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Abstract: In this study, we aimed to evaluate the composition of the intestinal microbiota and level of
fecal calprotectin in Clostridioides difficile-colonized patients. We included 102 C. difficile non-colonized
(group I), 93 C. difficile colonized subjects (group II), and 89 diarrhea patients with C. difficile (group III).
Chao1 index for alpha diversity and principal coordinate analysis was performed for beta diversity
using QIIME. The mean relative abundance in each group was compared at the phylum and genus
levels. Fecal calprotectin was measured using EliA calprotectin (Thermo Fisher Scientific). Group II
showed significantly lower levels of Sutterella, Blautia, Ruminococcus, Faecalibacterium, Bilophila, and
Ruminococcaceae and higher levels of Enterobacteriaceae compared to group I (p = 0.012, 0.003, 0.002,
0.001, 0.027, 0.022, and 0.036, respectively). Toxigenic C. difficile colonized subjects showed significantly
lower levels of Prevotella, Phascolarctobacterium, Succinivibrio, Blautia, and higher levels of Bacteroides.
The level of fecal calprotectin in group III was significantly higher than those in group I and group II
(p < 0.001 for both). These data could be valuable in understanding C. difficile colonization process
and the microbiota and inflammatory markers could be further studied to differentiate colonization
from CDI.

Keywords: Clostridioides difficile infection; colonization; microbiota; calprotectin

1. Introduction

Clostridioides difficile, previously known as Clostridium difficile, is an anaerobic Gram-positive,
spore-forming bacterium and a common cause of antibiotic-associated nosocomial diarrhea in the
industrialized world [1,2]. After the use of antibiotics, microbiota-mediated colonization resistance
is decreased partly by the reduced diversity of the intestinal microbiota [3–7]. Decreased diversity
and alteration of the intestinal microbiota in C. difficile infection (CDI) has been shown in previous
studies using various techniques from culture-based methods to high throughput sequencing [5,7–11].
The current standard diagnosis of CDI is made from the presence of toxigenic C. difficile in patients
with significant diarrhea, defined as unexplained and new-onset (≥3 unformed stools in 24 h) [12].
Unfortunately, current diagnostic tests for CDI detect toxigenic C. difficile or its toxins or toxin gene.
Many assays cannot differentiate between colonization and infection. This causes a false classification
of C. difficile-colonized patients with diarrhea as CDI [13,14]. Meanwhile, direct fecal biomarkers related
to intestinal inflammation, such as calprotectin, were shown to significantly increase in CDI and were
proposed as severity markers [15,16]. Although recent guidelines do not recommend inflammatory
markers for diagnosis or prognosis determination in CDI due to insufficient data, the research is
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ongoing and could be evaluated for differentiation between colonized patients and infection [13,17].
To the best of our knowledge, data for the human microbiota composition and inflammatory status
in C. difficile-colonized subjects is sparse and there are no data on the comparison of toxigenic and
non-toxigenic C. difficile colonized subjects.

The present study aimed to evaluate the composition of the intestinal microbiota and inflammatory
status in C. difficile colonized subjects and compare them with those in non-colonized control and patients
with significant diarrhea. We also compared the differences between toxigenic and non-toxigenic
C. difficile colonized subjects.

