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Abstract 

Background:  Next-generation sequencing (NGS) technology has paved the way for rapid and cost-efficient de novo 
sequencing of bacterial genomes. In particular, the introduction of PCR-free library preparation procedures (LPPs) lead 
to major improvements as PCR bias is largely reduced. However, in order to facilitate the assembly of Illumina paired-
end sequence data and to enhance assembly performance, an increase of insert sizes to facilitate the repeat bridging 
and resolution capabilities of current state of the art assembly tools is needed. In addition, information concerning 
the relationships between genomic GC content, library insert size and sequencing quality as well as the influence of 
library insert size, read length and sequencing depth on assembly performance would be helpful to specifically target 
sequencing projects.

Results:  Optimized DNA fragmentation settings and fine-tuned resuspension buffer to bead buffer ratios during 
fragment size selection were integrated in the Illumina TruSeq® DNA PCR-free LPP in order to produce sequencing 
libraries varying in average insert size for bacterial genomes within a range of 35.4–73.0 % GC content. The modified 
protocol consumes only half of the reagents per sample, thus doubling the number of preparations possible with a 
kit. Examination of different libraries revealed that sequencing quality decreases with increased genomic GC content 
and with larger insert sizes. The estimation of assembly performance using assembly metrics like corrected NG50 
and NGA50 showed that libraries with larger insert sizes can result in substantial assembly improvements as long as 
appropriate assembly tools are chosen. However, such improvements seem to be limited to genomes with a low to 
medium GC content. A positive trend between read length and assembly performance was observed while sequenc-
ing depth is less important, provided a minimum coverage is reached.

Conclusions:  Based on the optimized protocol developed, sequencing libraries with flexible insert sizes and lower 
reagent costs can be generated. Furthermore, increased knowledge about the interplay of sequencing quality, insert 
size, genomic GC content, read length, sequencing depth and the assembler used will help molecular biologists to 
set up an optimal experimental and analytical framework with respect to Illumina next-generation sequencing of 
bacterial genomes.
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Background
Next-generation sequencing (NGS) has revolutionized 
genomic and genetic research [1]. Today, Illumina’s con-
cept of massive parallel sequencing-by-synthesis using 
a fluorescent reversible terminator chemistry [2] repre-
sents one of the predominant NGS technologies [3].

During the last years, many efforts have been undertaken 
to improve existing library preparation procedures (LPPs) 
for paired-end genome sequencing [4–7]. Currently, the 
commercially offered Illumina TruSeq® DNA PCR-free 
LPP represents one of the most widely used solutions for 
the generation of paired-end genome sequencing librar-
ies. It includes genomic DNA shearing by adaptive focused 
acoustics, which leads to random fragmentation of DNA in 
contrast to the more directed fragmentation via enzymatic 
digestion. Unbiased shearing of DNA and the abolition of 
PCR significantly reduces the unevenness of sequencing 
depth across sequenced genomes [5, 8]. Additionally, the 
use of magnetic beads for DNA clean-up and size selection 
is much less prone to contamination compared to tradi-
tional gel-based systems. One of the main drawbacks is the 
need for very high amounts of starting material (1–4  µg 
total DNA) that precludes the application of PCR-free pro-
tocols for samples where the increase of DNA amounts via 
cell division is impossible. Consequently, the main applica-
tion will be bacterial strains growing well under laboratory 
conditions.

In its current design the original LPP is directed to the 
generation of libraries with only two rather short average 
fragment lengths (350 or 550  bps). This is unfavourable 
for eukaryotic genomes, since sequencing projects could 
make use of multiple sequencing libraries with vary-
ing insert sizes to enhance assembly quality [9, 10]. On 
the contrary, it was one of the main findings of GAGE-
B (genome assembly gold-standard evaluation for bac-
teria) that remarkably good assemblies are possible with 
a strategy using just one Illumina library, but high-cov-
erage in case of bacterial or other small-sized genomes 
[11]. To further elevate assembly performance, it seems 
advisable to increase insert sizes of bacterial sequencing 
libraries for better exploitation of the repeat bridging and 
resolution capabilities of current state of the art assembly 
tools [12].

The generation of genome data based solely on a sin-
gle Illumina library limits the parameter space in which 
enhancements of assembly performance can be achieved. 
Main factors relevant in this context are read quality [13], 
sequencing depth [14–16], read length [9], assembly soft-
ware (including parameter tuning) [11, 13, 17, 18] and the 
repetitiveness of the sequenced genome [9]. However, 
less is known regarding library insert size composition.

In this study, we analysed the interplay of most of these 
factors to evaluate possibilities for further optimization 
of sequencing projects. Modified versions of the widely 
used Illumina TruSeq® DNA PCR-free LPP, which enable 
the creation of libraries with varying library insert sizes, 
are presented. Furthermore, the relationships between 
genomic GC content, library insert size and sequenc-
ing quality are investigated. Finally, the influence of 
insert size, read length and sequencing depth on assem-
bly performance of four state of the art assemblers was 
examined.

Methods
Bacterial strains
Table  1 summarizes all bacterial strains used in this 
study together with the NCBI accession numbers of 
their already completely assembled reference genome 
sequences. In addition, strain abbreviations and genomic 
GC contents are listed.

DNA extraction and quantification
The hexadecyltrimethylammonium bromide (CTAB) 
method was used to extract genomic DNA. Prior to 
CTAB DNA extraction bacterial cells were disrupted 
mechanically with a MP FastPrep®-24 instrument (MP 
Biomedicals, Santa Ana, US-CA) (2 × 45 s at 6.5 m/sec) 
and 0.1 mm silica beads. Genomic DNA was quantified 
with a Qubit® 2.0 fluorometer using the Qubit® dsDNA 
HS assay (Life Technologies, Carlsbad, US-CA).

PCR‑free library preparations
Library preparation was performed following the origi-
nal Illumina TruSeq® DNA PCR-free LPP (revision A, 
January 2013, low sample with 550  bps insert size) or a 
modified version of it (see below). Sequencing libraries 

Table 1  Bacterial strains

Sequenced bacterial strains, strain abbreviations, genomic GC-content and corresponding NCBI reference genome sequences

Bacterial strain Abbreviation Reference genome sequences % GC

Bacillus cereus F837/76 Bce NC_016779.1, NC_016794.1, NC_016780.1 35.4

Enterococcus faecalis OG1RF Efa NC_017316.1 37.8

Salmonella Typhimurium 14028S Sen NC_016856.1, NC_016855.1 52.2

Pseudomonas stutzeri ATCC 17588 Pst NC_015740.1 63.9

Micrococcus luteus NCTC 2665 Mlu NC_012803.1 73.0
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resulting from modified LPPs are denoted by IS1-4. IS1 
refers to libraries with shorter average insert sizes than 
IS2 libraries, etc. In contrast, libraries prepared with the 
original Illumina protocol are denoted by TS. Table 2 gives 
an overview of the different sequencing library categories.

