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Background and Objective. Over the past decade, image quality in low-dose computed tomography has been greatly improved by
various compressive sensing- (CS-) based reconstruction methods. However, these methods have some disadvantages including
high computational cost and slow convergence rate. Many different speed-up techniques for CS-based reconstruction algorithms
have been developed. The purpose of this paper is to propose a fast reconstruction framework that combines a CS-based
reconstruction algorithmwith several speed-up techniques.Methods. First, total differenceminimization (TDM)was implemented
using the soft-threshold filtering (STF). Second, we combined TDM-STF with the ordered subsets transmission (OSTR) algorithm
for accelerating the convergence. To further speed up the convergence of the proposed method, we applied the power factor and
the fast iterative shrinkage thresholding algorithm to OSTR and TDM-STF, respectively. Results. Results obtained from simulation
and phantom studies showed that many speed-up techniques could be combined to greatly improve the convergence speed of
a CS-based reconstruction algorithm. More importantly, the increased computation time (≤10%) was minor as compared to the
acceleration provided by the proposedmethod.Conclusions. In this paper, we have presented a CS-based reconstruction framework
that combines several acceleration techniques. Both simulation and phantom studies provide evidence that the proposed method
has the potential to satisfy the requirement of fast image reconstruction in practical CT.

1. Introduction

Based on the theory of compressive sensing (CS) [1, 2],
near optimal computed tomography (CT) image can be
reconstructed from very few projection data. This new
methodology indicates a potential for substantially reducing
radiation dose. Over the past decade, many CS-based image
reconstruction methods have been shown to improve image
quality in low-dose CT [3–8]. Such methods are often
referred to as total variation (TV). To solve the TV problem
in the field of CT reconstruction, a two-step alternating
minimization framework is commonly used. In the first step,
a general iterative reconstruction algorithm is performed to
reduce data discrepancy. In the second step, the TV of the

reconstructed image is minimized by a gradient descent
method. Despite a great improvement of image quality with
CS-based reconstruction methods, both high computational
load and slow convergence rate limit their practical use.

Recently, the one-stepminimization scheme such as first-
order gradient-projection backtracking-line search method
[9] and gradient-projection Barzilai-Borwein method was
found to converge faster than two-step alternating mini-
mization scheme [9–11]. However, there are various ways
to improve the convergence rate of the two-step alternating
minimization scheme. For example, image reconstruction
based on ordered subsets (OS) of projection data is a common
acceleration technique used in emission tomography [12]
and CT [13–15]. Using OS acceleration [12], data discrepancy
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can be reduced rapidly compared with non-OS methods. In
addition to OS-type simultaneous algebraic reconstruction
technique (SART) [15], other faster methods such as ordered
subsets transmission (OSTR) algorithm [13] and ordered
subsets convex (OSC) algorithm [14] were derived previously.
It was also reported thatOS-type reconstructionmethods can
be further accelerated using a bigger step size or a power
factor [16–18]. Previous studies showed that accelerated OS-
type algorithms using a power factor can converge three or
even four times faster than conventional OS-type algorithms
[16–18].These methods, although originally used in emission
tomography, can be directly applied for the CT recon-
struction. Besides reducing data discrepancy, many different
minimization techniques, including fast iterative shrinkage
thresholding algorithm (FISTA) [19], TV minimization with
dual dictionaries [20], anisotropic TV minimization [21],
total difference (TD) with soft-threshold filtering (STF) [6,
8], weighted TD (WTD) minimization with STF [22], and
TV minimization with half-threshold filtering [23], can be
introduced to improve the convergence of the two-step
alternating minimization scheme.

Although many acceleration techniques have been devel-
oped previously, a combination of acceleration techniques
has not been completely studied. To investigate this, we
present a reconstruction framework that applies some above-
mentioned acceleration techniques to the two-step alter-
nating minimization. Specifically, we implemented the TD
minimization with STF (TDM-STF), which is one type of TV
[6, 8, 24]. In the TDM-STF, the OSTR algorithm was chosen
to accelerate the convergence. To further speed up the conver-
gence of the proposed method, we applied the power factor
[16–18] and the FISTA algorithm [19] to OSTR and TDM-
STF, respectively. This study is different from our recent
work [25] that investigated the feasibility of using the power
factor [16–18] to accelerate the TV-based reconstruction [5].
The purpose of this paper is to study whether combining
these techniques can further accelerate the convergence of the
two-step alternating minimization. We used simulation and
phantom data to evaluate the performance of the proposed
algorithm.