2. Materials and Methods

2.1. Clinical Samples

This study was approved by the Institutional Review Board of the Konkuk University Medical
Center, Seoul, Korea (a tertiary referral hospital). In addition to this, all methods were performed in
accordance with the relevant guidelines and regulations. From March 2018 to June 2019, we screened
for C. difficile colonization in 812 residual fecal samples from individuals who visited our center for a
general health examination. Korean adults (>30 years old) were included and subjects with obesity
(body mass index > 25), other ethnicity or history of recent hospitalization were excluded. C. difficile
colonization was firstly assessed by glutamate dehydrogenase (GDH) testing using VIDAS C. difficile
GDH on the VIDAS instrument (bioMérieux, Marcy-l’Etoile, France) according to the manufacturer’s
instructions. Among the screened samples, 93 (11.4%) were GDH-positive. We defined “C. difficile
colonization” as positive GDH in the absence of CDI symptoms [14]. We included randomly selected
102 GDH-negative samples (group I, C. difficile non-colonized) and 93 GDH-positive samples (group II,
C. difficile colonized) for further study. Toxin status was determined by tcdB gene real-time PCR (Xpert
C. difficile system, Cepheid, Sunnyvale, CA, USA). The Xpert C. difficile is an automated, real-time
multiplex PCR assay, which detects the genes for tcdB, binary toxin (cdt), and a point mutation at
position 117 associated with hypervirulent 027/NAP1/BI strains. A maximum valid Ct is 37 for tcdB and
cdt according to the manufacturer’s instructions. Among the 93 C. difficile-colonized subjects (group II),
13 (14%) were tcdB gene positive. In addition, we collected 89 GDH-positive samples from hospitalized
patients with significant diarrhea (≥3 unformed stools in 24 h) [3,18]. They received antibiotics and
most patients were from the hematologic and gastrointestinal department. We excluded the patients
with laxative use in 48 h before sample collection to rule out other reasons for diarrhea.

They included 20 tcdB gene-negative and 69 tcdB gene-positive samples (group III, diarrhea with
C. difficile). A total of 284 samples were analyzed and the characteristics of each group are summarized
in Table 1. Upon reception, stool samples were stored at −70 ◦C until use. This study required neither
study-specific nor any other interventions and the data were analyzed anonymously. Therefore, written
informed consent from the enrolled patients was waived by the ethics committee.

Table 1. Demographic information for the subject in each group.

Groups Source Number Sex (M/F) Age, Years (Median, IQR)

Group I General
examination

102 52/50 57.0, 46.8–63.3
C. difficile- non colonized

Group II General
examination

93 61/32 54.0, 47.0–63.0
C. difficile-colonized

Group III Hospitalized
patients 89 49/40 67.0, 49–79 *

Diarrhea with C. difficile

IQR, interquartile values. * p = 0.001 and < 0.001 compared group I and group II, respectively.
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2.2. Microbiome Analysis

DNA extraction from a stool sample was performed using a QIAamp DNA stool mini kit (Qiagen,
Valencia, CA, USA) and bacterial 16S rRNA genes were amplified using an Ion 16S™Metagenomics
Kit (ThermoFisher Scientific, Waltham, MA, USA) according to the manufacturer’s protocol. The kit
included 2 primer tubes with 3 primer sets that amplify the hypervariable regions of 16S rRNA (V2,
V4, V8 and V3, V6–7, V9, respectively). After PCR amplicons were purified using Agencourt AMPure®

XP beads (Beckman Coulter, Indianapolis, IN, USA), sequencing libraries were prepared using an Ion
Plus Fragment Library Kit and Ion Xpress™ Barcode Adapters (ThermoFisher Scientific, Waltham,
MA, USA). Prepared libraries were quantified using a High Sensitivity DNA kit on an Agilent 2100
Bioanalyzer (Agilent Technologies, Santa Clara, CA, USA). Template preparation and sequencing were
performed using the Ion Chef™ System and Ion S5™ XL system with Ion 530™ Chip Kit (ThermoFisher
Scientific, Waltham, MA, USA). After filtering out low quality and polyclonal reads, and trimming
any adaptor sequences at the 3′ end, the sequencing data were exported as FASTQ files and were
processed using the Quantitative Insights into Microbial Ecology (QIIME) pipeline 1.9.1 [19]. After
quality filtering, 26,634,236 sequences were obtained, with a mean of 89,165 sequences per sample (min:
16,585, max: 335,275). Operational taxonomic units (OTUs) were clustered based on 97% sequence
similarity with at least 10 identical sequences and assigned against the curated Greengenes v.13.8
reference database at the QIIME web site (http://qiime.org/home_static/dataFiles.html).

Alpha and beta diversity measures were calculated by QIIME [20]. Alpha diversity assessment
was based on observed OTUs, including unidentified OTUs, and Chao1 index. Microbial diversity was
visualized using principal coordinate analysis (PCoA) and microbial diversity between samples was
assessed by qualitative (unweighted UniFrac) and quantitative (weighted UniFrac) distances. The
mean relative abundance (percentage among all reads) in each group was compared at the phylum
and genus levels.