Modified PCR‑free library preparation
Modifications to the original LPP were introduced at the 
following steps: DNA fragmentation, fragment size selec-
tion and final library quantification. The different shear-
ing settings and ratios of resuspension buffer (RB) to 
bead buffer (BB) used during first and second size selec-
tion steps applied to generate different libraries are listed 
in Table  2. The RB:BB ratios listed enabled the capture 
of DNA fragments within a desired range of length for 
library categories IS1-4.

In contrast to the original LPP (category TS), each mod-
ified LPP (categories IS1-4) starts DNA fragmentation 
with 52.5 µl of DNA (dissolved in RB) at a concentration 
of 75  ng/µl instead of 40  ng/µl. Fragmentation was per-
formed using Covaris microTUBES and the S220 focused-
ultrasonication system (Covaris, Woburn, US-MA) in 
frequency sweeping mode at a temperature of 6 °C.

Category IS3 and IS4 libraries had to be prepared twice 
for one sequencing run due to the high amount of final 
library concentration necessary to achieve appropriate 
flow cell cluster densities. Regardless of a library’s cate-
gory, buffers and reagents were taken from the TruSeq® 
DNA PCR-free Sample Prep LT kit (Illumina, Inc., San 
Diego, US-CA) throughout the whole process of library 
preparation.

First fragment size selection
In this section, only the preparation of category IS1 
sequencing libraries is described in detail. For libraries 

of categories IS2-4 the detailed RB and BB volumes (and 
corresponding ratios) applied during first size selection 
are given in Additional file 1: Table S1.

30 µl of RB (Illumina) was added to 50 µl of fragmented 
DNA. Subsequently, 40  µl of Agencourt AMPure® XP 
magnetic bead reagent (Beckman Coulter, Brea, US-CA) 
was added. The solution was mixed carefully by repeated 
pipetting and incubated for 5 min. At this step the RB:BB 
ratio is 80:40 (≙2:1). With this ratio, DNA fragments too 
large for this category will bind to the magnetic beads. 
After magnet-induced pelleting of beads for 3  min, 
117  µl of the clear supernatant was transferred. Then 
70.2 µl RB were added to the supernatant together with 
39 µl of 2X magnetic beads. In this case, 2X corresponds 
to twice the concentration of magnetic beads per vol-
ume of BB. Using a higher bead particle concentration 
enables capturing more DNA fragments of the desired 
length later on. Again the solution was mixed carefully by 
repeated pipetting. At this step the RB:BB ratio is 148:78 
(≙3.8:2.0). With this ratio, DNA fragments too short for 
this category will remain in the supernatant, while DNA 
fragments within the desired range of length will bind to 
the magnetic beads. After 5 min of incubation and mag-
net-induced pelleting for 3  min, the clear supernatant 
was discarded. The remaining bead pellet was washed 
twice with 200 µl of freshly prepared 80 % ethanol with-
out resuspending while keeping the tube on the magnetic 
stand. After the second ethanol wash the bead pellet was 
air-dried for 5 min. Finally, fragmented DNA was eluted 
from magnetic beads in 52 µl RB.

End‑repair
The end-repair reaction (75  µl) contained 50  µl size 
selected DNA, 5  µl end repair control (Illumina) and 
20 µl end repair mix 2 (Illumina). The enzymatic reaction 

Table 2  Sequencing library categories

Settings for genomic DNA fragmentation and fragment size selection during library preparation. TS, original Illumina TruSeq®   DNA PCR-free LLP (no modification)

IS1-IS4, categories for library average insert size, where IS1 < IS2 < IS3 < IS4

The term Mlu50 refers to the corresponding genome sequenced at 2 × 25 bps. Genomes listed without index were sequenced at 2 × 200 bps throughout

Bce B. cereus, Efa E. faecalis, Pst P. stutzeri, Mlu M. luteu, Sen S. enterica, RB Resuspension Buffer, BB Bead Buffer, DF Duty Factor, PIP Peak Incident Power, C/B Cycles per 
Burst, Du Duration

Library  
category

Fragmentation parameters RB:BB ratios Avg. insert size  
(raw data) (bps)

Sequenced genomes

TS DF 5 %, PIP 175 W, C/B 200, Du 25 s TruSeq® DNA PCR-free LPP  
(LS protocol, 550 bps)

641 ± 28 Bce, Efa, Pst, Mlu

IS1 DF 10 %, PIP 175 W, C/B 200, Du 25 s 2.0:1 + 3.8:2 686 ± 33 Bce, Efa, Sen, Pst, Mlu

IS2 DF 2 %, PIP 175 W, C/B 200, Du 30 s 2.2:1 + 4.2:2 990 ± 79 Efa, Sen, Mlu50

IS3 DF 2 %, PIP 175 W, C/B 200, Du 20 s 2.3:1 + 4.4:2 1211 ± 78 Bce, Pst, Mlu, Mlu50

IS4 DF 2 %, PIP 175 W, C/B 200, Du 10 s 2.4:1 + 4.6:2 1297 Mlu50
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was carried out on a preheated QBT 2 heat block (Grant 
Instruments, Cambridge, UK) for 35 min at 30 °C.

Second fragment size selection
In general, second size selection was performed as the 
first one using the RB and BB volumes (and correspond-
ing ratios) given in Additional file 1: Table S2. After size 
selection, the DNA was eluted with 19 µl of RB from the 
air-dried bead pellet.

3′ adenylation and adapter ligation
The adenylation reaction (22.5  µl) contained 15  µl size 
selected DNA, 1.25  µl A-tailing Control (Illumina) and 
6.25  µl A-tailing mix (Illumina) and was carried out on 
a preheated heat block for 35 min at 37  °C, followed by 
enzyme inactivation for 5 min at 70 °C. Finally, the reac-
tion was kept on ice for 5 min.

The adapter ligation reaction (26.25  µl) contained 
22.5 µl adenylation reaction, 1.25 µl ligation control (Illu-
mina), 1.25  µl ligation mix 2 (Illumina) and 1.25  µl of 
DNA adapter solution (Illumina) and was carried out on 
a preheated QBT 2 heat block for 12 min at 30 °C. Finally, 
enzyme inactivation was achieved by adding 2.5 µl stop 
ligation buffer (Illumina).

