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Genome-Wide association studies (GWAS), based on testing one single nucleotide

polymorphism (SNP) at a time, have revolutionized our understanding of the genetics

of complex traits. In GWAS, there is a need to consider confounding effects such as

due to population structure, and take groups of SNPs into account simultaneously due

to the “polygenic” attribute of complex quantitative traits. In this paper, we propose

a new approach SGL-LMM that puts together sparse group lasso (SGL) and linear

mixed model (LMM) for multivariate associations of quantitative traits. LMM, as has

been often used in GWAS, controls for confounders, while SGL maintains sparsity of

the underlying multivariate regression model. SGL-LMM first sets a fixed zero effect to

learn the parameters of random effects using LMM, and then estimates fixed effects using

SGL regularization. We present efficient algorithms for hyperparameter tuning and feature

selection using stability selection. While controlling for confounders and constraining for

sparse solutions, SGL-LMM also provides a natural framework for incorporating prior

biological information into the group structure underlying the model. Results based on

both simulated and real data show SGL-LMM outperforms previous approaches in terms

of power to detect associations and accuracy of quantitative trait prediction.

Keywords: genome-wide association studies, single nucleotide polymorphisms, quantitative traits, linear mixed

model, sparse group lasso

1. INTRODUCTION

Quantitative traits are important in medicine, agriculture, and evolution but, until recently, few
polymorphisms have been shown to be related in these traits. Genome-wide association studies
(GWAS) is a statistical technique that has been used successfully in the identification of over
65,000 single-nucleotide polymorphisms (SNPs) that are connected to various traits or diseases
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(MacArthur et al., 2017). Typically, GWAS are carried out
using single-locus models (i.e., testing for association between
each SNP and a given phenotype independently using linear
or logistic regression). However, according to the popular
“polygenic theory” (Li et al., 2015b; Dudbridge, 2016), complex
traits are often controlled by multiple SNPs collectively. Due
to the need to eliminate multi-testing corrections that decrease
statistical power, a better understanding of the underlying
heritable genetic architecture of complex traits requires one
to move beyond single-locus models to multivariate linear
regression models that incorporate the joint effects of multiple
SNPs explicitly (Ma et al., 2013).

Usually, the multi-locus GWAS are large p small n problems
(i.e., the number of features (SNPs) far exceeds the number of
samples, and one would expect only a small number of features
are associated with the phenotype predictor). Therefore, as is
customary for similar regression problems, it is necessary to
regularize by demanding sparsity in the coefficients of the final
model to prevent over-fitting and to maintain interpretability.
The most popular regularizing penalty that serves this purpose
is the lasso (i.e., least absolute shrinkage and selection operator)
(Tibshirani, 1996), which is the L1 norm of the coefficients of
features. Yang et al. (2012) fit sparse predictors for all genome-
wide SNPs using stepwise, forward selection. Li et al. (2011)
imposed a Laplace prior, which led to the Bayesian lasso. Arbet
et al. (2017) developed a permutation-based, selection procedure
to test the significance of lasso coefficients.

In GWAS, one expects the effective SNPs to be clustered
in a few genes or pathways, hence, adding group structure by
mandating sparsity on the group level is a good way to apply this
prior knowledge that can potentially outperform the simple lasso.
Yuan and Lin (2006) proposed using the group lasso for the linear
regressions, which imposed a regularization penalty of the sum
of the L2 norm on groups that guaranteed that few groups were
selected. But if a group is selected, so are all the predictors in it.

The group lasso has already enjoyed much success in GWAS
(Li et al., 2015a; Lim and Hastie, 2015). A caveat, however, is its
assumption that either all SNPs in a group being associated or
none of the SNPs in a group being associated. It is desirable to
not only constrain sparsity between groups (only a few groups
are associated), but also within groups; only a few SNPs in
each active group are associated. Hence, we propose to employ
a sparse group lasso (SGL), which is a regularization method
aimed at achieving both between- and within-group sparsity
simultaneously (Rao et al., 2013, 2016; Simon et al., 2013). The
SGL has a L2 penalty that promotes the selection of only a subset
of the groups and L1 penalty that promotes the selection of only
a subset of the predictors within a group.