2.3. Calprotectin Measurement

After thawing, fecal samples were extracted using EliA Stool Extraction Kit (Thermo Fisher
Scientific, Waltham, MA, USA). The extraction tubes were pre-filled with 750 µL of EliA Calprotectin
Extraction Buffer. Fecal calprotectin was measured using EliA calprotectin on the Phadia 250 system
(Thermo Fisher Scientific, Waltham, MA, USA). The wells of the EliA Calprotectin were coated with
monoclonal antibodies against calprotectin, and the calprotectin levels were quantified by fluoroenzyme
immunoassay. Phadia 250 measures calprotectin concentrations in ng/mL, and by using a conversion
factor given by the lot-specific code of the EliA Calprotectin Well, the results were automatically
converted to mg/kg.

2.4. Statistical Analysis

The difference between the continuous variables was analyzed using Student’s t-test or the
Mann–Whitney U test, and that between categorical variables was analyzed using the chi-squared test,
Fisher’s exact test, or the McNemar test. The Kruskal–Wallis test and one-way analysis of variance
(ANOVA) were used to assess the differences between groups. Permutational multivariate analysis
of variance (PERMANOVA) between groups was performed using QIIME. Statistical analysis was
performed using MedCalc Statistical Software (v. 15.8, MedCalc Software, Mariakerke, Belgium) and
IBM SPSS Statistics 22.0 (IBM Corporation, Armonk, NY, USA). p values less than 0.05 were considered
statistically significant.

3. Results

3.1. Comparison of Alpha Diversity of the Intestinal Microbiota Across Different Groups

We evaluated the differences in alpha diversity between group I (C. difficile-non colonized), group II
(C. difficile-colonized), and group III (diarrhea with C. difficile). The distribution of the Chao1 indexes in

http://qiime.org/home_static/dataFiles.html
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each group is presented in Figure 1. The median Chao1 index of group III [median, interquartile range
(IQR), 102.3, 85.7–127.1] was significantly lower than that of group I and group II (120.8, 105.7–136.9 and
119.5, 109.2–136.3, p < 0.001 for both). The median Chao1 index between group I and group II was not
significantly different (p = 0.797). The median Chao1 index between subjects with non-toxigenic and
toxigenic C. difficile was not significantly different in group II and III (p = 0.287 and 0.988, respectively).
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Figure 1. Alpha diversity (Chao1 index) in group I (C. difficile non-colonized), group II (C. difficile
colonized), and group III (diarrhea with C. difficile) are shown in left and the comparisons between
non-toxigenic and toxigenic C. difficile within group II and group III are shown in right. Each p-value (I
vs. III, I vs. II, II vs. III, and non-toxigenic vs. toxigenic C. difficile) was presented. The box plot shows
the median and interquartile values. The whiskers indicate 1.5 times the interquartile range above and
below the 75th and 25th percentiles. The circles indicate the outliers.

3.2. Comparison of Beta Diversity of the Intestinal Microbiota Across Different Groups

PCoA using unweighted and weighted UniFrac matrix was performed to evaluate the beta
diversity between each group. In unweighted UniFrac analysis, group I vs. III and group II vs. III
clustered separately (both p = 0.001 by PERMANOVA), while group I and II could not be separated
(p = 0.057 by PERMANOVA). In weighted UniFrac analysis, all three groups clustered separately
(p = 0.017, 0.001, and 0.001 for group I vs. II, group I vs. III, and group II vs. III, respectively) (Figure 2).
In group II, subjects with non-toxigenic and toxigenic C. difficile clustered separately both in unweighted
and weighted UniFrac matrix (both p = 0.001). In group III, subjects with non-toxigenic and toxigenic
C. difficile clustered separately only in unweighted UniFrac matrix (p = 0.001 in unweighted and 0.721
in weighted UniFrac matrix).
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Figure 2. Evaluation of beta diversity in group I (red), II (blue), and III (orange). Principal coordinate
analysis (PCoA) was performed using unweighted (left) and weighted (right) UniFrac distances of 16S
rRNA gene sequences. Each axis represents inter-sample variation.
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3.3. Comparison of Mean Relative Abundance in Each Group at the Phylum Level