Final library clean up
25  µl of adapter ligation reaction were purified twice. 
Each time 25  µl of Agencourt AMPure® XP magnetic 
bead reagent was added to the reaction (≙RB:BB ratio of 
1:1). The reaction was mixed carefully by repeated pipet-
ting. After 5 min of incubation, the beads were pelleted 
(magnet-induced) for 3  min. Subsequently, the clear 
supernatant was discarded. Then, the pellet was washed 
twice with 200 µl of freshly prepared 80 % ethanol with-
out resuspending while keeping the tube on the magnetic 
stand. After the second ethanol wash, the bead pellet was 
air-dried for 5 min. After the first purification, DNA was 
eluted from beads in 25 µl of RB. After the second purifi-
cation, DNA was eluted in 15 µl RB.

Library validation and quantification
After second size selection, but before adapter ligation, 
DNA concentration was measured with a Qubit® 2.0 fluo-
rometer (Qubit® dsDNA HS assay) at ~21 °C room tem-
perature using 1 µl of DNA. Afterwards, 2 µl of DNA were 
diluted to a final concentration of ~0.3 ng/µl. The average 
library insert size in bps was verified in triplicate, running 
1 µl of diluted DNA using an Agilent high sensitivity DNA 
chip and a 2100 Bioanalyzer instrument (Agilent Technol-
ogies, Santa Clara, US-CA) according to the manufactur-
er’s instructions. The average of the three independently 
verified library average insert sizes was defined as the Bio-
analyzer-inferred average insert size (AISBio).

After adapter ligation and final clean up, DNA concen-
tration was measured (Qubit® dsDNA HS assay) in trip-
licate using 1 µl of the final sequencing library each time. 
The average of the three independent measurements was 
defined as the library’s DNA concentration (conc).

The molar concentration of the first final sequencing 
libraries was estimated by taking the Bioanalyzer-inferred 
average insert size in bps (AISBio) of each library as its 
actual average insert size in bps (AIS). Then, according to 
[19], Eq. 1 was used to calculate the molarity of each final 
library (nM) dependent on the library’s DNA concentra-
tion in ng/µl (conc) and actual average insert size in bps 
(AIS).

Subsequently, the molarity of each final library (nM) 
was multiplied by a factor of 1.3 prior to diluting to pools 
of libraries, since it has been realized from previous 
sequencing runs and read remapping analysis that the 
Bioanalyzer system is misestimating insert size distribu-
tions. Thus, usage of the multiplication factor 1.3 was a 
rough adjustment to account for that observation.

Later on it turned out that misestimation inherent to 
the Bioanalyzer system can be modelled by linear regres-
sion to estimate the library average insert sizes more pre-
cisely. The final linear regression model is shown in Eq. 2. 
Its use in combination with Eq.  1 is recommended and 
should yield most accurate results.

Library pooling and loading
Prior to sequencing, final libraries were diluted to 1 nM. 
Diluted libraries were pooled and an equal volume (ratio 
1:1) of freshly prepared 0.1 N NaOH was added. The pool 
was mixed carefully by repeated pipetting followed by 
incubation for 5 min on a preheated QBT 2 heat block at 
98 °C. After incubation the pool was placed on ice imme-
diately and an equal volume of freshly prepared and pre-
chilled 0.1 N HCl (ratio 1:1:1) was added. Again, the chilled 
pool was mixed carefully by repeated pipetting. Finally, 
the pool was diluted with pre-chilled hybridization buffer 
(Illumina) to its desired molarity (pMol) for sequencing.

IS1 libraries were sequenced at 30–35 pMol. IS2 librar-
ies were sequenced at 60–80  pMol and IS3 libraries at 
150  pMol. Molarity was determined according to Eq.  1. 
Quantitative PCR was not performed. Thus, the loaded 
DNA (pMol) corresponds to total DNA amounts and not 
to the amount of DNA fragments being double-ligated.

Genome sequencing and demultiplexing
All libraries sequenced are summarized in Table  2. 
Sequencing was carried out using the MiSeq sequencing 

(1)nM =
conc

(AIS + 120) ∗ 650
g

mol * bps

∗ 106

(2)AIS = 0.564 ∗ AISBio + 258
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platform (Illumina, Inc., San Diego, US-CA). Librar-
ies were sequenced either with v2 (500-cycle) or v3 
(600-cycle) MiSeq Reagent Kits at 2 × 200 bps. In addi-
tion, libraries Mlu50_IS2, Mlu50_IS3 and Mlu50_IS4 were 
sequenced at 2 × 25 bps using a v2 (50-cycle) MiSeq Rea-
gent Kit. After sequencing, read data of pooled libraries 
was demultiplexed using the on-board MiSeq Reporter 
software (v2.3.32) of the sequencing platform.

Trimming and filtering of read data
Read trimming and filtering was done using the NGS 
QC Toolkit (v2.2.3) [20] with automatic detection of 
FASTQ variant and considering option 2 (multiplexed 
DNA libraries) for adapter-contaminated read removal. 
Furthermore, FastQC (v0.10.1) [21] was used for visual 
confirmation of high quality (trimmed and filtered) read-
pairs. Read data originating from 2 × 200 bps sequenced 
libraries were trimmed 10 nucleotides from 5′ end and 
1 nucleotide from 3′ end. Thus, raw data incorporated 
into further analysis comprised 2  ×  189 bps paired 
reads. Read data originating from libraries sequenced at 
2 × 25 bps (Mlu50_IS2, Mlu50_IS3, and Mlu50_IS4) were 
not trimmed. After read trimming, raw read data was fil-
tered for high quality read-pairs. If not stated otherwise, 
reads passed the filter if at least 80 % of their nucleotides 
had a Phred quality score ≥20 (80;20). Reads losing their 
forward or reverse counterpart during filtering were dis-
carded from further analysis.

Remapping of read data
Paired-end reads were aligned to their corresponding 
NCBI reference genomes (Table  1) using Bwa (v0.6.2) 
[22] with default parameters, except of setting the maxi-
mum number of alignments to output for properly and 
disconcordant read pairs to 1. Subsequent to read align-
ment, SAM files were cleaned and coordinate-sorted 
with the corresponding tools CleanSam and SortSam of 
the Picard toolkit (v1.84) [23], whereby validation strin-
gency was set to lenient in both cases. Library insert dis-
tributions were estimated on cleaned and sorted SAM 
files using the tool CollectInsertSizeMetrics (Picard 
toolkit) with lenient validation stringency.

Linear regression analysis
Linear regression analysis and calculation of coefficients 
of determination (R2) were performed using the corre-
sponding in-build functionality of Gnumeric (v1.10.17) 
[24].