Another important factor in genetic association studies is
the existence of confounding, which are indirect associations
between markers and traits due to factors like population
structure, family structure, and cryptic relatedness. Methods
for correcting these confounding factors include EIGENSTRAT
(Price et al., 2006), family-based association, genomic control,
and linear mixed models (LMMs) (Fisher, 1919; Hoffman, 2013;
Hoffman et al., 2014). Compared with other methods, LMMs
provide more fine-grained control by modeling the contribution
of these confounders as a random effect term. They are capable

of capturing the cumulative effect of all types of confounding
simultaneously without the need of prior knowledge on which
confounding is present and without the need to estimate them
individually. However, the time and space costs of LMM are
high compared with simpler confounding models. Previous
attempts to improve the performance of LMM includes Zhou
and Stephens (2012) (EMMA), Kang et al. (2010) (EMMAX),
Zhang et al. (2010) (P3D), Lippert et al. (2011) (FaST-LMM), and
Li et al. (2017) (StepLMM). All of these methods are univariate
models that are powerful in detecting few associations with large
effect sizes.

Although joint modeling of multiple weak effects and
correction for population structure have been tackled
individually, few existing methods are capable of addressing
them simultaneously. Segura et al. (2012) proposed a multi-
locus, mixed model approach using stepwise forward selection.
Rakitsch et al. (2012) and Papachristou et al. (2016) developed
new association methods that combined LMM and lasso to enjoy
the benefits of both methods.

There are a variety of patterns that typically arise in
regularization (Figure 1). Prior knowledge can be utilized by
using the SGL, which maintains both between- and within-group
sparsity. The relative strength between L1 and L2 norms can be
used to represent prior knowledge on the comparative degrees
of sparsity at the SNP and gene level. In particular, by varying
the ratio between L1 and L2 norms, the approach includes both
group lasso and lasso as special cases.

In this paper, we propose a novel analysis that not only
combines multivariate analysis with population correction
using Fast-LMM, but we also incorporate the group structure
of the SNPs as biological priors. We use the gene as
the group unit, and it is reasonable to assume that the
model should be sparse not only on the SNP-level (only
relatively few SNPs are involved), but on the gene level
as well (those functional SNPs belong to relatively few
genes). Experiments on semi-empirical data showed that the
combination of sparse group lasso and a linear mixed model
yielded better power to identify marker associations in a
large range of settings, and application to real datasets have
verified that SGL-LMM generated a sparse solution with
accurate prediction of phenotypes and interpretable detection of
marker associations.

2. MATERIALS AND METHODS

2.1. Method
We used a linear mixed model to model the genetic effects on the
phenotypes. More precisely, we modeled the phenotype as a sum
of three terms: a fixed effect determined by the association SNPs,
a random confounding effect due to population structure, and an
i.i.d. noise as follows:

y = Xβ + ypop + φ (1)

where y is a vector of observed phenotypes of size m × 1 for m
samples, X is am×qmatrix that consists of SNPs and other (e.g.,
environmental, familial etc.) variables of the m samples, ypop is

a m × 1 random matrix with distribution N (0, σ 2
g K) where K
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FIGURE 1 | A comparison of different sparsity patterns that occur in the analysis of genome-wide association studies. SNPs belong to M genes. Association SNPs

that influence the phenotype are represented by boxes that are shaded gray. (a) Shows a lasso sparse pattern. An example of the group sparse pattern is shown in

(b). In (c), we show the pattern in which we are interested in this paper.

is an m by m matrix called realized relationship matrix(RRM)
that captures the overall genetic similarity between all pairs of
samples, and φ ∼ N (0, σ 2

e I).

To make a prediction on y, one only needs β and δ =
σ 2
e

σ 2
g
.