The comparison of mean relative abundance in groups I, II, and III at the phylum level is shown
in Table 2. Group III showed significantly lower levels of Bacteroidetes (p < 0.001 and 0.001 compared
with groups I and II, respectively) and significantly higher levels of Proteobacteria compared to group I
(p < 0.001). Comparing subjects with non-toxigenic and toxigenic strains in group II, those with toxigenic
C. difficile colonized subjects showed significantly lower levels of Firmicutes (p < 0.001). In group III,
there was no significant difference in composition between patients infected with non-toxigenic and
toxigenic C. difficile strains (Table 3).

Table 2. Comparison of the mean relative abundance (%) at phylum level in C. difficile- non colonized
(group I), colonized (group II), and diarrhea with C. difficile (group III).

Phylum
Group I Group II Group III p

(n = 102) (n = 93) (n = 89) I vs. II I vs. III II vs. III

Bacteroidetes 43.85 43.22 32.41 0.911 <0.001 0.001
Firmicutes 33.55 29.25 32.45 0.065 0.924 0.542

Proteobacteria 20.91 25.75 32.67 0.096 <0.001 0.077
Actinobacteria 0.98 0.81 1.1 0.564 0.952 0.75
Fusobacteria 0.64 0.89 0.97 0.753 0.724 0.987

Phyla with mean relative abundance >1.0% were described in Table 2.

Table 3. Comparison of the mean relative abundance (%) of the composition of phyla between
non-toxigenic and toxigenic C. difficile in group II and group III.

Phylum
Group II

p
Group III

pNon-Toxigenic Toxigenic Non-Toxigenic Toxigenic
(n = 80) (n = 13) (n = 20) (n = 69)

Bacteroidetes 42.85 45.46 0.491 32.21 32.47 0.968
Firmicutes 31.15 17.57 <0.001 31.62 32.69 0.865

Proteobacteria 24.63 32.67 0.137 34.73 32.08 0.668
Acinetobacter 0.87 0.44 0.151 0.48 1.28 0.371
Fusobacteria 0.42 3.83 0.059 0.62 1.08 0.624

Phyla with mean relative abundance >1.0% were described.

3.4. Comparison of Mean Relative Abundance in Each Group at the Genus Level

The comparison of mean relative abundance in groups I, II, and III at the genus level is shown in
Table 4. Group III showed a significantly lower mean relative abundance of many genera (Prevotella,
Lachnospira, Blautia, Ruminococcus, Phascolarctobacterium, Faecalibacterium, Bilophila, unassigned genus of
Ruminococcaceae, and Lachnospiraceae) compared with those in groups I and II. Group III also showed a
significantly higher mean relative abundance of Parabacteroides, Serratia, Veillonella, Enterococcus, and an
unassigned genus of Enterobacteriaceae. Group II showed a significantly lower abundance of Sutterella,
Blautia, Ruminococcus, Faecalibacterium, Bilophila, and an unassigned genus of Ruminococcaceae and higher
abundance of an unassigned genus of Enterobacteriaceae compared with those in group I (p = 0.012, 0.003,
0.002, 0.001, 0.027, 0.022, and 0.036, respectively). Moreover, toxigenic C. difficile colonized subjects
showed a significantly lower abundance of Prevotella, Phascolarctobacterium, Succinivibrio, Blautia, and
an unassigned genus of Ruminococcaceae, and higher abundance of Bacteroides and an unassigned genus
of Enterobacteriaceae compared with non-toxigenic C. difficile colonized subjects (p = 0.014, <0.001, 0.019,
0.006, <0.001, 0.035, and 0.044, respectively). In group III, there was no significant difference between
patients with non-toxigenic and toxigenic C. difficile (Table 5).
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Table 4. Comparison of the mean relative abundance (%) at genus level C. difficile-non-colonized
(group I), colonized (group II), and diarrhea with C. difficile (group III).