Evaluation of factors affecting assembly performance
Analyzed factors
The effects of the different factors assembler, insert size, 
read length and sequencing depth on sequence assembly 

performance was examined. Tested assemblers were 
SPAdes (v2.5.1) [25], ABySS (v1.3.3) [26], Velvet (v1.2.10) 
[27] and Edena (v3.131028) [28]. Tested library categories 
each having a different insert size were TS (for Bce, Efa, 
Pst), IS1 (for Bce, Efa, Sen, Pst) and IS2 (for Efa, Sen) or 
IS3 (for Bce, Pst). Tested read lengths in nucleotides were 
100, 125, 150, 175 and 189. Adjustment of read length 
was done via repeated 3′ read trimming of the unfiltered 
libraries containing 2 × 189 bps paired reads. Sequenc-
ing depths tested were 45 (Bce, Efa, Sen, Pst) and 90 (Bce, 
Efa, Pst). Sequencing depth (coverage) is defined as 2LN

G
, 

where L is the read length in bps, N is the number of read 
pairs and G is the reference genome size in bps. Librar-
ies containing different sequencing depths were created 
via random read pair drawing from respective trimmed 
libraries after quality filtering. Filtering was always per-
formed with quality threshold 80;20.

Creation of sub‑library datasets
From each library sequenced at 2 ×  200 bps (Table  2), 
several sub-libraries were compiled comprising different 
read lengths and sequencing depths as described above. 
For each specific read length and sequencing depth 3 
read data sets were compiled independently from each 
other by random read pair drawing, resulting in a total 
of 300 sub-libraries composed of 100 triplicates for the 
genomes Bce, Efa, Sen and Pst. Libraries sequenced for 
Mlu were not part of sub-library creation. For genomes 
Bce, Efa and Pst the number of created sub-libraries is 
3 ∗ 5 ∗ 2 ∗ 3 = 90 each, since 3 library categories, 5 read 
lengths and 2 sequencing depths were considered in trip-
licate for each of these genomes. For Sen the number of 
created sub-libraries is 2 ∗ 5 ∗ 1 ∗ 3 = 30, since only two 
different library categories (IS1, IS2) were prepared for 
this genome and only one sequencing depth (45) was 
investigated.

Sequence assembly
Each of the 300 sub-libraries were assembled using 
four different assemblers: SPAdes (v2.5.1), ABySS 
(v1.3.3), Velvet (v1.2.10) and Edena (v3.131028). In total, 
4 ∗ 300 = 1200 (optimal) assemblies were performed. If 
not stated otherwise, all assemblers were run with default 
parameter settings. In general, assembled contigs less 
than 500 bps in length were discarded from further anal-
ysis. This applies also to the calculation of assembly qual-
ity metrics like N50, etc.

SPAdes assemblies were performed using its in-build 
read error correction functionality of BayesHammer [29] 
by setting the --careful option. Applied k-mer combina-
tions were dependent on the sub-library’s read length. 
For read lengths 189, 175 and 150 the k-mer combination 
was set to 21, 33, 55, 77, 99, 127. For read lengths 125 and 
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100 the k-mer combinations were 21, 33, 55, 77, 99 and 
21, 33, 55, 77, respectively.

For each sub-library multiple ABySS and Velvet assem-
blies were performed within a range of k-mer values 
using stepwise increments of 2. The lower border of the 
k-mer range was always set to 21. The upper border of 
the k-mer range was dependent on the sub-library’s read 
length. For read lengths 189, 175, 150, 125 and 100 the 
upper k-mer border was set to 171, 161, 141, 111 and 91, 
respectively. For each sub-library only the optimal assem-
bly (k-mer) was taken into account for further analysis, 
while all others were rejected. An optimal assembly has 
the largest N50 value. If there were multiple assemblies 
(k-mers) having the same largest N50, then the one with 
the smallest number of contigs was chosen as the optimal 
one. If multiple assemblies with largest N50 and smallest 
number of contigs occurred, then the assembly with the 
largest average contig size was defined as optimal. Vel-
vet was always run with non-default parameter settings 
‘-alignments yes’, ‘-exp_cov auto’, ‘-ins length auto’, ‘-scaf-
folding no’ and ‘-read_trkg yes’.

For each sub-library an Edena’s overlaps graph was 
computed once with a minimum overlap size (option 
–M) of 21. 3′ end truncation of reads (option –t) was 
not performed. On the basis of the pre-computed over-
laps graph, multiple Edena assemblies were performed 
for each sub-library within a range of overlap cutoffs 
(option –m) using stepwise increments of 2. In gen-
eral, the minimum overlap cutoff was set to 21 and the 
maximum search distance for paired-end reads (option  
–peHorizon) was set to 5000. The maximal overlap cutoff 
was dependent on the sub-library’s read length. For read 
lengths 189, 175, 150, 125 and 100 the maximal applied 
overlap cutoffs were 161, 151, 131, 111 and 91, respec-
tively. For each sub-library only the optimal assembly 
(defined as for ABySS and Velvet) was considered further.

Sequence assembly validation
Frequently, scientists use the N50/NG50 metric to judge 
their assemblies [30]. N50 denotes the contig (or scaf-
fold) comprising 50 % of the assembly size after sorting 
the set of assembled contigs from longest to shortest. 
NG50 is defined accordingly, but the size of a reference 
genome instead of the assembly size is taken into account 
[18]. Unfortunately, assembly performance judgements 
based solely on N50/NG50 values make statements about 
assembly contiguity rather than assembly accuracy [31]. 
However, in cases where a reference genome is available, 
the set of assembled contigs (scaffolds) can be aligned to 
the reference first and contigs exhibiting misassemblies 
can be broken down at their misassembled regions prior 
to calculating NG50 values. This strategy, introduced 
during GAGE, found its expression in the corrected 

assembly contiguity metric (denoted corrected NG50 
in this publication) [13]. Later, a related metric, called 
NGA50, was defined within the quality assessment tool 
QUAST [32].

The 300 sub-libraries, composed of 100 triplicates, were 
assembled using four different assemblers leading to 1200 
(optimal) assemblies in total. The 1200 assemblies were 
separated in 100 assembly sets per assembler, where each 
assembly set comprised the three assemblies of a specific 
sub-library triplicate. Assembly sets (derived from the 
same assembler) were validated against their correspond-
ing reference genome sequences (Table 1) using QUAST 
(v2.2) [32]. For each assembly of a set the corrected NG50 
and NGA50 value was saved. Then, each set was reduced 
to one assembly validation entry comprising the averages 
of the corrected NG50 and NGA50 values of the set. In 
total, 400 assembly validation entries (100 per assembler) 
were created, whereby each validation entry was unique 
with regard to its underlying genome and the combina-
tion of manifestations of the different factors: assembler, 
insert size, read length and sequencing depth. In general, 
QUAST was run with the --ambiguity-usage option set to 
one and option --gage.