Following FAST-LMM, our overall strategy for estimating the
parameters β and δ goes as follows:

1. Set β = 0, find the optimal δ.
2. Use the δ from the first step to estimate β , regularizing by

using SGL.

Now we describe each of the two steps in more detail.

2.1.1. Estimate of δ

To calculate δ we use an approach similar to Fast-LMM. Because
β was set to 0, we have:

y ∼ N (0, σ 2
g (K + δI)) (2)

Hence the log likelihood for a given y is

LL(δ, σ 2
g ) = logN (0, σ 2

g (K + δI))

= −
1

2

(

m log(2πσ 2
g )+ log(det(K + δI)

+
1

σ 2
g

yT(K + δI)−1y

)

(3)

Diagonalize K into K = USUT where U is orthogonal and S is
diagonal, and we have:

LL(δ, σ 2
g ) = −

1

2

(

m log(2πσ 2
g )+ log(det(S+ δI)

+
1

σ 2
g

(UTy)T(S+ δI)−1(UTy)

)

(4)

Substitute σ 2
g with the optimal value:

σ̂ 2
g =

(UTy)T(S+ δI)−1(UTy)

m
(5)

we have:

LL(δ) = −
1

2

(

log(det(S+ δI))+m log
(UTy)T(S+ δI)−1(UTy)

m

)

+C (6)

Where C does not depend on δ. The optimal δ can
then be calculated from above as a one dimensional
optimization problem:

δ̂ = argmin

(

log(det(S+ δI))+m log
(UTy)T(S+ δI)−1(UTy)

m

)

(7)

2.1.2. Estimate of β

In this subsection, we describe the estimation for β based on
model described by Equation (1), then, in the next subsection,
we introduce the SGL regularization.

Equation (1) implies that:

y ∼ N (Xβ , σ 2
g (K + δI)) (8)

Hence, using the diagonalization we see that, after δ and σ 2
g have

been estimated in the previous subsection, the log-likelihood
becomes:

LL(β) = logN (Xβ , σ̂ 2
g (K + δ̂I))

=−
m

2
log(2πσ̂ 2

g )−
1

2
log(det(S+ δ̂I)

−
1

2σ̂ 2
g

(UT(y− Xβ))T(S+ δ̂I)−1(UT(y− Xβ))
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=−
1

2σ̂ 2
g

(UT(y − Xβ))T(S+ δ̂I)−1(UT(y − Xβ))+ C

(9)

Let S
δ̂
be the non-negative diagonal matrix defined by S−2

δ̂
=

S+ δ̂I, or, more concretely, (S
δ̂
)ii = (Sii + δ̂)−1/2, then the MLE

of β is

β̂ = argmin(UT(y − Xβ))T(S+ δ̂I)−1(UT(y − Xβ))

= argmin(S
δ̂
UTy− S

δ̂
UTXβ)T(S

δ̂
UTy − S

δ̂
UTXβ)

= argmin ‖S
δ̂
UTy− S

δ̂
UTXβ‖22 (10)

Here ‖ · ‖2 is the L2 norm. S
δ̂
UTy and S

δ̂
UTX are obtained from

y and X by a rotation and a scaling, and to simplify notations we
denote them as ỹ and X̃, respectively.

2.1.3. Sparse Group Lasso
To maintain sparsity in the estimated β , we need to add a
regularizer to Equation (10). We used the SGL regularizer: let G
be a family of possibly overlapping groups of components in β ,
for each group G ∈ G, let βG be the vector that consists of these
components, let λ > 1 and 0 ≤ α ≤ 1, then the regularized
optimization problem becomes:

β̂reg = argmin ‖SδU
Ty−SδU

TXβ‖22+λ(1−α)
∑

G∈G

‖βG‖2+λα‖βG‖1

(11)
Here λ is the strength of regularization, and α is the comparative
strength of the L1 and L2 regularization, with indicating how
much sparsity at the SNP level is desired compared to the sparsity
at the group level. From a Bayesian perspective, one can think of
it as adding a regularizing prior to β of the form:

log p(β) ∝ (1− α)
∑

G∈G

‖βG‖2 + α‖βG‖1 (12)