Genus
Group I Group II Group III p
(n = 102) (n = 93) (n = 89) I vs. II I vs. III II vs. III

Bacteroides 26.68 26.44 23.48 0.993 0.448 0.543
Enterobacteriaceae * 11.42 16.59 22.1 0.036 <0.001 0.067

Prevotella 10.09 8.94 1.36 0.756 <0.001 <0.001
Ruminococcaceae * 8.08 6.13 1.68 0.022 <0.001 <0.001
Lachnospiraceae * 7.16 6.06 3.49 0.118 <0.001 0.001

Sutterella 3.13 1.97 1.38 0.012 0.002 0.441
Rikenellaceae * 1.95 1.58 1.06 0.35 0.013 0.215

Lachnospira 1.84 1.36 0.27 0.055 <0.001 <0.001
Blautia 1.62 1.15 0.5 0.003 <0.001 <0.001

Ruminococcus 1.61 0.79 0.14 0.002 <0.001 <0.001
Phascolarctobacterium 1.54 1.76 0.45 0.87 <0.001 0.008

Coprococcus 1.25 1.05 0.2 0.514 <0.001 0.514
Parabacteroides 1.42 1.92 4.23 0.215 0.001 0.011

Serratia 1.34 1.5 3.79 0.842 <0.001 <0.001
Faecalibacterium 1.25 0.88 0.38 0.001 <0.001 0.002

Oscillospira 1.08 0.98 1.41 0.574 0.562 0.379
Bilophila 1.08 0.69 0.3 0.027 <0.001 0.024

Veillonella 0.3 0.45 2.25 0.51 0.003 0.007
Succinivibrio 0.3 1.12 0 0.248 0.341 0.05
Lactobacillus 0.16 0.46 1.41 0.33 0.113 0.185
Clostridium 0.11 0.13 1.34 0.835 0.264 0.276
Eubacterium 0.08 0.21 1.41 0.822 0.291 0.239
Enterococcus 0.03 0.46 9.13 0.542 <0.001 <0.001

Only genera with mean relative abundance >1% were described in Table 4. * unspecified to a specific genus within
this family.

Table 5. Comparison of the mean relative abundance (%) of the composition of genera between
non-toxigenic and toxigenic C. difficile in groups II and III.

Genus
Group II

p
Group III

pNon-Toxigenic Toxigenic Non-Toxigenic Toxigenic
(n = 80) (n = 13) (n = 20) (n = 69)

Bacteroides 25.03 35.11 0.035 19.23 24.71 0.312
Enterobacteriaceae * 15.26 24.75 0.044 25.77 21.03 0.368

Prevotella 9.83 3.47 0.014 0.7 1.55 0.445
Ruminococcaceae * 6.85 1.73 <0.001 2.62 1.4 0.22
Lachnospiraceae * 6.36 4.24 0.073 2.65 3.73 0.423

Sutterella 2.1 1.19 0.05 0.74 1.56 0.407
Phascolarctobacterium 2.02 0.21 <0.001 0.54 0.46 0.713

Rikenellaceae * 1.67 0.98 0.204 1.37 0.97 0.501
Parabacteroides 1.66 3.52 0.265 6.93 3.45 0.166

Lachnospira 1.43 0.94 0.25 0.49 0.2 0.395
Serratia 1.41 2.08 0.32 3.67 3.81 0.902

Succinivibrio 1.3 0 0.019 0 0 0.33
Ruminococcus 1.3 1.59 0.127 0.16 0.14 0.753

Blautia 1.26 0.45 0.006 0.3 0.56 0.297
Coprococcus 1.12 0.63 0.199 0.12 0.22 0.462
Oscillospira 0.91 1.42 0.158 1.53 1.38 0.84

Pseudomonas 0.43 1.57 0.161 0.71 0.6 0.865
Fusobacteriim 0.4 3.66 0.062 0.56 0.82 0.702

Veillonella 0.35 1.1 0.102 0.39 2.79 0.002
Enterococcus 0.5 0.19 0.793 15.23 7.36 0.278
Acinetobacter 0.3 0.04 0.662 1.17 0.21 0.306
Lactobacillus 0.52 0.05 0.051 0.13 3.54 0.043
Clostridium 0.12 0.16 0.636 0.05 1.71 0.378