Calculation of relative assembly scores
Commonly, assembly validation entries were grouped 
according to the manifestations of the factor under con-
sideration. Then, each manifestation’s average corrected 
NG50 and average NGA50 was calculated. Finally, the 
relative assembly score S of each manifestation was deter-
mined for each quality metric (corrected NG50, NGA50). 
This was done by dividing each manifestation’s quality 
metric’s average by the maximal observed average of the 
factor analysed. Thus, S is defined within 0 < S ≤ 1 . The 
closer S is to 1, the higher is the positive effect of the cor-
responding manifestation on sequence assembly.

For the evaluation of assemblers, the assembly valida-
tion entries were examined in a genome-wise manner. 
For all other factors (insert size, read length and sequenc-
ing depth), assembly validation entries were analysed per 
genome and assembler.

Results
Optimization of the library preparation protocol
One of the most critical steps during library prepara-
tion is insert size selection after genomic DNA shear-
ing. The largest average insert size of a library prepared 
with the standard Illumina protocol lies within a range of 
~550–650 bps. The maximum sequenceable read length 
is 2 × 300 bps, in general. Increasing insert size should be 
advantageous for assembly, as it may bridge short repeti-
tive elements. Therefore, adjusted shearing settings dur-
ing DNA fragmentation and optimized RB to BB ratios 
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during fragment size selection were applied to create 
sequencing libraries varying in average insert size (cat-
egories IS1-3). IS1 libraries had an average insert size of 
~690 bps. Insert sizes of IS2 and IS3 libraries were ~990 
and ca 1210  bps on average, respectively (Table  2 and 
Additional file  1: Table S3). However, it turned out that 
GC-rich libraries tend to have larger average insert sizes 
in comparison to AT-rich libraries of the same category. 
Most notably, this GC-content dependent behaviour on 
insert size was observed for sequenced IS2 and IS3 librar-
ies (Additional file 2: Figure S1).

Figure  1a illustrates the insert size compositions of 
all libraries prepared with the Illumina TruSeq® DNA 
PCR-free LPP (category TS). Their shape is asymmet-
ric, i.e. left-tailed, whereas the insert size distributions 

of the modified protocol are sharper and more symmet-
ric (Fig.  1b). Figure  1c displays libraries of category IS1 
and IS3, which differ in average insert size by ca. 540 bps. 
The very high reproducibility of the modified protocol is 
demonstrated in Fig. 1d.

The sharper and (nearly) symmetric library insert 
size distributions enabled a more precise determina-
tion of average insert sizes. However, it turned out that 
the Bioanalyzer system tends to misestimate library 
insert sizes. Mapping raw read data from the whole set of 
sequenced IS1-3 libraries (summarized in Table  2) back 
to their reference genome sequences (listed in Table  1) 
revealed a very strong linear correlation (R2  ~0.98, p 
value  ≪  0.001) between Bioanalyzer and actual aver-
age library insert sizes (Fig. 2). For IS1 libraries average 

Fig. 1  Insert size distributions after second size selection. Data originate from analysis with Bioanalyzer instruments. a Insert size distributions of 
sequencing libraries obtained with the standard Illumina TruSeq® DNA PCR-free LPP have an overall good reproducibility. All sequenced TS libraries 
are shown. b Modifications during DNA fragmentation and insert size selection enabled the creation of sequencing libraries with sharper and more 
symmetric insert size distributions. Sequencing libraries Efa_TS and Efa_IS1 are illustrated in red and blue, respectively. c In addition, different RB:BB 
ratios led to sequencing libraries varying in average insert size for the same genome. Blue: Pst_IS1, red: Pst_IS3. d Insert size distribution reproduc-
ibility is maintained when using modified LPPs
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insert sizes were overestimated by the Bioanalyzer by 
~22.0 % at maximum. Overestimation increased severely 
to up to ~46.4 % for IS3 libraries (Additional file 1: Table 
S3). Since two different Bioanalyzer machines were used 
independently from each other to determine insert size 
compositions both showing the same effect, the devia-
tion seems to be of systematic nature. By incorporating 
the function derived from linear regression analysis into 
library validation, the molarity of sequencing libraries 
can be adjusted more precisely.

An additional benefit of the modified LPPs is the 
reduced amount of reagents required. Preparation of IS1 
and IS2 category libraries consumes only half the rea-
gents of the original Illumina protocol. For IS3 libraries 
larger amounts of DNA (~150 pMol) are needed to cre-
ate appropriate cluster densities. This leads to a reagent 
consumption which is similar to that of the standard LPP.

Impact of average library insert size and genomic GC 
content on sequencing quality
To evaluate the impact of genomic GC content and aver-
age insert size on sequencing quality, strains with GC 
contents ranging from 35.4–73.0  % (Table  1) and aver-
age library insert sizes between 610 bps and 1250  bps 
(Table  2 and Additional file  1: Table S4) were used. In 
total, 14 libraries were sequenced on the MiSeq platform 
at 2 × 200 bps followed by raw read trimming to 2 × 189 
bps. Among them, four were prepared with the stand-
ard LPP (category TS), 5 were of category IS1, 2 of cat-
egory IS2 and 3 of category IS3. Remapping of raw reads 
against their reference genome revealed that TS libraries 

had similar average insert sizes as their IS1 counterparts 
of the same genome (Additional file 1: Table S4).

Figure 3 depicts genomic GC contents plotted against 
the percentage of raw read pairs passing quality filtering 
for each of the 14 libraries. Regression analysis revealed 
a general linear decrease in the percentage of raw read 
pairs passing quality control (QC) as genomic GC con-
tent increases. In addition, there was a library specific 
effect observed, as for libraries with longer insert sizes 
(group 3), less read pairs are retained after quality filter-
ing regardless of the GC content. Group 1 and 2 showed 
almost no difference, since libraries of category TS and 
IS1 have similar average insert sizes.

The loss of reads after quality filtering is accompanied 
by a reduction in average insert size (Fig. 4). The average 
library insert size of Bce_IS1 decreases by only ~1.2  % 
from 669  bps of the raw library (Fig.  4a, dark-green) 
to 661  bps after quality filtering (Fig.  4a, light-green). 
Similar observations were made for all other IS1 librar-
ies (Additional file 1: Table S4). Thus, overall read qual-
ity of category IS1 libraries is mainly determined by the 
library’s GC content.