2.1.4. Phenotype Prediction
With estimated β and δ, phenotype prediction follows from
a straight-forward MLE using Equation (1). Suppose there are
other samples with genotype X′ and unknown phenotype y′, then

LL(y′) ∝

([

y′

y

]

−

[

X′

X

]

β̂

)T

(K + δ̂I)−1
([

y′

y

]

−

[

X′

X

]

β̂

)

(13)

Here K =

[

KX′X′ KX′X

KT
X′X

KXX

]

So, by linear algebra, the MLE

estimate for y′ is

ŷ′ = X′β̂ + KX′X(KXX + δ̂I)−1(y− Xβ̂) (14)

We can summarize the SGL-LMM significant SNPs selection in
the following algorithm:

2.1.5. Complexity Analysis
Let n be the number of samples and s be the number of SNPs.
When training the null model, the complexity is O(n3) which
is from the computation of eigenvalues and eigenvectors. This

Algorithm 1: Parameter estimate for LMM with SGL
regularization

Data: Genotype X, Phenotype y, α, λ

Result: β̂reg

1 Calculate K by selected genetic markers, orthogonal
decompose it into U and S;

2 Estimate δ using Equation (6);
3 Use the δ and S from above to evaluate Sδ ;

4 Calculate β̂reg using Equation (11).

is reasonable when n is about 10k but for higher n one can
improve on the time complexity by only taking into account
the dominant eigenevalues. The proximal gradient step has a
complexity of about O(ns), and since n is usually much less than
s, one can see it as more or less O(s). The prediction step has a
complexity ofO(nn′s), where n′ is the size of the testing set. From
the complexity analysis, we can see that SGL-LMM is scalable for
the genome-wide association analysis. But when analysing with
a huge genome such as the human genome, we recommend to
analysis each chromosome individually or doing a 2nd step based
on suggested loci from GWAS.

2.2. Model Selection
When solving the Equation (11), we employ SGL R package.
Instead of doing a two dimensional grid search of λ and α to
determine the optimal parameters, the package fix the mixing
parameter α and compute solutions for a path with many λ

values. The path begins with lambda sufficiently large to set
β̂ = 0 and let lambda decrease until the result is close to
unregularized. Taking advantage of this mechanism, we carry out
feature selection using LMM-SGL through the following steps:

(1) Finding the λ that optimizes phenotype
prediction accuracy

In order to find the best λ for phenotype prediction, we first
fitted the sparse group lasso model with the whole dataset to
find a λ path. We then used 5-fold cross validation to find the
appropriate λ, whichmaximize the average explained variance on
the test dataset.

(2) Stability selection
To evaluate the significance of individual SNPs, we carry

out stability selection (Meinshausen and Bühlmann, 2010). To
obtain a more accurate ranking of SNPs, after the optimal
λ was selected in the step above, we chose another 9
λs from the larger λs in the λ path evenly spaced. This
group of λs were used in each stability selection process to
rank the features by the order of inclusion into the model.
We drew randomly no more than 50% of the samples as
proposed in the original artical 100 times. We selected all
SNPs that were found in ≥ 50% of all results. Significance
estimate can be deduced from the selection frequency of
individual SNPs.

We summarize the process as the algorithm below and the
overall pipeline of SGL-LMMmethod as Figure 2:
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FIGURE 2 | Flow chart of the SGL-LMM method. The dotted line shows the data flow, and the solid line shows the flow of control.

