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Epigenetic mechanisms play an important role in the development and progression of various neurodegenerative diseases.
Abnormal methylation of numerous genes responsible for regulation of transcription, DNA replication, and apoptosis has been
linked to Alzheimer’s disease (AD) pathology. We have recently performed whole transcriptome profiling of familial early-onset
Alzheimer’s disease (fEOAD) patient-derived fibroblasts. On this basis, we demonstrated a strong dysregulation of cell cycle
checkpoints and DNA damage response (DDR) in both fibroblasts and reprogrammed neurons. Here, we show that the aging-
correlated hypermethylation of KLF14 and TRIM59 genes associates with abnormalities in DNA repair and cell cycle control in
fEOAD. Based on the resulting transcriptome networks, we found that the hypermethylation of KLF14 might be associated with
epigenetic regulation of the chromatin organization and mRNA processing followed by hypermethylation of TRIM59 likely
associated with the G2/M cell cycle phase and p53 role in DNA repair with BRCA1 protein as the key player. We propose that
the hypermethylation of KLF14 could constitute a superior epigenetic mechanism for TRIM59 hypermethylation. The
methylation status of both genes affects genome stability and might contribute to proapoptotic signaling in AD. Since this study
combines data obtained from various tissues from AD patients, it reinforces the view that the genetic methylation status in the
blood may be a valuable predictor of molecular processes occurring in affected tissues. Further research is necessary to define a
detailed role of TRIM59 and KLF4 in neurodegeneration of neurons.
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1. Introduction

Alzheimer’s disease (AD) is the most common type of
dementia characterized by massive neuronal loss, primarily
in the hippocampus and prefrontal cortex. Predominantly,
AD is caused by the changed ratio between the long and short
forms of β-amyloid (Aβ) peptides (Aβ40/Aβ42) and the for-
mation of cytotoxic β-sheet structured oligomers resulting in
progressive neuronal death and eventual loss of cognitive
functions. The deposition of Aβ mono- and oligomers into
senile plaques is accompanied by hyperphosphorylation of
microtubule-associated protein tau forming pathological
neurofibrillary tangles [1]. There are two major types of
AD, early-onset (fEOAD), overlapping with familial AD
(FAD), and late-onsetAD(LOAD), overlappingwith sporadic
AD (SAD). The fEOAD represents 1–5% of all AD cases, and
40% fEOAD cases are associated with autosomal dominant
mutations in PSEN1 on chromosome 14 (encoding presenilin
1),PSEN2 on chromosome 1 (encoding presenilin 2), andAPP
on chromosome 21 (encoding amyloid β precursor protein).
To date, 230 mutations in PSEN1, 39 in PSEN2, and 67 in
APP have been registered in the AD/FTD mutation database
[2], including several identified by our team [3–6]. Next to
the amyloid and tau pathogenesis, Alzheimer’s disease
involves several other pathological processes, including
inflammatory states, oxidative stress, and cell cycle reentry of
postmitotic neurons leading to their death [7].

Clearly, pathogenesis and etiology of Alzheimer’s disease
depend on the complex genetic and environmental back-
ground. This demands fine-tuned activation or repression
of gene expression, and its imbalance may favor pathological
conditions, including neurodegeneration [8]. Global DNA
hypomethylation in neurons has been described already in
the cerebral cortex of AD patients [9, 10]. Moreover, several
variants of the methylation pattern of AD-related genes
(e.g., PSEN1, APP) have been identified in the brain tissue
of AD patients. On the other hand, a recent analysis of genes
involved in the production of Aβ (PSEN1 and BACE1), DNA
methylation (DNMT1, DNMT3A, and DNMT3B), and car-
bon metabolism (MTHFR) showed no differences in their
methylation status in blood DNA of LOAD patients or
healthy controls [11]. Similarly, no methylation of PSEN1
and APP has been found in different brain tissues of fEOAD
patients [12]. In contrast, the promoter of MAPT was hypo-
methylated in a brain region-specific manner in fEOAD
patients [13]. Also, the promoter of PIN1, encoding a protein
involved in cell survival, cell cycle, and protein ubiquitina-
tion, was hypomethylated and expressed at higher levels in
AD, while in frontotemporal dementia, it was hypermethy-
lated and expressed at lower levels [14]. Other studies
demonstrated an increased global DNA methylation in
LOAD subjects [15]. Overall, methylation studies in AD
patients have recently been collected in an excellent review
by Qazi and colleagues [16]. One of the most latest studies
demonstrated a hypomethylated region of the BRCA1 pro-
moter in AD postmortem brains accompanied by an
upregulation and cytoplasmic mislocalisation of the
BRCA1 [17], which fully agrees with our recent results
pointing to BRCA1 as the central player in DNA damage

response- (DDR-) related pathology in Alzheimer’s disease
[18]. Finally, the existing epigenome-wide association stud-
ies (EWAS) did not so far pointed to the role of KLF14
and TRIM59 hypermethylation in AD. The existing EWAS
data has so far described general hypomethylation, differ-
ential methylation of selected genes, for example, S100A2,
ALPPL2, and MYO1G, or the altered content of histones
and histone deacetylases (HDAC) [19–23].