2. Materials and Methods

2.1. CT Image Reconstruction Problem. According to the idea
of CS [1, 2] and the TDMalgorithmproposed byYu andWang
[6], the CT image reconstruction problem is to solve the
constrained convex optimization problem of the following
form:

min
𝜇

𝑓 (𝜇) = 𝐻𝜇 − 𝑏22 + 𝜔TD (𝜇)
s.t. 𝜇 ≥ 0, (1)

where 𝜇 is the image estimate, 𝐻 is the system matrix, 𝑏 is
the measured projection data, 𝜔 is a regularization factor,

and TD(𝜇) denotes the total difference of the image estimate
defined as [6]

TD (𝜇) = ∑
𝑥,𝑦,𝑧

𝑑𝑥,𝑦,𝑧 = ∑
𝑥,𝑦,𝑧

𝜇𝑥,𝑦,𝑧 − 𝜇𝑥+1,𝑦,𝑧
+ 𝜇𝑥,𝑦,𝑧 − 𝜇𝑥,𝑦+1,𝑧 + 𝜇𝑥,𝑦,𝑧 − 𝜇𝑥,𝑦,𝑧+1 . (2)

𝑑𝑥,𝑦,𝑧 in (2) is called a discrete difference transform (DDT)
[6, 8]. Similar to the TV problem [3–5], the TD problem
in (1) can be solved iteratively using a two-step alternating
minimization scheme [6, 8]. The TDM-STF algorithm [6]
was a two-step alternating minimization algorithm. In this
study, we used the TDM-STF algorithm [6] to minimize (1).
Our aim is to improve the convergence rate of the TDM-STF
algorithm [6]. The TDM-STF algorithm and its accelerated
algorithm are summarized in the following three sections,
respectively. Finally, the implementation of the proposed
reconstruction algorithm is summarized in a pseudocode.

2.2. TDM-STF and TDM-STF-FISTA. The STF algorithm
proposed by Daubechies et al. [26] was originally devel-
oped to solve the linear inverse problems regularized by
a sparsity constraint. Yu and Wang [6] adapted the STF
method for CT image reconstruction and developed the
TDM-STF algorithm to minimize (1). In brief, the TDM-STF
method involves three steps. In the first step, the data-fidelity
term (i.e., ‖𝐻𝜇 − 𝑔‖22) was minimized via a typical iterative
reconstruction algorithm. In the second step, a soft-threshold
filtration was performed on the DDT of the current image
estimate (i.e., 𝜇𝑘,𝑙+1𝑗 ). In the third step, the inverse of DDT
was computed to obtain image estimate. However, DDT is not
invertible [6]. Instead, the second and third steps of theTDM-
STF algorithm can be performed based on a pseudoinverse of
DDT [6]:

𝜇𝑘,𝑙+1𝑥,𝑦,𝑧 = 16 [𝑞 (𝜔, 𝜇𝑘,𝑙+1𝑥,𝑦,𝑧, 𝜇𝑘,𝑙+1𝑥+1,𝑦,𝑧) + 𝑞 (𝜔, 𝜇𝑘,𝑙+1𝑥,𝑦,𝑧, 𝜇𝑘,𝑙+1𝑥,𝑦+1,𝑧)+ 𝑞 (𝜔, 𝜇𝑘,𝑙+1𝑥,𝑦,𝑧, 𝜇𝑘,𝑙+1𝑥,𝑦,𝑧+1) + 𝑞 (𝜔, 𝜇𝑘,𝑙+1𝑥,𝑦,𝑧, 𝜇𝑘,𝑙+1𝑥−1,𝑦,𝑧)
+ 𝑞 (𝜔, 𝜇𝑘,𝑙+1𝑥,𝑦,𝑧, 𝜇𝑘,𝑙+1𝑥,𝑦−1,𝑧) + 𝑞 (𝜔, 𝜇𝑘,𝑙+1𝑥,𝑦,𝑧, 𝜇𝑘,𝑙+1𝑥,𝑦,𝑧−1)] ,