* unspecified to a specific genus within this family.
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3.5. Comparison of Calprotectin Levels between Groups

We compared fecal calprotectin levels in groups I, II, and III and its distribution is presented
in Figure 3. The fecal calprotectin level in group III (median and IQR, 199.0 and 34.3–658.3 mg/kg)
was significantly higher than those in group I and group II (15.0, 15.0–39.5 and 23.0, 15.0–57.0 mg/kg,
respectively, p < 0.001 for both). There was no significant difference between group I and group II
(p = 0.256). The fecal calprotectin levels were not significantly different between individuals with
non-toxigenic and toxigenic C. difficile in both group II and group III (p = 0.496 and 0.273, respectively).
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Figure 3. Fecal calprotectin levels in group I (C. difficile non-colonized), group II (C. difficile colonized),
and group III (diarrhea with C. difficile) are shown in left and the comparisons between non-toxigenic
and toxigenic C. difficile within group II and group III are shown in right. Each p-value (I vs. III, I vs. II,
II vs. III and non-toxigenic vs. toxigenic C. difficile) was presented. The box plot shows the median and
interquartile values. The whiskers indicate 1.5 times the interquartile range above and below the 75th
and 25th percentiles. The circles indicate the outliers.

4. Discussion

The asymptomatic colonization rate of toxigenic C. difficile among healthy individuals ranges
from 1.8 to 15% [14,21,22]. However, most studies were based on point prevalence detection and
methodology and the target population was variable. In our study, C. difficile colonization among the
screened population were 11.4% and the toxigenic portion among colonized C. difficile was relatively
low (14%), which was lower than our previous studies performed in the same institution using the
same method [23]. This difference might be due to different populations and different criteria in
this study, which only included adult, non-obese individuals among visitors for a general health
examination. The toxigenic proportion was much higher in hospitalized patients with diarrhea [23].

As expected, the alpha diversity index (Chao1), as shown in Figure 1, was significantly lower
in group III (diarrhea with C. difficile) compared with those in group I (C. difficile non-colonized) and
group II (C. difficile colonized). Previous studies also showed decreased alpha diversity in CDI or
antibiotic exposed group compared with the control [8,24]. As decreased species diversity could
occur in many hospitalized patients without CDI, this feature might not be specific for CDI and could
be a common feature in hospitalized patients with antibiotic exposure. The development of overt
CDI needs additional host factors, such as immunity, age, or hospital stay [3,4,25]. In this study, the
alpha diversity index between group I and group II did not significantly differ. Thus, the C. difficile
colonization itself in healthy individuals does not seem to affect species diversity. The present study
also showed that the alpha diversity in group II and group III was not affected by toxigenic status.

In PCoA analysis, group III clustered separately from group I and II by unweighted and weighted
UniFrac analysis, which was consistent with previous studies [8,24]. This indicates that hospitalized
patients with diarrhea have different beta diversity to healthy individuals. We could find a significant
difference between group I and II by weighed UniFrac analysis. Thus, although the total species
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diversity did not change in C. difficile colonization (based on alpha diversity), the composition and
abundance of microbiota were changed in C. difficile colonization. Regarding toxin status, subjects with
non-toxigenic and toxigenic C. difficile clustered separately both in unweighted and weighted UniFrac
matrix, indicating that the intestinal microbiota is further changed distinctly upon colonization of
toxigenic C. difficile strains compared to non-toxigenic strains. In patients of group III, non-toxigenic
and toxigenic C. difficile also clustered separately, but significant difference was observed only in
the unweighted UniFrac matrix. Disruption of intestinal microbiota composition occurs in many
hospitalized patients, which could weaken the difference between those colonized with non-toxigenic
and toxigenic strains.

Our study showed different patterns of the composition of fecal microbiota in patients with diarrhea,
as shown previously [8,26]. Specifically, Group III patients showed lower and higher abundance of
Bacteroidetes and Proteobacteria, respectively, at the phylum level, and lower relative abundance of
many genera, including butyrate-producing organisms and health-promoting bacteria [9,27]. Increased
Parabacteroides or Enterococcus, which reflect a blooming phenomenon by reduced ecological niche
competition [7,8,28,29], were also observed in group III which included various hospitalized patients.
These features were noted similarly in non-toxigenic and toxigenic C. difficile, suggesting again that
this disruption of microbiota was not specific to patients with toxigenic C. difficile.