Listed above data underline the importance of epigenetic
modifications in AD pathology, which vary depending on the
tissue or AD subtype. These data indicate the need to search
for epigenetic molecular markers in relation to the type or
stage of the disease. Importantly, age-associated changes in
DNAmethylation may regulate gene activity in developmen-
tal processes, making them accurate markers of pathological
aging in AD [24]. It has been shown that hypermethylation of
age-associated genes results in their general low gene expres-
sion [25]. It should be emphasized that the relationship
between DNA methylation and gene expression is not
straightforward, as the high transcription level can be accom-
panied by an elevated methylation over the gene body while
hypermethylation of promoters usually leads to gene silenc-
ing [26]. Notably, it has been demonstrated that CpG sites,
the methylation of which is correlated with a gene expression
depending on DNA sequence variation, associated histone
marks, and chromatin accessibility, play an important role
in both brain development and brain disorders [27]. Finally,
several reports demonstrated an influence of the methylome
on the gene expression pattern, predisposing to different dis-
ease phenotypes, including obesity [28], inflammation in
cancer [29], and schizophrenia and bipolar disorders [30].

In the light of the above data, Alzheimer’s disease with a
still not fully recognized genetic background might largely
depend on epigenetic DNA modifications influencing the
regulatory elements and binding affinity of transcriptional
regulators. To meet this challenge, our latest research based
on fEOAD blood samples revealed hypermethylation of
the promoter regions of two genes correlated with aging,
TRIM59 and KLF14, encoding tripartite motif containing
59 and Kruppel-like factor 14, respectively [31]. This
prompted us to further investigate the potential molecular
implications of the hypermethylation of the two loci.
Therefore, based on the transcriptomic data of fEOAD
patients, in this study, we present the genetic networks
for hypermethylated KLF14 and TRIM59 with their down-
stream signaling pathways, potentially relevant in the
pathology of Alzheimer’s disease.

2. Materials and Methods

2.1. Ethics. The local Ethics Committee of the Department of
Neurology of the Central Clinical Hospital of the Ministry of
Interior in Warsaw approved the protocol of the acquisition
of skin biopsies and blood samples (decision number 31/
2013). A written informed consent for the study and for a
publication was obtained from patients (or their legal repre-
sentatives) and controls, according to the Declaration of
Helsinki (BMJ 1991; 302:1194). The study was approved in
compliance with the national legislation and the Code of
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Ethical Principles for Medical Research Involving Human
Subjects of the World Medical Association and at the Insti-
tute of Cardiology in Warsaw (decision number IK-NP-
0021-79/1396/13).

2.2. Patient Cell Lines. Primary fibroblast cell lines were
derived from six fEOAD patients and sixteen healthy, age-
and sex-matched donors and used for whole transcriptome
profiling (Table 1) as described before [18].

For DNA methylation studies, peripheral blood collected
in EDTA containing tubes from 31 fEOAD patients and
57 healthy controls was used. The healthy control group
was matched to the fEOAD patients using criteria of mean
age and age distribution as confirmed using nonparametric
Kolmogorov-Smirnov test (Table 2). The study group of
31 fEOAD patients used for blood DNA methylation stud-
ies included the same six fEOAD patients that were used
for transcriptomic profiling of the fibroblast lines as
described above.

2.3. RNA Isolation, cDNA Library Preparation, and RNA
Sequencing. RNA was extracted and prepared for sequencing
as described before [18]. Briefly, total RNA was isolated from
fibroblast using RNeasy Mini Kit (Qiagen) according to the
manufacturer’s protocol. RNA quantity and quality were
estimated on Qubit 2.0 using RNA BRAssay Kit and on Bioa-
nalyzer 2100 (Agilent) using RNA 6000 Pico Kit, respec-
tively. RNA samples with integrity number (RIN)≥ 8 were
converted to cDNA libraries using TruSeq Stranded Total
RNA with Ribo-Zero kit (Illumina) according to the manu-
facturer’s protocol and paired-end sequenced 2× 76 bp on a
HiSeq2500 Illumina platform. At least 20M reads per sample
were obtained with mean quality score (≥Q30) >94%. The
sequencing data were converted to FASTQ format.