(3)

where 𝑥, 𝑦, and 𝑧 denote the three-dimensional location of
the voxel 𝑗 and

𝑞 (𝜔, 𝑎, 𝑏) =
{{{{{{{{{{{{{

𝑎 + 𝑏2 , if |𝑎 − 𝑏| < 𝜔
𝑎 − 𝜔2 , if (𝑎 − 𝑏) ≥ 𝜔
𝑎 + 𝜔2 , if (𝑎 − 𝑏) ≤ −𝜔,

(4)

where 𝜔 is a threshold value. As pointed out by Liu et al. [8],
the TDM-STF method can be further accelerated by using a
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portion of FISTA algorithm [19], which is performed by the
following steps:

𝜇new𝑗 = 𝜇𝑘,𝑙+1𝑥,𝑦,𝑧, (5)

𝑡𝑘 = 0.5 × (1 + √1 + 4𝑡2𝑘−1) , (6)

𝜇𝑘,𝑙+1𝑗 = 𝜇new𝑗 + (𝑡𝑘−1 − 1) × 𝜇new𝑗 − 𝜇old𝑗𝑡𝑘 , (7)

𝜇old𝑗 = 𝜇new𝑗 . (8)

This accelerated technique is also called Nesterov’s momen-
tum algorithms [27, 28]. Note that 𝑡0 = 1 and 𝜇old𝑗 = 0 when𝑘 = 0.
2.3. Acceleration of OSTR Using a Power Factor ℎ. In the first
step of the TDM-STF algorithm, the data-fidelity term was
minimized via a typical iterative reconstruction algorithm. To
speed up the data-fidelity minimization, we used the OSTR
algorithm [13]. The OSTR algorithm is chosen because it
is a fast, efficient, and easily implemented algorithm [13].
Moreover, the OSTR algorithm [13] can be accelerated by
a power factor ℎ [16–18]. The accelerated OSTR (AOSTR)
algorithm can be expressed as follows:

𝜇𝑘,𝑙+1𝑗 = 𝜇𝑘,𝑙𝑗 [[1
+ 𝐿𝜇𝑘,𝑙𝑗 ∑𝑖𝐻𝑖𝑗𝑟𝑖𝑏𝑖 ∑𝑖∈𝑆𝑙𝐻𝑖𝑗 (𝑏𝑖𝑒−∑𝑗𝐻𝑖𝑗𝜇

𝑘,𝑙
𝑗 − 𝑏𝑖)]]

ℎ ,
(9)

where 𝜇𝑘,𝑙𝑗 is the estimated attenuation coefficient at voxel 𝑗
and at the 𝑘th iteration and 𝑙th subiteration, 𝑏𝑖 is themeasured
projection data at detector bin 𝑖, 𝑏𝑖 is the blank scan at detector
bin 𝑖, 𝑟𝑖 = ∑𝑗𝐻𝑖𝑗, and𝐿 is the number of subsets. Note that the
AOSTR algorithmbecomes theOSTR algorithmwhen power
factor ℎ = 1. Using the Taylor series expansion, (9) can be
approximated as follows:

𝜇𝑘,𝑙+1𝑗 = 𝜇𝑘,𝑙𝑗
+ ℎ[[

𝐿∑𝑖𝐻𝑖𝑗𝑟𝑖𝑏𝑖 ∑𝑖∈𝑆𝑙𝐻𝑖𝑗 (𝑏𝑖𝑒−∑𝑗𝐻𝑖𝑗𝜇
𝑘,𝑙
𝑗 − 𝑏𝑖)]] .

(10)

More details can be found in [16–18]. Interestingly, the
AOSTR algorithm is the same as the OSTR algorithm with a
fixed step size. However, in order to preserve the total counts
of the forward projections [16–18], the reconstructed image
updated by (10) is rescaled by the following equation:

𝜇𝑘,𝑙+1𝑗 = 𝜇𝑘,𝑙+1𝑗 ∑𝑖∈𝑆𝑙 log (𝑏𝑖/𝑏𝑖)∑𝑖∈𝑆𝑙 ∑𝑗𝐻𝑖𝑗𝜇𝑘,𝑙+1𝑗 . (11)

Note that the solution for (1) from the OSTR algorithm and
its accelerated version is not exact, but approximate [29].
An initial condition of uniform image (𝜇0,0𝑗 ) with a value of
0.0002 was used for all reconstructions.