Algorithm 2: Feature selection using SGL-LMM

Data: Genotype, Phenotype, groupstructure, α, nlam_times
Result: List of features and their importance measured by

frequencies
1 For a decreasing sequence of nlam_times different λs, use
5-fold validation to measure the performance of the result
of Algorithm 1, pick the optimal λ;

2 Pick another 9 λs larger than the optimal, evenly spaced in
the λ-path used above, label them λi, i = 1, 2, . . . 10;

3 Sample the data set 100 times, use all 10 λi, estimate β using
Algorithm 1. Output the features with non-zero coefficients
in more than half of the estimates β̂ and their frequencies;

2.3. Simulation Study
To evaluate the accuracy of SGL-LMM and pervious methods
for association mapping, we considered a semi-empirical
example based on the genotypic and phenotypic data for
up to 1307 world-wide accessions of Arabidopsis thaliana
from Atwell et al. (2010). The data can be downloaded
from https://github.com/Gregor-Mendel-Institute/atpolydb.
Based on the quality control provided by GWAS, we
excluded a SNP if its Minor Allele Frequency (MAF) was
< 0.05, if its missing rate was > 0.05 of the population,
or its allele frequencies were not in Hardy-Weinberg
equilibrium (P < 0.0001). After filtering, there were 200155
SNPs left.

To simulate the effect of population structure, we used the
real phenotypic leaf number at flowering time (LN,16◦C,16 h
daylight) which is available for 177 plants of the 1307 plants
of A.thaliana. Univariate analyses showed that the phenotype
had an excess of associations when population structure was
not taken into account (Atwell et al., 2010). After correction
for population effect, the p-values are approximately uniformly
distributed, Which means this phenotype is totally subjected
to population structure. Hence, we use this phenotype to
simulate the confounding effect. First, to determine the fraction
δ of genetic and residual variance, we fit a random effects
model to LN, which we subsequently used to predict the
population structure for the remaining 1,130 plants. We run
the random effect model multiple times, and choose the final
dataset which the difference of genetic variance parameter
between real and synthetic data are less than 0.0001. In addition
to this empirical background, we added simulated association
with different effect sizes and a range of complexities of
genetic models.

We then simulated the phenotype as follows:

y = σsigysig + (1− σsig)[σpopypop + (1− σpop)ϕ] (15)

where ysig = Xkβ , Xk is the genotype data for the k causal
SNPs. By introducing the group structure, we consider a case with
Ng = 200 genes(groups) on the chromsome1 which covered 2000
SNPs, we set m groups to be active. We vary the sparsity level of
the active groups to get the total active SNPs to be k. β ∼ N (0, I)
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and ϕ ∼ N (0, I).During the simulation, we maintained the
original LD structure in each gene.

The initial setting used for simulation were 3 active groups
each containing 5 effective SNP (k = 15 andm = 3). To investigate
the influence of the confounding effect strength and the overall
noise, we considered varied σpop ∈ {0.5, 0.7, 0.9} and σsig ∈

{0.1, 0.2, 0.3, 0.4, 0.5}. For each combination of σpop and σsig ,
we generate 10 datasets, resulting in 120 datasets in total for
the 12 combinations.

2.4. Application With Arabidopsis thaliana

Data
To assess the capacity of SGL-LMM to deal with real
association mapping of quantitative phenotypes, we investigated
the susceptibility of a set of SNPs that belong to genes of several
flowering phenotypes in A. thaliana. We used the same dataset as
in the simulation study. From the 107 phenotypes, we chose 10
flowering time phenotypes (Table S1).

To verify our method, we constructed our dataset in the
following ways:

1. We obtained gene information from the A. thaliana
annotation file. For each gene, 10kb of buffer region was added
both upstream and downstream of the defined gene location.
All SNPs between the regions were considered.

2. From chromosome 1 to chromosome 5, we chose the top 1,000
largest genes to form a genotype data file. There were a total
49,962 SNPs in the 1,000 genes.

3. According to the most promising association listed in Atwell’s
paper, we chose 19 genes that were related strongly to
flowering time and added them to the genotype. The 19 genes
consisted of 367 SNPs, so that the final genotype file had
50,329 SNPs (Table S2).

4. For each phenotype, a corresponding kinship matrix
was generated in the same way as described in the
simulation study.

3. RESULTS

3.1. Existing Methods
To compare our SGL-LMM method with existing techniques,
we considered standard regularization methods that included
Lasso and SGL, which model all SNPs simultaneously without
correcting for population structure. Also, we combined
LMM with different regularization strategies (e.g., Lasso-
LMM was listed as a comparison). All the methods that
were related to regularization were fit in identical ways
(see section 2.2).