There is very limited data on the composition of intestinal microbiota in C. difficile colonization
and a few studies only described a very limited number of subjects [8,14,30,31]. In this study, we
could find several distinct features in C. difficile colonization, including those due to the toxigenic
status of the strains. Group II (C. difficile colonized) did not show significant differences compared
with non-colonized subjects (group I) at the phylum level and the results at phylum levels were
the sum of the changes of many genera. At the genus level, group II showed a significantly lower
abundance of many genera and a higher abundance of Enterobacteriaceae compared to group I. This
pattern of change was partly similar to that observed in CDI or hospitalized patients, indicating that
the genus compositions of C. difficile colonized subjects lies between non-colonized and hospitalized
patients. Moreover, toxigenic C. difficile-colonized subjects showed significant changes, such as a
lower abundance of Prevotella, Phascolarctobacterium, Succinivibrio, Blautia, and an unassigned genus of
Ruminococcaceae and higher abundance of Bacteroides and an unassigned genus of Enterobacteriaceae
than non-toxigenic C. difficile-colonized subjects. These features were closer to the patterns observed in
hospitalized patients with diarrhea. We could not find a significant difference in hospitalized patients
with diarrhea based on the presence or absence of toxigenic C. difficile.

Fecal calprotectin is a 36.5 kDa molecule derived from the cytoplasm of neutrophils, mononuclear
cells, and squamous epithelial cells and reflects the inflammatory status of the intestine [32]. The
proposed clinical utility of this marker has been focused on inflammatory bowel disease (IBD) [33]. In
CDI, fecal calprotectin has been shown to reflect severity [15,16,34]; however, this marker showed a
non-specific increase in various inflammatory conditions of the intestines, thereby limiting its diagnostic
utility [35,36]. In this study, we showed that C. difficile-colonized subjects, regardless of toxin status,
had comparable fecal calprotectin levels to those of non-colonized subjects and significantly lower
levels than in diarrhea patients with C. difficile. The C. difficile-colonized subjects seemed to show a
non-inflammatory status, although they showed changes in the composition of intestinal microbiota
(beta diversity). The diarrhea patients had significantly higher fecal calprotectin levels, reflecting in
high inflammatory status, and the toxin status did not show significant differences in calprotectin
levels, indicating the non-specific increase of this marker, as suggested by previous studies [34–36].

This study had several limitations. The cause-effect relationship between specific alterations of
the microbiota and clinical status or colonization could not be elucidated in this study design. Many
covariates such as age or food intake habit could also affect the intestinal microbiota composition [37].
The median age of group III was significantly higher than the other groups and old age itself could
result in decreased diversity and change composition of gut microbiota in group III [7,37]. The old
aged subjects were rare in general health examination and enrollment of elderly subjects was difficult.
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Several studies recently showed data regarding differences in the gut microbiota between sexes [38,39].
In this study, we could not evaluate data based on sex differences and could be further studied. In
addition, the results of the OTU assignment could be different between algorithms or programs used
for OTU analysis [37,40].

5. Conclusions

There were significant alterations in the alpha and beta diversity in intestinal microbiota in
hospitalized patients with diarrhea, but these alterations were not significantly affected by the toxin
status of C. difficile. We found significant differences in the composition of intestinal microbiota in
apparently healthy C. difficile colonized subjects in comparison to C. difficile non-colonized subjects.
Despite the significant difference in C. difficile colonization such as lower levels of Sutterella, Blautia,
Ruminococcus, Faecalibacterium, Bilophila, and Ruminococcaceae and higher levels of Enterobacteriaceae,
inflammatory status and alpha diversity were not significantly different between C. difficile colonized
and non-colonized subjects. Further investigation of the intestinal microbiota and immunological
studies could provide some insight into the conditions that allow for colonization and protect against
disease progression.
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