2.4. AOSTR-TDM-STF-FISTA. In summary, we applied the
AOSTR reconstruction rather than the conventional itera-
tive reconstruction method in the first step of TDM-STF
with FISTA, and the proposed method was called AOSTR-
TDM-STF-FISTA. In fact, other combinations of OSTR,
AOSTR, and FISTA into the TDM-STF method are pos-
sible. For example, the accelerations of OSTR-TDM-STF
using a power factor on OSTR and FISTA on TDM-STF
are called AOSTR-TDM-STF and OSTR-TDM-STF-FISTA,
respectively. In addition to the proposed AOSTR-TDM-STF-
FISTA, difference combinations of the acceleration methods
are also explored in this study.

2.5. Implementation of AOSTR-TDM-STF-FISTA. Note that
the implementation of AOSTR-TDM-STF-FISTA requires
considerably more computation per iteration as compared
with OSTR. This is due to the computation of the rescal-
ing factor (i.e., (11)) and the TDM step (i.e., (3)) at each
subiteration. To reduce the computation time, the TDM
step was applied after the last subiteration of each iteration,
indicating that STF is performed only once at each iteration
of the AOSTR algorithm. Because of this implementation, the
rescaling step can be combined with the forward projection
of the next subiteration except for the last subiteration [16–
18].Thismeans that the rescaling step is computed only at the
end of each iteration (i.e., the last subiteration). Similarly, the
FISTA algorithm is performed once per iteration rather than
once per subiteration. Suchmodificationsmake the proposed
method an efficient approach for CT reconstruction.Thefinal
practical and efficient implementation of AOSTR-TDM-STF-
FISTA can be summarized in Pseudocode 1.

As reported by Kim et al. [28], OS-type reconstruction
algorithms combined with FISTA become unstable when a
large number of subsets were used. To prevent an unstable
convergence behavior, FISTA used in the proposed algorithm
was run for the first ten iterations only. Moreover, to make
the proposed algorithm more stable and computationally
efficient, the bit-reversal order of subsets [28, 30] was applied
instead of the traditional (sequential) order of subsets.

2.6. Simulation and Phantom Studies. In the simulation
study, a cone-beam CT geometry with a source-to-isocenter
distance of 100 cm and source-to-detector distance of
153.6 cm was modelled. The image object was a Zubal
phantom [31] with 128 × 128 × 128 pixels and a voxel size
of 0.208 cm. Figure 1 illustrates three transaxial slices at
the shoulder level, chest level, and abdomen level. A low-
dose projection data (10k photons per detector bin) with
Poisson noise was generated at 60 view angles equally spaced
between 0∘ and 360∘. The projection data had a dimension of192 × 192 with a detector bin size of 0.213 × 0.213 cm2.
The simulated phantom had attenuation coefficients of
0.604 cm−1, 0.193 cm−1, and 0.216 cm−1 for bone, liver, and



4 BioMed Research International

(1) 𝑘 = 1, 𝐾 = 8, 𝐿 = 30, 𝐾TD = 10;
(2) while 𝑘 ≤ 𝐾 (main iteration)
(3) for 𝑙 = 1, 2, . . . , 𝐿 (subiteration loop)
(4) Update 𝜇𝑘,𝑙𝑗 using AOSTR; // Eq. (10)
(5) if 𝑙 < 𝐿,
(6) Rescale 𝜇𝑘,𝑙+1𝑗 during the forward projection of the next subiteration;
(7) end if
(8) end for
(9) Perform the rescaling step on 𝜇𝑘,𝐿𝑗 to obtain 𝜇𝑘,𝐿𝑗 ; //Eq. (11)
(10) 𝜇𝐿𝑥,𝑦,𝑧 fl 𝜇𝑘,𝐿𝑗 ;
(11) Perform STF on 𝜇𝐿𝑥,𝑦,𝑧 and repeat 𝐾TD times; //Eqs. (3)-(4)
(12) if 𝑘 ≤ 10,
(13) Perform the FISTA algorithm; //Eqs. (5)–(7)
(14) end if
(15) 𝑘 = 𝑘 + 1;
(16) end while

Pseudocode 1

0
0.02
0.04
0.06
0.08
0.1
0.12

(a)
0
0.02
0.04
0.06
0.08
0.1
0.12

(b)
0
0.02
0.04
0.06
0.08
0.1
0.12

(c)