2.4. Bioinformatic Analysis. FASTQ files were subjected to
trimming and rRNA removal and were mapped with the
STAR splice junction mapper as described before [18]. The
mapped reads were counted using Subread tool [32], and
the FPKM (fragments per kilobase of exon per million frag-
ments mapped) normalization method was used to quantify
transcript expression [33]. Genes differentially expressed
between fEOAD patients and controls were identified using
edgeR software in R Bioconductor environment [34]. Cuffdiff
was used to determine differential usage of promoters, differ-
ential transcription starting sites (TSS), and differential splic-
ing [35]. Transcripts found to be differentially expressed
(fold change≥ 2, FDR≤ 5%, p value≤ 0.01) were summarized
in heatmaps, volcano plots, MA plots, and dispersion plots
and were subjected to principal component analysis
(PCA). Differentially expressed genes were analyzed func-
tionally by Ingenuity Pathway Analysis (IPA) software
(http://www.ingenuity.com) and Reactome tools (http://
www.reactome.org). The significant canonical pathways were
filtered according to IPA algorithms and −log (p value) at cut-
off=1.3, calculated by right-tailed Fisher’s exact test. z score
was calculated according to the IPA algorithm.

2.5. DNA Methylation and Statistics. Total DNA was
extracted from blood samples using a standard salting out

procedure. Five CpG sites in ELOVL2, C1ORF132, KLF14,
TRIM59, and FHL2 were analyzed using pyrosequencing. 1-
2μg of DNA was subjected to bisulfite conversion using the
EpiTect 96 bisulfite conversion kit (Qiagen, Hilden, Ger-
many) and was determined using previously applied PCR,
and sequencing protocols were used to measure the DNA
methylation status of the studied cytosines of interest [36].
DNA methylation percentage measured for five age-related
CpG sites in gene promoter regions (ELOVL2_C7 chr6:
11044634, C1orf132_C1 chr1: 207823681, TRIM59_C7
chr3: 160450199, KLF14_C1 chr7: 130734355, and FHL2_C2
chr2: 105399288) was compared between patients and con-
trols using independent sample Student’s t-test.

3. Results and Discussion

Previously implemented analysis of DNA methylation of five
age-associated genes revealed hypermethylation in the pro-
moter regions of TRIM59 at C7 and KLF14 at C1 in fEOAD
patients compared to healthy controls [31, 36]. In this report,
we tested whether the indicated genetic status of KLF14 and
TRIM59 could correlate with the transcriptomic profile of
fEOAD patients and on which downstream processes may
have an impact. For this purpose, whole transcriptome data
from fibroblast cell lines were tested for differential gene
expression (DGE) using edgeR, differential usage of tran-
scription starting sites (TSS), and splicing using Cufflinks.
The analysis revealed 2654 differentially expressed genes,
571 TSS, 23 promoters, 22 splicing, and 231 isoforms, listed
in Supplementary Table 1. Further functional in silico analy-
sis of DGE showed wide-range disturbances in cell cycle
checkpoints and DDR pathways in fEOAD patients, which
were confirmed in our previous report at biochemical and
molecular biology levels in fEOAD patient-derived fibro-
blasts and neuronal cell lines [18]. At this point, it is worth
emphasizing that by using various tissues from the same
group of fEOAD patients, we were able to indicate common
biological processes extracted in transcriptomic data and
related to the found hypermethylated genes. This use of

Table 1: Characteristics of the tested groups used for RNA-seq.

Tested groups N
Mean age

± SD
Min
age

Max
age

Male
(%)

Healthy
controls

16 41.1± 20.2 41 81 50

fEOAD patients 6 47± 10.7 31 67 50

Table 2: Characteristics of the tested groups used for methylation
studies.

