53-

dependent manner [30]. There is increasing evidence 

that AURKA is expressed to varying degrees in newly 

diagnosed and recurrent MM patients and MM cell lines 

[30, 31]. AURKA has been reported to be associated 

with myeloma resistance and early disease recurrence 

[32]. AURKA may disrupt the DNA damage repair 

response by regulating DNA repair proteins such as 

CHK1/2 [33]. Inhibition of AURKA expression in MM 

cells induced apoptosis and death [31, 34, 35]. Some 

small molecule inhibitors against AURKA are currently 

being studied in clinical trials in MM or other cancer 

patients [36, 37]. In the present study, we also showed 

that AURKA could be an independent indicator for the 

prediction of the survival outcomes of MM patients. 

 

NUF2, also named CDCA1 as a part of a protein 

complex associated with the centromeres, is essential 

for normal centromere microtubule attachment [38] and 

chromosome instability in tumor cells [39]. Abnormal 

expression of NUF2 leads to mitotic dysregulation [40, 

41]. The dysexpression of NUF2 is closely related to the 

development of tumors and it can be used as a 

biomarker for poor prognosis [42]. Small interfering 

RNA inhibited NUF2 expression in pancreatic cancer, 

glioma, and liver cancer and reduced the growth of 

tumors [43, 44]. Besides, the sub-G1 proportion in the 

cell cycle was significantly increased [44, 45]. The

 

 
 

Figure 7. Nomogram predicting 1-year, 3-year, 5-year, and 7-year overall survival of multiple myeloma patients. (A) The 
nomogram consists of the fifteen-gene risk score and five clinical risk indicators. Add the points from these 6 variables together and find the 
location of the Total Points. The Total Points projected on the bottom scales indicate the probability of 1-year, 3-year, 5-year, and 7-year 
overall survival. (B) The calibration curve for predicting 1-year, 3-year, 5-year, and 7-year overall survival. (C) ROC curves for the nomogram 
model with risk score to predict patient survival. (D) ROC curves for the nomogram model without risk score to predict patient survival. 
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Table 2. Nomogram model parameters. 

Variable 

Nomogram with risk  

score p 

Nomogram without risk 

score p 

Beta OR 95%CI Beta OR 95%CI 

AGE 0.024 1.024 1.007-1.042 0.005* 0.021 1.021 1.004-1.039 0.013543* 

LDH 0.004 1.004 1.002-1.006 0.000** 0.005 1.005 1.004-1.007 6.08e-09** 

ALB -0.334 0.716 0.572-0.897 0.004* -0.450 0.637 0.512-0.793 5.32e-05** 

CREAT 0.101 1.106 1.013-1.208 0.025* 0.146 1.157 1.062-1.261 0.000895** 

Cyto-Abn -0.511 0.600 0.436-0.826 0.001* -0.699 0.497 0.365-0.677 9.39e-06** 

risk score 0.647 1.910 1.501-2.430 0.000000145** NA NA NA NA 

C-index 0.754±0.019 0.722±0.02 

Likelihood ratio test 122.6, p<0.001 94.85, p<2e-16 

Wald test 138.6, p=<0.001 111.5, p=<2e-16 

Score (Log-rank test) 150, p=<0.001 119.3, p=<2e-16 

*, p<0.05, **, p<0.001. 
 

prognostic impact of NUF2 correlates well with the 

dismal prognosis of MM [46]. After the multivariate 

Cox regression analysis was performed, it appears that 

lower expression of NUF2 was associated with worse 

outcomes in the forest plot, but the K-M curve showed 

the improved outcome for low expressions, which was 

different may due to the differences in statistical 

methods and the influence by gene-gene interaction. It 

implied that our interactive nomogram with risk scores 

could more favorably predict the probability of multi-

year OS of MM patients than single gene expression.  

FAM72A (family with sequence similarity 72 member 

A), known as p17 or LMPIP, is composed of 149 amino 

acids as a kind of neuron protein [47]. Under 

physiological conditions, FAM72A is expressed at low 

levels; but the overexpression can cause neuronal cell 

death. This protein has been shown to have high clinical 

relevance for survival/death outcomes in cancer 

patients, as it may be associated with tumorigenic 

effects in non-neuronal tissue including breast, 

colorectal, and lung cancer [48–50]. Preliminary data 

show that FAM72A acts downstream of PKC as a uracil

 

 
 

Figure 8. Interactive nomogram predicts the survival probability of overall survival for the GSM592833 sample. The patient 
died on the following day of 2016. **(p<0.01), ***(p<0.001) indicates a significant correlation. (A) Nomogram containing five clinical traits 
and fifteen-gene risk score predicts 365-day, 1095-day, 1825-day, 2016-day, and 2555-day overall survival probability. (B) A nomogram 
containing five clinical traits without a fifteen-gene risk score predicts overall survival probability. 
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DNA glycosylase-2 (UNG2) binding protein and 

mediates tumorigenic action [47]. Cell cycle analysis 

showed that FAM72A drove cells into the G0/G1 phase, 

which may explain the physiological low expression 

level of FAM72A in proliferating cells and its role in 

neurons [49]. Tumor cells may attempt to compensate 

for the inhibition of p53 and the interference of base 

excision repair (BER) mechanism, so it may be 

characterized by the increased expression level of 

FAM72A protein [48]. This was consistent with 

previous cell cycle analysis by Wang et al. which 

showed that FAM72A shortened G1/S transition in 

nasopharyngeal carcinoma [51].  