For Efa_IS2 and Sen_IS2, average insert sizes decline by 
~4.5 % (Fig. 4b) and ~6.4 % (Fig. 4c) due to filtering. As 
average insert size and genomic GC content of a library 
increase further, the effect becomes more pronounced. 
For instance, the GC rich library Mlu_IS3 (Fig. 4d) per-
forms considerably worse with a reduction of ~11.8  %. 
The shift of the insert size distribution introduced by 
quality filtering shows that read pairs originating from 

Fig. 2  Linear regression of Bioanalyzer deduced and actual average 
library insert sizes. Calculation of actual library insert sizes was done 
after remapping of raw read data to respective reference genome 
sequences. Linear regression analysis revealed a very strong correla-
tion, but the Bioanalyzer system turned out to overestimate library 
insert sizes

Fig. 3  Impact of average library insert size and genomic GC content 
on sequencing quality. Genomic GC content was plotted against the 
percentage of raw read pairs passing quality filtering (80;20). Then, 
libraries were grouped according to their category. Group 1 (red) 
comprises all standard libraries (TS). Group 2 (green) covers all libraries 
of category IS1. Group 3 (blue) represents the combined set of IS2 
and IS3 libraries
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longer DNA fragments tend to have worse sequencing 
quality, since they fail to pass quality filtering dispropor-
tionately often. This effect is particularly strong for librar-
ies with high GC content.

Thus, the impact of filtering parameters on different 
insert size distributions was analysed in more detail for a 
strain with high GC content. The genome of Micrococcus 
luteus NCTC 2665 (73 % GC content) was sequenced at 
2 ×  25 bps (Mlu50) with libraries of category IS2-4. For 
each category the average insert size of the unfiltered 
library was estimated via raw read remapping to the 
reference genome. In addition, each raw library was fil-
tered three times with increasing filter stringency and the 
average insert sizes of the retained reads were estimated 
(Fig. 5). The longer the unfiltered insert size distribution 
(of the raw library), the higher was the reduction in aver-
age insert size after quality filtering. Applying the most 
stringent filter settings (90;20) the library with the small-
est inserts (IS2) lost <10 % in average insert size. IS3 lost 
only little more (~12 %), but the insert size distribution of 
IS4 was reduced by >20 %.

Evaluation of factors affecting assembly performance
There is a multitude of factors influencing sequence 
assembly. Often, such factors are not independent, which 

makes it a complicated task to infer each factor’s indi-
vidual impact on sequence assembly. To solve this task 
a strategy was implemented in which each factor to be 
benchmarked is rated in the context of other assembly 
affecting factors. Four different parameters were evalu-
ated: assembler, insert size, read length and sequencing 
depth. Analyses were performed on genomes of Bacillus 
cereus, Enterococcus faecalis, Pseudomonas stutzeri and 
Salmonella enterica. Micrococcus luteus was discarded 
from this analysis, since remapping of read data revealed 
that the strain sequenced is very similar, but not identical 
to the finished reference genome publicly available.

100 sub-library triplicates were created out of the com-
plete dataset as described in “Methods” section. Each 
member of a triplicate was assembled with SPAdes, 
ABySS, Velvet and Edena resulting in 100 assembly sets 
per assembler. Assembly sets were validated against 
their corresponding reference genomes (Table  1) using 
QUAST. Then the corrected NG50 and NGA50 values 
obtained for each assembly set were averaged. By this 
way 400 assembly validation entries (100 per assembler) 
were created. Each entry consisted of a pair of average 
corrected NG50 and NGA50 values.

To nominate the best assembler, assembly validation 
entries were first grouped according to the respective 

Fig. 4  Interplay between insert size, GC content and sequencing quality of a library. Insert size distributions of IS1-3 libraries were plotted prior to 
and after read quality filtering (80;20). Distributions marked green belong to IS1 libraries, whereas distributions marked blue are from higher category 
libraries (IS2 or IS3). Dark-coloured distributions are derived from unfiltered libraries. Light-coloured distributions are obtained after quality filtering. 
To make insert size distributions directly comparable to each other, read counts were normalized by the maximal read count (per insert size) of the 
unfiltered library (of same category and genome). a Bce_IS1 and Bce_IS3. b Efa_IS1 and Efa_IS2. c Sen_IS1 and Sen_IS2. d Mlu_IS1 and Mlu_IS3
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strain (genome) and then according to the four assem-
blers. To investigate the influence of insert size, read 
length and sequencing depth, assembly validations were 
grouped in a strain and assembler depended manner 
prior to sub-grouping according to factor manifesta-
tions. After sub-grouping, relative assembly scores were 
calculated as described in “Methods” section. A rela-
tive assembly score of 1 is assigned to the best corrected 
NG50 and NGA50 values. All other manifestations were 
rated relatively to the best one.

Clearly, SPAdes is the most effective assembler 
(Table  3). There is only one case in which the NGA50 
derived relative assembly score for SPAdes is not 1 
(maximal). The impact of average insert size (library cat-
egory), read length and sequencing depth on assembly 
performance was analyzed based on SPAdes assemblies 
(Results obtained for ABySS, Velvet and Edena are sum-
marized in Additional file 1: Tables S6–S14).

Table 4 lists the relative assembly scores for each genome 
and insert size. There are two obvious tendencies. First, 
libraries of category IS1 always had better relative assem-
bly scores than libraries of category TS, although the dif-
ference varied largely between organisms. In contrast to 
Pst having a high GC content, the impact of insert size on 
assembly performance was much more pronounced for 
the AT-rich genome of Bce or Efa. The second tendency is 
that maximal relative assembly scores are observed most 
frequently for larger insert sizes (IS2 or IS3). Both trends 
deduced from Table 4 illustrate the superiority in SPAdes 
assembly performance of the modified LPPs (IS1-3) over 
the standard Illumina protocol (TS). 