Tested groups N
Mean age

± SD
Min
age

Max
age

Male
(%)

Healthy
controls

57 46.44± 10.5 28 66 63.2

fEOAD patients 31 44.2± 10.2 31 68 48.4
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TRIM59

(a)

KLF14

(b)

Figure 1: Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) networks for TRIM59 and KLF14. Based on “evidence type of
interaction comparison” applied in STRING, we extracted the dataset of 2718 genes/proteins in the functional network of TRIM59 (a) and the
dataset of 2004 genes/proteins in the functional network of KLF14 (b).
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Figure 2: Differential gene expression analysis in TRIM59 and KLF14. The KLF14 and TRIM59 networks contained 21 differentially
expressed genes each and were visualized on the heatmaps (a, b) and volcano plots (c, d). Multidimensional scaling analysis of the
networks revealed high level of specificity of individual genes in the two compared datasets of fEOAD and controls, which is highlighted
in red and black circles on the graphs (e, f).
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various tissues strengthens the obtained biological conclu-
sions, which may indicate a more general mechanism of dis-
ease and therefore a marker, rather than only tissue specific.
On the other hand, we are aware of the limitations of these
studies and the need to investigate whether aberrant methyl-
ation of KLF14 and TRIM59 occurs in AD neurons. It is
worth noting that one of the guidelines in AD research is to
identify markers from the readily available tissue, that is,
blood, to predict pathological mechanisms in the brain tissue,
access to which is difficult during the patient’s lifetime.

The top altered biological processes based on tran-
scriptome profile were related to “Control of Chromosomal
Replication,” “Role of CHK Proteins in Cell Cycle Checkpoint,”
“Mitotic Roles of Polo-Like Kinase Signaling,” “Role of BRCA1
in DNA Damage Response,” “ATM Signaling,” “G2/M DNA
Damage Checkpoint Regulation,” “Estrogen-Mediated S-
Phase Entry,” “BRCA1 Cancer Signaling,” “DNA Damage-
Induced 14-3-3σ Signaling,” “DNA Double-Strand Break
Repair by Homologous Recombination,” and “Cyclins and Cell
Cycle Regulation.” Importantly, the top enriched biological
processes assigned to differentially expressed TSS were
related to similar clusters, including “Cell Cycle Control of
Chromosomal Replication,” “G2/M DNA Damage Checkpoint

Regulation,” “Role of BRCA1 in DNA Damage Response,”
and “Protein Ubiquitination Pathway,” as well as signifi-
cantly enriched “Major and Minor mRNA Splicing.”Discrep-
ancies at the start of transcription in the abovementioned
processes suggest that epigenetic modifications affect the
found TSS themselves.

Thus, we further assessed the correlation between the
methylation status of age-related genes, KLF14 and TRIM59,
and the whole transcriptome profile of fEOAD patient cell
lines. We asked whether the hypermethylation of KLF14
and TRIM59 influences biological processes crucial for the
development of the fEOAD phenotype. For that, we gener-
ated functional genetic networks of TRIM59 and KLF14
using the Search Tool for the Retrieval of Interacting
Genes/Proteins (STRING) biological database. Based on “evi-
dence type of interaction comparison” applied in STRING, we
extracted 2718 genes/proteins in the functional network of
TRIM59 and 2004 genes/proteins in the functional network
of KLF14 (Figures 1(a) and 1(b)). Both networks contained
21 differentially expressed genes found in fEOAD transcrip-
tomes, as visualized in the heatmap (Figures 2a and 2(b))
and volcano plots (Figures 2(c) and 2(d)). Multidimensional
scaling analysis of these networks confirmed high level of
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Figure 3: DNA damage stress response in the TRIM59 network. The pathway with upregulated or downregulated components has been
extracted using Ingenuity Pathway Analysis (IPA), and the activation or inhibition of mutual relationships between the components was
predicted by IPA algorithms.
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specificity of individual genes in the two compared datasets
of fEOAD and controls, as highlighted by the circles on the
graphs (Figures 2(e) and 2(f)). The differentially expressed
genes of the TRIM59 and KLF14 networks (Supplementary
Table 1) were subjected to the functional analysis using IPA
and Reactome. This analysis revealed that the DEGs of the
TRIM59 network were enriched in signaling pathways
related to the cell cycle and DDR disturbances similar to
those described above, while the KLF14 network was
enriched in biological processes connected with the regula-
tion of gene expression, including chromatin organization,
mRNA processing, splicing, maintenance of mRNA stability,
and mRNA decay (Supplementary Table 2).