3.2. Performance Measurements
In this paper, all the models output a ranking list of SNPs
with their frequencies of being chosen; true significant
markers were rare and accounted for only 15 out of
1,993 in our simulation datasets. Hence, we treated this
as a binary classification problem with an imbalanced
dataset where we assigned association markers as label
1 and background markers as label 0. The frequency

of each marker was treated as the predicted probability
for label 1.

The ROC (Receive operating characteristic) curve and the
PR (Precision-Recall) curve are commonly used to evaluate
performance of classification models. The ROC curve is created
by plotting the Sensitivity against the Specificity while varying the
threshold settings:

sensitivity(TruePositiveRate,TPR) =
TP

TP + FN

specificity(FalsePositiveRate, FPR) =
TN

TN + FP

The PR curve is created by plotting the Precision against the
Recall at various threshold settings:

precision =
TP

TP + FP

recall =
TP

TP + FN

where TP=TruePositve, TN=TrueNegative, FP=FalsePositive,
and FN=FalseNegative.

In our imbalanced setting, the ROC curve was not a good
visual illustration, because the False Positive Rate did not
drop drastically when the True Negative was huge. Whereas,
the PR curve was highly sensitive to False Positive and was
not impacted by a large True Negative denominator. Hence,
we chose the PR curve to evaluate the performance for all
the methods, and we used the average AUC (Area Under
Curve) of the PR curve to explore the impact of various
simulation settings.

3.3. Results of the Simulation Study
3.3.1. SGL-LMM Ranks Causal SNPs Higher Than

Alternative Methods
We assessed the performance in recovering causal SNPs with
a true simulated association. PR curves were constructed while
varying σpop in {0.5, 0.7, 0.9} with σsig set at 0.2 (Figure 3).
Notice that a larger AUC score indicated better performance.
For this experiment, we chose effective SNPs from three of the
200 groups, while taking sparsity into account, and we set the
ratio α of L1 and L2 penalty in SGL-LMM to be 0.95. The
two methods that incorporated LMM for population correction
performed better than those without, and SGL-LMM was the
best model (Figure 3). For most sets of parameters, SGL-LMM
outperformed Lasso-LMM in AUC by about 10%.

Next, we explored the impact of various simulated setting.
As mentioned in section 3.2, the area under the Precision-
Recall curve is a summary performance measurement to assess
different methods. The AUC under the PR curve is shown as
a function of an increasing ratio between true genetic marker
signals compared with confounding and noise (Figure 4). The
performance of all methods improved when σsig became larger,
and the AUC = 1 at σsig = 0.5 for all methods. Among
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FIGURE 3 | The Precision Recall curve by varying the σpop ∈ {0.5, 0.7, 0.9} and set σsig = 0.2. Each parameter combination had five datasets. The legend in each

subplot shows the area under the curve (AUC) for each method. L represents Lasso only, LL means Lasso-LMM, S is SGL only, and SL means SGL-LMM. (A) Shows

the PR curve under σpop = 0.5, σsig = 0.2, (B) for σpop = 0.7,σsig = 0.2, and (C) for σpop = 0.9,σsig = 0.2.

them, SGL-LMM was the best. We also notice that when σsig =

0.1, only SGL was more accurate than Lasso-LMM in the
majority of datasets. SGL and Lasso-LMM performed similarly
(Figure 3). One possible explanation is that when the variation
explained by causal SNPs was relatively small, noise dominated
the results. Under this scenario, eliminating false positives caused
by population structure did not improve the performance of the
models significantly. However, imposing group structure seems
to be useful in generating accurate results.