 

Other hub genes were also reported in various types of 

cancers as independent indicators for survival prediction. 

Rare homozygotes in the ANLN (rs12535394) SNP pair 

are prognostic of favorable breast cancer survival [52]. 

High levels of ANLN contributed to the poor prognosis of 

anthracycline-based chemotherapy in breast cancer 

patients [53, 54]. A three protein-coding genes prognostic 

model including SMCHD1 predicts overall survival in 

bladder cancer patients [55]. Univariate and multivariate 

survival analysis showed that high expression of HAUS3 

was an independent prognostic factor for the dismal 

outcome of overall survival of HCC patients [55]. High 

expression of HAUS3 is also associated with poor 

prognosis and HCC progression [56]. KNSTRN is 

significantly associated with dismal survival status in 

endometrial cancer [57]. 

 

In summary, this study used a variety of analytical 

methods to establish a scoring system as a prognostic 

indicator for MM patients. The prognostic model was 

an independent classifier for MM. Moreover, several 

hub genes in the model could be utilized as an effective 

drug target for MM treatment. 

 

MATERIALS AND METHODS 
 

Data collection and preprocessing 
 

The microarray expression data of GSE24080 as the 

training dataset and GSE9782 as the testing dataset of 

MM patients were obtained from the Gene Expression 

Omnibus database (http://www.ncbi.nlm.nih.gov/geo). 

According to the annotation information, the probes are 

converted into gene symbols on the array platform, and 

the gene expression is calculated by R package 

"limma". All samples with complete follow-up clinical 

information are listed in Supplementary Figure 4.  

 

Construction of WGCNA 
 

The details of the WGCNA algorithm were conducted 

by the R package “WGCNA” and were described in 

our previous publications [58–60]. Firstly, we used 

the sample dendrogram clustering method to remove 

the obvious outlier samples with too many missing 

entries for outlier detection and showed in a clinical 

trait heat map. Secondly, based on the criteria of 

approximate scale-free topology and mean 

connectivity, the soft-threshold power was calculated 

by the pickSoftThreshold function of WGCNA. 

Thirdly, we calculated adjacencies using best-fit soft-

threshold power, transformed the adjacency into a 

topological overlap matrix (TOM), and calculated the 

corresponding dissimilarity TOM (dissTOM). Finally, 

after hierarchical clustering analysis based on the 

dissTOM, modules were generated by the dynamic 

tree cut method for module merging (the cut-off  

line at 0.25). 

 

Construction of module-trait relationships and 

identification of hub modules associated with clinical 

traits 

 

Pearson’s correlation coefficients and p values 

between modules and MM clinical traits were 

calculated and visualized in a module-trait heat map. 

The module membership represents the correlation 

between the clinical traits and MM’s clinical status. 

The average gene significance (GS) in each module 

was displayed in a bar graph, which also reflected the 

relationship between the module and MM clinical 

status. The module with the highest module 

significance and module membership was considered 

as hub clinical module. To further identify hub 

eigengenes within key modules, a scatter plot of GS 

related to module membership for clinical traits was 

visualized. The p values and Pearson’s coefficients 

were also calculated. 

 

Lasso penalized regression analysis 

 

The expression matrix of eigengenes within the key 

module was divided into the training and testing 

datasets of GSE24080 by the R package of “caret”. 

Lasso penalized regression was used to select the 

most powerful predictive eigengenes from the training 

dataset. By performing L1 norm regularization 

through the R package “glmnet”, different coefficients 

corresponding to different λ values were obtained. 

The “cv.glmnet” function was used to select the 

optimal λ value by ten-fold cross-validation. Gene 

screening using Log λ.min or Log λ.1se was 

conducted by “coef” function. Comparison analysis of 

survival probability of the two ideal models was 

conducted by the Wilcoxon test and ROC curves 

through the R package of “pROC” using the training 

dataset, testing dataset, and the whole expression 

matrix of GSE24080. 

http://www.ncbi.nlm.nih.gov/geo
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Univariate and multivariate Cox regression analysis 
 

To further identify the influence of hub genes and 

clinical traits on the survival outcome of MM, 

univariate and multivariate Cox regression analyses 

were conducted using R packages “survival” and 

“survimer”. A p-value less than 0.05 was considered 

statistical significance. Kaplan-Meier (K-M) curve and 

Log-rank test were also conducted to compare survival 

outcomes between high-expression and low-expression 

groups by R packages “survival” and “survimer”. Log-

rank p<0.05 was considered statistical significance. 