Figure 1: Three transverse slices from Zubal phantom displaying shoulder (a), chest (b), and abdomen (c).

soft tissue, respectively. To quantify the convergence speed
of the reconstructed image, we used the relative root mean
square error (RRMSE) defined as follows:

RRMSE = √∑𝑗 (𝜇𝑘,𝑙+1𝑗 − 𝜇true𝑗 )2∑𝑗 (𝜇true𝑗 )2 , (12)

where 𝜇true𝑗 is the true attenuation value at voxel 𝑗. We
compared the proposedAOSTR-TDM-STF-FISTA algorithm
to other algorithms including OSTR, AOSTR, OSTR-TDM-
STF, OSTR-TDM-STF-FISTA, and AOSTR-TDM-STF.

In addition to simulation study, experimental data
obtained from [32] were used to evaluate the performance
of the proposed algorithm. A Catphan phantom (The Phan-
tom Laboratory, Inc., Salem, NY) was scanned using the
X-ray Volumetric Imager (XVI, Elekta Oncology Systems,
Norcross, GA) with a typical setting of 120 kV, 40mA,
and 40ms/frame. The distances of the X-ray source to the
detector plane and to the center of rotation are 153.6 cm and
100 cm. The detector panel with a size of 40.96 × 40.96 cm2
consists of 1024 × 1024 elements each of which has a size of0.4 × 0.4mm2. Projection data were collected at 669 views
uniformly distributed over 360 degrees. To simulate a low-
dose CT acquisition, 60 projections evenly extracted from

669 projections were used to reconstruct CT image. The
reconstructed image matrix is of 512 × 512 × 512 voxels with
a voxel size of 0.52mm.

3. Results

3.1. Simulation Study. To investigate whether OSTR can be
accelerated by a power factor ℎ, Figure 2 shows RRMSE
values obtained using OSTR and AOSTR (ℎ = 1.5, 2.0,
and 2.9) at different iterations. We used 30 subsets for all
algorithms. As seen in the comparison, AOSTR can reach
lower RRMSE values faster than OSTR. This indicates that
the present AOSTR algorithm can converge faster than the
OSTR algorithm. The result also shows that the power ℎ
of the AOSTR algorithm can be up to 2.9. Furthermore, as
illustrated in Figure 3, the present AOSTR algorithm (ℎ =2.9) provides faster reconstruction than the OSTR algorithm,
regardless of numbers of subsets. However, due to the ill-
posed nature of the reconstruction process, the image noise
increases with the number of iterations. As a result, the
RRMSE values quickly increase as the number of iterations
is increased. In particular, the RRMSE value of the AOSTR
algorithm with appropriate parameters increases earlier than
others because it converges faster than the OSTR algorithm.
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Figure 2: Simulation data: RRMSE values versus iteration numbers
(30 subsets) for the OSTR and AOSTR (ℎ = 1.5, 2.0, and 2.9)
algorithms.
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Figure 3: Simulation data: RRMSE values versus iteration numbers
for OSTR and AOSTR with 10, 15, and 30 subsets. For AOSTR, ℎ =2.9 for all subsets.

Figure 4 displays RRMSE values obtained from six algo-
rithms: OSTR, AOSTR (ℎ = 2.9), OSTR-TDM-STF (𝜔 =0.0003), OSTR-TDM-STF-FISTA (𝜔 = 0.0003), AOSTR-
TDM-STF (ℎ = 2.9 and 𝜔 = 0.001), and AOSTR-TDM-STF-
FISTA (ℎ = 2.9 and 𝜔 = 0.001) at different iterations. We
used 30 subsets for all algorithms. From the RRMSE plots,
the AOSTR-TDM-STF-FISTA algorithm is obviously faster
than all other algorithms. Also, bothOSTR-TDM-STF-FISTA
and AOSTR-TDM-STF outperform OSTR-TDM-STF. This
indicates that the acceleration techniques can be used either
before (i.e., AOSTR) or after (i.e., FISTA) the TDM-STF
algorithm.