The AUC under the PR curve is shown as a function of an
increasing ratio of population structure and independent random
noise with a specific σsig and, as expected, strong confounding
was harmful to performance, because the AUC of all methods

decreased when the confounding ratio increased. Again, SGL-
LMM was superior to its counterparts. However, when σsig =

0.3, the performance of methods with the population correction
exhibited an upper trend when σpop varied from 0.5 to 0.7
(Figure 5C). The performance of δsig to be 0.1,0.2 and 0.4 can
be found in Figures 5A,B,D. This effect indicated that with a
medium signal to noise ratio, it was advantageous to include
a genetic covariance matrix K that accounted for confounding
that was caused by population structure. SGL-LMM performed
better than alternative methods for the entire range of considered
settings. The benefits of population correction and inclusion of
group structure in SGL-LMM were most pronounced in the
scenario with strong confounding.
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FIGURE 4 | The boxplot of a sample of five points for each method with a specific when varying the σpop. Each method has a different color frame, and each that is

filled with a different color is shown in the legend. (A) for σpop = 0.5, (B) for σpop = 0.7, and (C) for σpop = 0.9.

3.4. Application With Arabidopsis thaliana

Data
Having shown the accuracy of SGL-LMM in recovering the
association SNPs in the simulation study, we can demonstrate
that the SGL-LMM models association mapping in the A.
thaliana dataset better than other models. For this experiment
based on real data, we compared the performance of SGL-
LMM and Lasso-LMM in predicting phenotype and in selecting
predictive SNPs. For the ratio α between L1 and L2 penalty,
we considered eight possible values {0.95, 0.85, 075, 0.65,
0.55, 0.45, 0.35, 0.25}; we picked the one that resulted in the
largest correlation coefficient between the predicted and the
real phenotype for subsequent stability selection. Because it is
a verification experiment, we did not cover all genes in the
experimental design. It may be the case that few, or even none,

of the related genes in the selected phenotypes were covered in
our genotype file. As a consequence, when setting the threshold
for stability selection to be 50%, few SNPs are chosen by Lasso-
LMM, and usually no more than 20 SNPs are chosen by SGL-
LMM. Hence, we chose to rank the SNPs by their frequency
of being chosen in both approaches and to investigate the first
100 SNPs. We summarized the genes to which these 100 SNPs
belonged and the number of these genes in the candidate gene
list (Table 1).

SGL-LMM had the following two advantages (Table 1):

3.4.1. SGL-LMM Had Higher Prediction Accuracy
For most of the 10 phenotypes, correlation coefficients
between the predicted and the true phenotypes were higher
using SGL-LMM than those obtained with Lasso-LMM by
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FIGURE 5 | The boxplot of a sample of five points for each method with a specific σsig when varying the σpop. Each method with a different color frame and each σsig

filled with a different color are shown in the legend. (A) for σsig = 0.1, (B) for σsig = 0.2, (C) for σsig = 0.3, and (D) σsig = 0.4.

> 10%; for FT10, the predictions by SGL-LMM had a
correlation coefficient 100% higher than that obtained by Lasso-
LMM. Therefore, incorporating prior knowledge of genetic
structure significantly improved the accuracy of models of
quantitative phenotypes.

3.4.2. SGL-LMM Selected Fewer Genes, and It

Tended to Find More Genes That Were Known to be

Functional
Compared with Lasso-LMM, associations that were located
by SGL-LMM were more enriched to known candidate genes
(Table 1). It linked more candidate genes in five phenotypes,
and it linked the same number of candidate genes in the
phenotypes SD and SDV. However, SGL-LMM linked many
fewer genes compared with Lasso-LMM, which was consistent
with our assumption that phenotypes should be related to a

few SNPs in a few genes. Hence, adding group information
into SGL-LMM made the results more interpretable and
more meaningful biologically. The remaining three phenotypes
that were related to leaf numbers seemed to be largely
unrelated to the 19 candidate genes and to the randomly
selected background genes and, therefore, both methods
performed badly.

4. DISCUSSION

Quantitative traits are important in medicine, agriculture,
and evolution, but the association mapping studies of these
traits are insufficient. In this paper, we have proposed a
sparse group lasso, multi-marker mixed model (SGL-LMM)
to identify genetic associations in quantitative traits with
the presence of confounding influences, such as population
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TABLE 1 | Summary of associations found in SGL-LMM and Lasso-LMM in real data application.