 

Establishment of risk score model based on fifteen-

gene signature 
 

The risk score for MM patients was calculated and 

evaluated by Concordance-index (C-index) based on the 

Cox proportional-hazards model [21, 58]. Then all 

patients were divided into a high-risk group and a low-

risk group according to the cut-off value of the risk 

score. The risk score distribution, survival status, and 

expression pattern of the fifteen hub genes were 

displayed in the dot plot and heat map. Kaplan-Meier 

analysis was used to compare survival outcomes 

between the high-risk group and low-risk group. Log-

rank p<0.05 was considered as statistical significance. 

Time-dependent ROC analysis was performed and the 

time-dependent area under the curve (AUC) was 

calculated by the R package “timeROC”. The testing 

dataset of GSE9782 was used to testify the performance 

of the risk score model following the above process. 

 

Nomogram 
 

Five indicators including AGE, lactate dehydrogenase 

(LDH), creatinine (CREAT), cytogenetic abnormalities 

(Cyto_Abn), and the fifteen-gene risk score were 

enrolled to establish the nomogram by the R package 

“rms”. The interactive nomogram was calculated by the 

function of R package “glm” and showed using 

“regplot”. Each indicator had its point, and the total 

points were calculated by adding all the points together. 

The total points of these indicators and survival 

probability were calculated by the R package 

“nomogramEx”. C-index was measured to evaluate the 

discrimination performance of nomogram with or 

without risk score by R package “Hmisc”. The 

calibration curve and ROC curve were also plotted to 

evaluate the prediction efficacy of the nomogram with 

or without risk score. The nomogram was validated 

using a randomly selected sample of GSM592833 to 

predict the 1-year, 3-year, 5-year, and 7-year OS. A 

predictive tool of a nomogram based on Microsoft 

Excel was developed for convenient clinical use. After 

the input of clinical information and the risk score of 

MM patients, the survival probability is output 

(Supplementary Table 4). 

 

Availability of data and materials 
 

The datasets used and/or analyzed during the present 

study are available from the corresponding author on 

reasonable request. 
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SUPPLEMENTARY MATERIALS 

 

Supplementary Figures 

 

 

 

 
 

Supplementary Figure 1. The workflow chart of this study. 
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Supplementary Figure 2. WGCNA construction. (A) Clustering dendrogram of 554 samples of MM. Four outlier samples (GSM592558, 
GSM592552, GSM592499 and GSM592597) were excluded using the flashclust function of R package “WGCNA”. (B) Heat map showed the 
clinical datasets of MM patients. 
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Supplementary Figure 3. Distribution of average gene significance and errors in the modules associated with EFS and OS  
of MM. 
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Supplementary Figure 4. Risk score model for GSE9782. (A) Construction of risk score model using the fifteen-gene expression profile 
in MM patients of GSE9782. (A) The selected six-gene risk score distribution of MM patients based on risk score levels. The best cut-off value 
was used to divide the patients into two groups. The survival status of all patients was distributed and classified by risk score group. (B) The 
expression profiles of six genes in high-risk and low-risk groups. (C) ROC curve for the fifteen-gene risk score model to predict overall survival 
of MM patients. AUC was 0.638. (D) Kaplan-Meier analysis of the six-gene risk score model. 
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Supplementary Tables 
 

Please browse Full Text version to see the data of Supplementary Tables 1, 2, 4. 

 

Supplementary Table 1. Univariate and multivariate Cox regression analysis for clinical characteristics and risk 
score. 
 

Supplementary Table 2. An interactive tool of nomogram predicts overall survival of MM patients based on 
excel. 

 

Supplementary Table 3. Summary of clinical characteristics of GSE24080. 

Items 
 

Input data 
 

Points 

AGE 1 year - 80 years 64.16 years 29.93 

CREAT Creatinine 0.6 mg/dl 1.701874772 

LDH Lactate dehydrogenase 185 U/l 13.51351661 

ALB Albumin 4.2 g/dl 12.20350432 

Cyto_Abn An indicator of the detection of cytogenetic abnormalities 1 1=abnormal; 0=no detected or absent 14.35144 

Riskscore Risk score based on genes 1.01 1=high risk; 0=low risk 72.90909091 

  Totals points 
  

144.61 

Results: 1-year Survival Prob 
  

0.858645467 

  3-years Survival Prob 
  

0.61493303 

  5-years Survival Prob 
  

0.408277594 

  7-years Survival Prob 
  

0.271462399 

Nomogram predicts overall survival of MM patients. 
 

Supplementary Table 4. Code for interactive nomogram. 

 