Figure 5 shows images of shoulder reconstructed using
OSTR, AOSTR (ℎ = 2.9), OSTR-TDM-STF (𝜔 = 0.0003),
OSTR-TDM-STF-FISTA (𝜔 = 0.0003), AOSTR-TDM-STF
(ℎ = 2.9 and 𝜔 = 0.001), and AOSTR-TDM-STF-FISTA (ℎ =2.9 and 𝜔 = 0.001) algorithms. Each reconstruction was run
with 8 iterations and 30 subsets. As compared with other
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Figure 4: Simulation data: RRMSE values versus iteration numbers
(30 subsets) for the OSTR, AOSTR (ℎ = 2.9), OSTR-TDM-STF (𝜔 =0.0003), OSTR-TDM-STF-FISTA (𝜔 = 0.0003), AOSTR-TDM-STF
(ℎ = 2.9 and 𝜔 = 0.001), and AOSTR-TDM-STF-FISTA (ℎ = 2.9
and 𝜔 = 0.001) algorithms.

Table 1: Computational time for each algorithm.

Algorithms Time (sec) per iteration
Subsets = 10 Subsets = 30

OSTR 9.87 10.19
AOSTR 10.56 10.52
OSTR-TDM-STF 10.06 10.38
OSTR-TDM-STF-FISTA 10.13 10.46
AOSTR-TDM-STF 10.76 10.71
AOSTR-TDM-STF-FISTA 10.88 10.80

reconstructions, the images from the proposed AOSTR-
TDM-STF-FISTA algorithm are visually much closer to the
true image, reflecting faster convergence. In addition, the
AOSTR-TDM-STF algorithm is slightly slower than the
AOSTR-TDM-STF-FISTA algorithm. Reconstruction images
of chest and abdomen were also shown in Figures 6 and 7.

In Table 1, we compared the computational time required
by each algorithm in C program on a Linux workstation with
64GBmemory and an eight-core Intel i7-5960 3.0 GHz CPU.
Note that the computation time per iteration of AOSTR-
TDM-STF-FISTA is slightly higher (i.e., 6%∼10%) than that of
OSTR, but it is minor as compared to the higher acceleration
provided by the proposed method.

3.2. Phantom Study. To investigate whether good image
quality can be obtained after few iterations, we ran 8 iterations
and 30 subsets for all algorithms. Figures 8 and 9 illustrate
the contrast slice and the resolution slice (zoomed-in view),
respectively, reconstructed using the OSTR, OSTR-TDM-
STF (𝜔 = 3 × 10−5), OSTR-TDM-STF-FISTA (𝜔 = 3 × 10−5),
AOSTR (ℎ = 2.9), AOSTR-TDM-STF (ℎ = 2.9 and 𝜔 =0.0001), and AOSTR-TDM-STF-FISTA (ℎ = 2.9 and 𝜔 =0.0001) algorithms. It can be seen in Figure 8 that TDM-STF-
based reconstruction algorithms can efficiently reduce noise.
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Figure 5: Simulation data: images reconstructed using the OSTR, OSTR-TDM-STF (𝜔 = 0.0003), OSTR-TDM-STF-FISTA (𝜔 = 0.0003),
AOSTR (ℎ = 2.9), AOSTR-TDM-STF (ℎ = 2.9 and 𝜔 = 0.001), and AOSTR-TDM-STF-FISTA (ℎ = 2.9 and 𝜔 = 0.001) algorithms. For each
reconstructed image, we ran 8 iterations with 30 subsets.
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Figure 6: Same as Figure 5 but reconstructed from a different slice.

As shown in Figure 9, the images from accelerated algorithms
are sharper compared with other images from unaccelerated
algorithms (i.e., OSTR and OSTR-TDM-STF). Furthermore,
Figure 10 shows that the present AOSTR-TDM-STF-FISTA
algorithm can provide better resolution than the other
two accelerated algorithms: OSTR-TDM-STF-FISTA and
AOSTR-TDM-STF.

4. Summary and Discussion

Since the introduction of CT in 1970s, a wide variety of
techniques have been developed to reduce radiation dose,
scan time, and image reconstruction time while provid-
ing sufficient image quality for diagnosis. However, images
reconstructed from low-dose CT data are degraded by noise

and artifacts. To address this issue, many iterative recon-
struction algorithms were proposed [13–15]. Over the past
few years, TV has rapidly become a popular and powerful
tool for low-dose CT image reconstruction [3–8]. In general,
TV-based reconstruction problems are solved by a two-step
alternatingminimization scheme [3–8], including an iterative
reconstruction algorithm for minimizing data discrepancy
and a gradient-based search method for solving the TV
regularization problem.Despite a substantial improvement in
image quality, TV-based reconstruction methods suffer from
high computational cost and slow convergence rate.