Table  5 summarizes the relative assembly scores 
obtained for SPAdes assembled libraries of different 
read lengths. In most cases, relative assembly scores are 
maximal (or close to maximal) at read lengths of 175 
or 189  bps for both quality metrics. This indicates that 
stringency (80;20) applied during read quality filtering 
was sufficient to avoid an impairment of SPAdes assem-
bly performance due to low Phred qualities. Besides, it 
turned out that shorter read lengths may have drastic 

Fig. 5  Effect of quality filtering on average library insert size. Average 
insert sizes for libraries Mlu50_IS2, Mlu50_IS3 and Mlu50_IS4 were 
plotted as a function of progressive stringency filtering. Most relaxed 
stringency corresponds to unfiltered libraries (raw). During most 
discriminative filtering reads are only passing quality control, if at least 
90 % of their nucleotides had a Phred quality score ≥20 (90;20)

Table 3  Relative assembly scores using different assem-
blers

A maximal relative assembly score of 1 refers to the assembler with the best 
assembly performance. All other assembly scores are expressed as relative 
fractions of their corresponding maximum. For genomes Bce, Efa and Pst 
each relative assembly score was calculated on the basis of 30 assembly sets. 
Assembly sets originated from same-genome sequencing libraries differing in 
category (average insert size), read length and sequencing depth. For Sen the 
number of assembly sets per relative assembly score was 10

max** Absolute value in nucleotides of the maximal relative assembly score of 
the column

Quality metric Assembler Genome

Bce Efa Sen Pst

Corrected NG50 SPAdes 1 1 1 1

ABySS 0.69 0.87 0.82 0.70

Velvet 0.71 0.71 0.77 0.94

Edena 0.63 0.72 0.63 0.73

max** 448,776 381,370 292,477 212,702

NGA50 SPAdes 1 1 0.98 1

ABySS 0.93 0.97 1 0.92

Velvet 0.58 0.82 0.92 0.96

Edena 0.40 0.66 0.50 0.66

max** 733,293 416,896 405,154 238,037

Table 4  Relative assembly scores for different insert sizes

Relative assembly scores rely on SPAdes assembly validations and are 
summarized per genome and library category. For Sen each relative assembly 
score refers to 5 assembly sets. Relative assembly scores of all other genomes 
comprise 10 assembly sets each

max** Absolute value in nucleotides of the maximal relative assembly score of 
the column

Quality metric Insert size Genome

Bce Efa Sen Pst

Corrected NG50 TS 0.54 0.84 n.d. 0.96

IS1 1 0.95 0.95 0.97

IS2 or IS3 0.74 1 1 1

max** 590,346 409,939 300,036 217,864

NGA50 TS 0.53 0.85 n.d. 0.91

IS1 0.85 0.97 0.96 0.93

IS2 or IS3 1 1 1 1

max** 922,992 442,857 405,417 250,853
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negative effects on SPAdes assembly performance. All 
genomes with low to medium GC-content (Bce, Efa and 
Sen) obtained their smallest relative assembly scores at 
the shortest read length of 100 bps.

Finally, the effect of sequencing depth on relative 
assembly scores was analysed. Regardless of the qual-
ity metric examined, maximal relative assembly scores 
were always reached at a sequencing depth of 90 (Addi-
tional file 1: Table S5). However, relative assembly scores 
grew significantly in a double digit percentage range for 
Bce only. For Efa and Pst only small enhancements were 
achieved after doubling sequencing depth from 45 to 90.

Discussion
For the generation of optimal de novo genome sequences, 
high quality sequencing data and the choice of optimal 
data processing tools is essential. When the influence of 
different parameter settings on sequence and assembly 
quality is known, this can be taken into account in the 
setup of a next-generation sequencing experiment.

Factors affecting assembly performance
Assembler
Modern sequence assembly algorithms rest upon one of 
three different assembly paradigms: greedy, overlap-lay-
out-consensus (OLC) or de Bruijn graph. SPAdes makes 
use of paired and multi-sized de Bruijn graphs [25]. 
ABySS and Velvet are classical de Bruijn graph assem-
blers [26, 27], whereas Edena constitutes an OLC assem-
bler utilizing transitively reduced overlap graphs [28].

Since SPAdes was one of the assemblers performing 
best during GAGE-B [11], it was not surprising that the 
assembler also won the small-scale competition of this 
study (Table 3). Within the set of assemblers investigated, 
SPAdes represents the most sophisticated tool, which 
incorporates functionalities for read error correction and 
contig mismatch correction prior to and after assembly.

Insert size
To our knowledge, this is the first study that provides 
details about the effects of library insert size on assem-
bly performance of bacterial genomes using only a single 
Illumina paired-end library for sequencing. The effects 
observed were dependent on the assembler used, but 
best assemblies were obtained with SPAdes and ABySS 
using longer insert sizes (IS2 and IS3). In the past, com-
binations of small and large insert Illumina libraries 
have been successfully applied. Combining a 100-fold 
paired-end library with a fivefold mate-pair library, the 
Pseudomonas syringae pv. phaseolicola 1448A genome 
was assembled in enhanced quality [10]. The assembler 
ALLPATHS-LG was specifically designed to make use of 
Illumina paired-end and mate-pair libraries to generate 
high-quality draft assemblies [33]. During GAGE com-
petition it demonstrated consistently strong performance 
[13]. However, such approaches require at least two Illu-
mina libraries with mate-pair libraries being difficult to 
prepare [34]. As an alternative, an increased insert size 
composition of paired-end libraries can yield benefits in 
assembly performance. But, the choice of the assembly 
tool determines whether and to which extent the modi-
fied LPPs presented here will lead to enhanced assembly 
performance.

Indeed, the list of available assemblers is long with 
each having its own benefits and disadvantages. Unfortu-
nately, validating them all would be far beyond the scope 
of this work. The sequencing libraries provided in the 
course of this study should form an excellent test set to 
validate each assembler’s performance in the context of 
library insert size. In addition, it may help computational 
biologists to improve the gap filling and repeat bridging 
capacities of their already existing tools. Raw sequencing 
read data can be downloaded from the sequencing read 
archive (see “Availability of supporting data” section).

Read length
In contrast to insert size, the impact of a library’s read 
length on assembly performance seems to follow more 
general principles. The fraction of very high relative assem-
bly scores in the range of [0.95, 1] was determined over all 
investigated genomes and assemblers for each read length 
(Fig.  6). Regardless of the quality metric investigated, 
the overall pattern is similar. The shortest read length of 

Table 5  Relative assembly scores for different read lengths

Read length associated relative assembly scores are listed per genome for 
SPAdes assemblies. Relative assembly scores for Sen were determined in 
dependence on 3 assembly sets each. Each other genome comprised 6 
assembly sets per relative assembly score 

max** Absolute value in nucleotides of the maximal relative assembly score of 
the column