Phenotype Method (lambda) Correlation Number of genes covered by top 100 SNPs Number of genes in the 19 selected genes

FT10 Lasso+LMM (1) 0.100938 90 4

SGL+LMM (0.35) 0.231566 14 10

SGL+LMM (0.85) 0.233074 36 12

FT16 Lasso+LMM (1) 0.184048 78 5

SGL+LMM (0.95) 0.225247 61 8

FT22 Lasso+LMM (1) 0.228702 87 6

SGL+LMM (0.85) 0.233883 31 10

LD Lasso+LMM (1) 0.186646 85 7

SGL+LMM (0.95) 0.278401 63 9

LDV Lasso+LMM (1) 0.118177 80 6

SGL+LMM (0.95) 0.168179 61 7

SD Lasso+LMM (1) 0.267138 82 10

SGL+LMM (0.95) 0.294031 53 10

SDV Lasso+LMM (1) 0.050816 94 4

SGL+LMM (0.25) 0.063342 14 4

LN10 Lasso+LMM (1) 0.053226 90 1

SGL+LMM (0.25) 0.062286 12 0

LN16 Lasso+LMM (1) 0.040451 92 0

SGL+LMM (0.85) 0.061766 45 0

LN22 Lasso+LMM (1) 0.062493 81 1

SGL+LMM (0.45) 0.066171 13 1

We report the correlation between the predicted phenotype and the real phenotype in the column titled “correlation.”. A bold entry indicates that the method located more true positives

than its competitor.

structure. The approach benefits from the attractive properties
of linear mixed models that allow for elegant correction of
confounding effects and those of group-based, multi-marker
models that not only consider the joint effects of sets of
genetic markers rather than one single locus at a time, but
that also incorporate biological group information as prior
knowledge. As a consequence, SGL-LMM was able to better
predict the phenotype and to identify true genetic associations,
even in challenging scenarios with complex underlying genetic
models, weak effects of individual markers, or presence of strong
confounding effects.

SGL-LMM is useful for genome-wide association studies
of complex quantitative phenotypes. In this paper, we have
illustrated such practical use through a semi-empirical simulation
study and retrospective analysis of A. thaliana. First, we found
that imposing gene structure as group structure into the model
improved both the prediction of phenotype from genotype
and the selection of association SNPs, which suggested that
incorporating prior biological knowledge into models led to a
better fit to real genetic architectures. Second, the combination
of a random effect model and a multivariate linear model is
a way to reveal the true association of complex phenotypes,
especially with a medium signal to noise ratio. It is widely
accepted that parts of the unexplained portion of genetic
variance can be due to a large number of loci that have a
joint effect on the phenotype, but which lead to only a weak
signal if considered independently. In addition, SGL-LMM
yields much more biologically meaningful and interpretable

associations, which suits the biological assumption that complex
traits are only related to a few SNPs in a few genes. Our
experiments on the flowering phenotype of A. thaliana showed
that SGL-LMM linked many more candidate genes, but this
was true only in a smaller gene set compared with the
Lasso-LMMmethod.

The SGL-LMM included both GL-LMM (group lasso with
linear mixed model) and Lasso-LMM as special cases by varying
the ratio between the L1 and L2 norms. The sparsity within
groups and group-wise sparsity influenced the performance of
SGL-LMM. Small groups did not benefit from the within-group
sparsity that led the method act as group lasso with LMM. In
practical use, we recommend doing imputation first, which can
ensure a moderate size for each group. The SGL-LMM can be
made even more powerful by adding a strategy to deal with
overlapping groups, which has been shown to be feasible by Jacob
et al. (2009). Assessing the statistical significance of association
results of SGL-LMM remains a challenge for future research.
In summary, SGL-LMM is a useful addition to the current
toolbox of computational models for unraveling associations of
quantitative traits.
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