Letter Open access

Genetic variants for personalised management of very low carbohydrate ketogenic diets

Aronica et all are to be congratulated on a succinct and topical overview, recently published in the Journal, of genetic variants that interact in clinically relevant ways with ketogenic diets. Of particular interest was the arctic variant of CPT1A, which shows reduced ability to generate ketones in response to carbohydrate restriction. For the record, I had previously addressed the suggestion that chronic, high levels of ketosis could be dangerous,² an idea misattributed to Joshi et al.3 I had discussed alternative hypotheses, including enhanced protein tolerance and the role of high intake of polyunsaturated fat in enabling this adaptation. Verification of this idea is important in that it would immediately suggest a modification of ketogenic diets that could improve safety for this population.

I would suggest an additional thought, not mentioned in 1 or 2 that

derives from the observation that decreased entry of long chain fatty acids into the mitochondria require more beta-oxidation to occur in the peroxisomes. Peroxisomal fat oxidation generates more heat, which could have been an advantage contributing to the proliferation of the arctic variant.

L Amber O'Hearn

Independent Researcher, Boulder, Colorado, USA

Correspondence to L Amber O'Hearn, Independent researcher, Boulder, CO 80301, USA; amber@cs.toronto.edu

Contributors I am the sole author.

Funding The authors have not declared a specific grant for this research from any funding agency in the public, commercial or not-for-profit sectors.

Competing interests None declared.

Patient consent for publication Not required.

Provenance and peer review Not commissioned; internally peer reviewed.

OPFN ACCESS

Open access This is an open access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits

others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited, appropriate credit is given, any changes made indicated, and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/.

© Author(s) (or their employer(s)) 2021. Re-use permitted under CC BY-NC. No commercial re-use. See rights and permissions. Published by BMJ.

To cite O'Hearn LA. Genetic variants for personalised management of very low carbohydrate ketogenic diets. BMJ Nutrition, Prevention & Health 2021;4:e000282

Received 5 April 2021 Accepted 7 April 2021

bmjnph 2021;**4**:e000282. doi:10.1136/bmjnph-2021-000282

REFERENCES

- 1 Aronica L, Volek J, Poff A, et al. Genetic variants for personalised management of very low carbohydrate ketogenic diets. BMJ Nutr Prev Health 2020;3:363–73.
- 2 O'Hearn LA. Evidence on chronic ketosis in traditional Arctic populations. *Journal of Evolution and Health* 2019;3.
- 3 Joshi S, Ostfeld RJ, McMacken M. The Ketogenic Diet for Obesity and Diabetes — Enthusiasm Outpaces Evidence. *JAMA Intern Med* 2019;179:1163–4.
- 4 Lodhi IJ, Semenkovich CF. Peroxisomes: a nexus for lipid metabolism and cellular signaling. *Cell Metab* 2014;19:380–92.