Quality metric Read 
length

Genome

Bce Efa Sen Pst

Corrected NG50 100 0.52 0.68 0.54 0.996

125 0.82 0.90 0.79 0.995

150 0.90 0.96 0.81 1

175 1 1 0.95 0.995

189 0.91 0.996 1 0.99

max** 541,348 419,532 358,280 213,754

NGA50 100 0.55 0.95 0.71 1

125 0.75 1 0.86 0.86

150 0.78 0.97 0.85 0.96

175 0.996 0.99 0.94 0.98

189 1 0.999 1 0.97

max** 898,406 424,840 455,293 249,244
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100  bps achieves only few high relative assembly scores. 
Then, the number of high scores increases and reaches 
maximal values at 175 bps. At 189 bps there is a decline. 
This curve progression is for the most part in line with 
what is expected from theory. Repetitive sequences are 
causing gaps in sequence assembly as long as read length 
(or the insert size of a read pair) is not capable of spanning 
the repeat. As read length increases, the portion of unique 
sequences elevates too, thereby reducing the amount of 
sequences which had been previously (at shorter read 
lengths) repetitive [9]. It seems therefore advisable to 
increase read length. The maximum read length using the 
Illumina MiSeq platform now is 2 × 300 bps with insert 
sizes of up to ~1500 bps, but in most bacteria the longest 
repetitive element constitutes the 16S rDNA operon with 
5–7 kbps [35]. PacBio’s single molecule, real time sequenc-
ing technology is capable of spanning the rDNA operon 
by the generation of continuous long reads. Yet, the use of 
hybrid error correction or self-correction approaches to 
enhance PacBio’s continuous long read accuracy resulted 
in assemblies of unprecedented contiguity [35, 36]. How-
ever, PacBio sample preparation and sequencing is more 
costly compared to Illumina [35].

The reason for the decreasing fraction of top-perform-
ing relative assembly scores for a read length of 189  bps 
observed in this study is not clear. Presumably, this is due to 
base calling errors accumulating at the 3′ ends of Illumina 
reads, interfering with the assembly process and coun-
teracting the enhanced repeat resolution capacity. It has 

been shown that read error correction prior to sequence 
assembly can substantially improve assembly performance 
[37, 38]. This hypothesis is underlined by the fact that in 
contrast to the average values of Fig. 6, maximum relative 
assembly scores for SPAdes were mostly achieved at a read 
length of 189 bps (Table 5). Since solely SPAdes made use 
of read error correction prior to sequence assembly, its 
improved assembly performance capacity at a read length 
of 189 bps may be the consequence of diminished base call-
ing error rates at 3′ read ends.

Sequencing depth
Several studies already addressed the question of an 
optimal sequencing depth for de novo bacterial genome 
assembly [10, 14, 16]. Assembly of simulated Illumina 
read data at different sequencing depths demonstrated 
the existence of DCAPs between 20- and 40-fold. An 
assembler’s DCAP was defined as the depth of cover-
age at which a N50 plateau is reached [16]. Increasing 
sequencing coverage beyond DCAP does not result in 
a significant gain of the N50 value anymore. Although 
sequencing of small genomes is easily realizable at very 
high sequencing depths (>100-fold) with current Illu-
mina sequencing platforms, its efficiency remains ques-
tionable, as it is accompanied by higher costs (occupied 
portion of flow cell per sequenced genome) and compu-
tation effort (runtime, RAM usage). Investigations on the 
depth of coverage for SPAdes assemblies of larger insert 
size libraries with read lengths of 189  bps (Additional 
file  2: Figure S2, S3) revealed a saturation of corrected 
NG50 and NGA50 values between 30- and 80-fold cov-
erage. This is in line with observations described in the 
literature. P. syringae pv. phaseolicola 1448A genome 
assemblies plateaued at a sequencing depth of 100-fold 
[10]. The optimal sequencing depth to assemble the 
Escherichia coli MG1655 genome was around 50-fold 
for a great majority of assemblers [14]. From our experi-
ence, sequencing depths in the range from 50- to 80-fold 
should give a good compromise between the costs of 
sequencing and reaching DCAP for the majority of bac-
terial genomes and assemblers.

Eukaryotic genome sequencing
Eukaryotic genomes harbour more complex and longer 
repeat structures than can be found in prokaryotes. 
Using a single Illumina library will not be sufficient to 
generate adequate genome assemblies. However, using 
a mixture of Illumina libraries with different insert sizes 
is more effective. Libraries with shorter insert sizes will 
be capable to resolve smaller repeats, while the ones with 
large inserts operate on longer repetitive elements [9]. 
The genome of Ailuropoda melanoleura (giant panda) 

Fig. 6  Influence of read length on assembly performance. Shown is 
the fraction of top-performing assemblies as a function of library read 
length. Assemblies are defined to be top-performing, if their relative 
assembly scores are greater or equal to 0.95. Fractions were calcu-
lated comprising all investigated genomes and assemblers (Table 5; 
Additional file 1: Tables S7, S10 and S13)
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was sequenced using 37 Illumina libraries with insert 
sizes of 150, 500 bps, 2, 5 and 10 kbps [39]. The modified 
LPPs presented in this study will increase the repertoire 
of preparable insert size distributions in such Illumina-
only sequencing projects. However, emerged hybrid 
approaches combining different sequencing technologies 
may be more promising in eukaryotic sequencing pro-
jects [36, 40, 41].

Optimized library preparation
Although it turned out that longer insert sizes are 
advantageous for assembly of bacterial genomes, it 
needs to be considered that they are detrimental for 
read quality and lead to a substantial loss of reads. As 
this gradually increases with rising GC content, it would 
be reasonable to choose the library preparation param-
eters according to the GC content of DNA. Accordingly, 
libraries with longer insert sizes (IS2-3) are only recom-
mended for AT rich genomes. However, an increased 
coverage compensates the loss of reads during quality 
filtering. Then, sufficient reads may also be obtained 
for GC rich genomes, but to a higher price, as fewer 
genomes can be sequenced in parallel during the same 
run. If enlarged average library insert sizes are desired 
for sequencing GC rich genomes, a shorter read length 
could be chosen. As sequencing quality of Illumina 
reads decreases steadily from 5′ to 3′ end (Additional 
file  2: Figures S4, S5), shorter read lengths will enable 
a greater portion of read pairs with large inserts to pass 
quality filtering.

Conclusions
In this study modified versions of the widely used Illu-
mina TruSeq® DNA PCR-free library preparation pro-
tocol were presented that enable the generation of 
sequencing libraries with longer average insert sizes. 
This leads to substantial assembly improvements using 
SPAdes, which is currently one of the best perform-
ing assemblers for bacterial de novo genome assembly. 
Through the introduced modifications fewer reagents are 
consumed.

For sequencing Illumina paired-end libraries, maximiz-
ing read length and insert size appears reasonable, since 
both characteristics can elevate the repeat bridging and 
resolution capacity of current state of the art assemblers. 
Unfortunately, read length and insert size are negatively 
correlated with sequencing quality, which is particularly 
pronounced for high GC content genomes. Major improve-
ments could be achieved if these negative correlations still 
inherent to the sequencing process were diminished.
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