Overall, the TRIM59 network consisted of several key
players of the cell cycle regulation (cyclin B1, cyclin-
dependent kinase 2, and cyclin D1), proapoptotic signaling
(BCL2-like 1), DNA damage response (BRCA1 and check-
point kinase 1 (Chk1)), and proteasomal ubiquitination sys-
tem (ubiquitin-conjugating enzyme E2N, proteasome 26S
subunit, non-ATPase 2 and 14, and BRCA1). This is in agree-
ment with our latest functional study showing molecular
mechanisms of cell death in fEOAD fibroblasts and neurons
with an underlying role of overactive and subcellularly mislo-
calized BRCA1 in both abnormal DNA damage response and
improper turnover of presenilin 1, the key protein in amyloid

pathology in AD [18]. Remarkably and consistently with our
data, it has been recently suggested that the observed hypo-
methylation of BRCA1 in AD brains might adversely affect
BRCA1 functions, leading among others to its upregulation
and cytosolic relocation in AD brain [17]. Presented in this
report, the TRIM59 network was enriched in abnormally
activated elements of the cell cycle checkpoint and the DDR
process with the leading role of BRCA1 (Figure 3). The
altered methylation of TRIM59 could influence the content
and functions of DDR elements, including BRCA1.

Asmentioned,we found that theKLF14network consisted
of a number of the key epigenetic regulatory proteins, includ-
ing DNA (cytosine-5-)-methyltransferase 1 (DNMT1), DNA
(cytosine-5-)-methyltransferase 3 beta (DNMT3b), Sin3A-
associated protein (SAP3A), histone deacetylase 7 (HDAC7),
histone deacetylase 4 (HDAC4), and components of exo-
somes involved in the transport of microRNAs. The com-
position of the KLF14 network suggested its contribution
to modifications of the gene architecture and gene expression
machinery. Thus, KLF14 hypermethylation could drive the
dysregulations in the cell cycle and DNA damage and repair
downstream TRIM59, as discussed below.

TRIM59 and KLF14 networks revealed a different enrich-
ment in the biological pathways. The network of hyper-
methylated KLF14 in fEOAD patients was distinguished by
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Figure 4: DNAmethylation and transcriptional repression signaling in the KLF14 network. The pathway with upregulated or downregulated
components has been extracted using Ingenuity Pathway Analysis (IPA), and the activation or inhibition of mutual relationships between the
components was predicted by IPA algorithms.
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the processes responsible for epigenetic regulation of gene
expression, including chromatin organization and modifica-
tions, maintenance of mRNA stability, and mRNA decay, as
well as regulation of mRNA splicing. Hypermethylated
KLF14-driven destabilization in the machinery responsible
for the maintenance of genome architecture was in agree-
ment with differential usage of TSS and differential mRNA
splicing estimated by Cufflinks with a Cuffdiff mode in
fEOAD transcriptomes. According to the Reactome-based
enrichment analysis, the differential usage of TSS in fEOAD
was assigned to altered major and minor pathways of the
mRNA splicing. These data suggest that hypermethylation
of KLF14 could affect the chromatin architecture and gene

expression pattern in Alzheimer’s disease. In addition, we
found that the network of hypermethylated KLF14 was
enriched in signaling pathways regulating DNA methylation
and transcription repression (Figure 4). Recently, it has been
reported that KLF14 associates with H3K9me3 histone marks
and with the corresponding histone methyltransferase com-
plex, contributing to the reshaping of T cell fate by influenc-
ing their differentiation program [37]. Moreover, the KLF
family was found to be involved in the transcriptional mod-
ulation of neuronal genes, for example, dopamine D2 recep-
tor [38]. On the other hand, KLF14 reduction was reported to
be responsible for an abnormal centrosomal amplification
and aneuploidy [39]. This suggests that KLF14 could be
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involved in modulation of gene expression in neurons, lead-
ing to neuronal cell cycle reentry and an abnormal DNA
damage response under pathological conditions in Alzhei-
mer’s disease [40].

Opposite to KLF14, the network of hypermethylated
TRIM59 in fEOAD patients was enriched in the processes
related to cell cycle regulation, including cell cycle phase
checkpoint regulation (mainly G2/M) and p53-dependent
regulation of transcription of DNA repair genes as well as
ubiquitin-dependent degradation of cyclins. These data sug-
gested separated mechanisms between KLF14 and TRIM59
hypermethylation in AD, despite the fact that both may
potentially contribute to the accelerated pathological aging.
The networks could cooperatively lead to a loss of genome
integrity and cell death, and KLF14 could play an overriding
role and provide an upstream mechanism in this process.
Furthermore, TRIM59 which encodes an ubiquitin ligase
might be involved in the affected proteostasis in the neurode-
generation process, for instance, by contributing to the accu-
mulation of the neurofilament light chain, similar to TRIM2
[41]. In turn, other data suggested a proapoptotic coopera-
tion of p53 and TRIM59, where upregulation of TRIM59
resulted in ubiquitination and degradation of p53 [42]. Con-
sistently, our studies suggested that hypermethylation-driven
inhibition of TRIM59 expression in fEOAD could indeed cor-
respond to the increased activation of p53 observed in fibro-
blasts and neurons [18]. This conclusion is based both on
the in silico bioinformatic analyses with IPA and Reactome
tools performed for the given RNA-seq dataset (Figure 5); it
is supported by the observed increase in the level of p53 pro-
tein phosphorylated at Ser15, especially upon DNA damage
induction [18]. Our results suggest that hypermethylation of
TRIM59 might play a role in proapoptotic signaling in AD
mediated by p53. In addition to p53, the majority of altered
canonical pathways in the TRIM59 network were related to
DDR that was shown by RNA-seq-based IPA prediction of
the destabilization of the ATM-Chk1-BRCA1-p53 axis,
with upregulation of BRCA1 and Chk1 in fEOAD patients
(Figure 3), which is in agreement with our other data val-
idating these predictions at protein levels [18]. Impor-
tantly, the p53 transcription factor is a key regulator of
senescence via different mechanisms, including nuclear
lamin defects that activate p53 and induce expression of the
target genes of p53 [43], induction of DDR and telomere
shortening, or posttranslational regulation of p53-mediated
DDR [44]. Based on the above, we suggest that TRIM59
and the methylation status of its promoter region could
constitute a molecular switch between biological and patho-
logical aging via the p53 pathway.

4. Conclusion

Overall, the hypermethylation pattern of the promoter
regions of TRIM59 and KLF14 in fEOAD patients might
contribute to genetic instability in fEOAD patients. To elim-
inate any limitations rising from tissue differences, hyperme-
thylation of TRIM59 and KLF14 should be tested in the
future in neurons derived from patients with fEOAD. Never-
theless, our data obtained for different tissues provide the

view that the DNA methylation pattern in promoters of
KLF14 and TRIM59 in blood can be used not only as a pre-
dictor of age but also as a marker of specific molecular patho-
mechanisms present in AD neuronal cells, an example of
which is abnormal signaling of DNA damage. Summarizing,
based on the above, our results suggest that hypermethyla-
tion of KLF14 and TRIM59 might contribute to cell death
and progression of Alzheimer’s disease accompanied by
accelerated and premature aging.
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genes (DEGs) of six familial early-onset Alzheimer’s disease
patients with PSEN1 mutations versus sixteen neuropsycho-
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isolated from established fibroblast cell lines and sequenced
as described in Materials and Methods. DGE analysis
performed by edgeR software revealed 2654 DEGs (“EDGE-
R_biotype 8EOADv.16CTRL”_excel sheet), 21 DEGs exclu-
sive for the KLF14 network (“KLF14_edger_biotype”_excel
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(“TRIM59_edger_biotype”_excel sheet), and analysis per-
formed with Cufflinks revealed 571 transcription starting
sites (“TSS”_excel sheet), 23 promoters (“PROMOTER-
S”_excel sheet), 22 splicing (“SPLICING”_excel sheet), and
231 isoforms (“ISOFORMS”_excel sheet).

Supplementary 2. Table 2: enrichment of canonical signaling
pathways in familial early-onset Alzheimer’s disease patients
compared with controls. KLF14 and TRIM59 DEG datasets
from Supplementary Table 1 were subjected to functional
enrichment analysis with IPA (“KLF14_IPA”_sheet and
“TRIM59_IPA”_sheet) revealing lists of canonical pathways,
upstream regulator, diseases and biofunctions, Tox func-
tions, and regulator effects. The −log of p value was calculated
by right-tailed Fisher’s exact test, and the cutoff of 1.3 was
applied, meaning that pathways with a p value equal to or
lower than 0.05 are displayed. The z score≤ 1 identified
functions with the strongest predictions for a drop of
the activity of the tested signaling pathway and z score≥ 1
identified functions with the strongest predictions for an
increase in the activity of the tested signaling pathway. The
enrichment analysis was also performed with the Reactome
online tool (“KLF14_REACTOME” and “TRIM59_REAC-
TOME”_sheet), sorted by “Entities pValue” with statistical
significance at p ≤ 0 05 level, revealing that the TRIM59 net-
work was enriched in signaling pathways related to the cell
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cycle and DDR disturbances, while the KLF14 network was
enriched in biological processes related to the regulation of
gene expression, chromatin organization, mRNA processing,
splicing, maintenance of mRNA stability, and mRNA decay.
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