Motivated by this issue, we presented a CS-based recon-
struction framework that combines several techniques to
speed up the convergence rate of the two-step alternat-
ing minimization algorithm. First, we implemented the
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Figure 7: Same as Figure 5 but reconstructed from a different slice.
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Figure 8: Catphan phantom data (contrast slice): images reconstructed using the OSTR, OSTR-TDM-STF (𝜔 = 0.00003), OSTR-TDM-
STF-FISTA (𝜔 = 0.00003), AOSTR (ℎ = 2.9), AOSTR-TDM-STF (ℎ = 2.9 and 𝜔 = 0.0001), and AOSTR-TDM-STF-FISTA (ℎ = 2.9 and𝜔 = 0.0001) algorithms. For each reconstructed image, we ran 8 iterations with 30 subsets.

TDM-STF algorithm which was shown to be superior to
conventional TV-based algorithms [6, 8]. Second, we com-
bined TDM-STF with OSTR [13] instead of OS-SART [15].
Third, we applied the power acceleration scheme [16–18]
and the FISTA algorithm [19] to OSTR and TDM-STF,

respectively. To investigate whether combining the above-
mentioned techniques can provide powerful acceleration
for the two-step alternating minimization, we compared
the performance of the proposed AOSTR-TDM-STF-FISTA
algorithm and other algorithms including OSTR, AOSTR,
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Figure 9: Same as Figure 4 but shows a zoomed-in resolution slice.
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Figure 10: Profiles crossing the four line pairs for OSTR, OSTR-
TDM-STF-FISTA (𝜔 = 0.00003), AOSTR-TDM-STF (ℎ = 2.9 and𝜔 = 0.0001), and AOSTR-TDM-STF-FISTA (ℎ = 2.9 and 𝜔 =0.0001) reconstructions shown in Figure 9.

OSTR-TDM-STF, OSTR-TDM-STF-FISTA, and AOSTR-
TDM-STF.

In the simulation study, we showed the feasibility of
combining the above-described acceleration techniques to
improve the convergence rate of the two-step alternating
minimization algorithm. The proposed AOSTR-TDM-STF-
FISTA algorithm requires less iterations for convergence than
all other algorithms. As also shown in Figures 5–7, the
proposed AOSTR-TDM-STF-FISTA algorithm can provide
better image quality compared with all other algorithms. We
also evaluated the performance of the proposedmethodusing
experimental phantom data [32], which support the results

observed in the simulation study. More importantly, the
above-described acceleration techniques can greatly improve
reconstruction speed with minor additional computational
time (6%∼10%). However, as the size of reconstructed images
and projection data increases, the additional computational
time can increase accordingly. Fortunately, image reconstruc-
tion using graphics processing unit can drastically reduce the
reconstruction time [33–35].

Although the convergence proof for the proposed
AOSTR-TDM-STF-FISTA algorithm is not available, it could
rapidly achieve stable and lower RRMSE as compared with
other presented algorithms. This suggests that the proposed
AOSTR-TDM-STF-FISTA algorithm has the potential to sat-
isfy the requirement of fast image reconstruction in practical
CT applications.We also observed that the proposedAOSTR-
TDM-STF-FISTA algorithm did not show any unstable con-
vergence behavior. This may be due to the fact that the
FISTA algorithm is terminated after the first ten iterations.
In fact, we found out that it is not necessary to perform the
FISTA algorithm per iteration. This is simply because the
proposed AOSTR-TDM-STF-FISTA algorithm was observed
to approach a stable solution after several iterations. Alterna-
tively, the FISTA algorithm that combines with a diminishing
step size [28] can be performed in each iteration while
maintaining a stable convergence behavior. However, the
adaptive step-size method requires additional parameters
which may make image reconstruction more complicated.

In this study, we applied the power acceleration scheme to
OS-type reconstruction algorithms. The highest acceleration
can be achieved using the power factor of ℎ = 2.9. This
value is close to the upper limit (=3) found in previous results
for emission tomography [16, 17] and might imply that the
upper limit of the power ℎ was not sensitive to imaging
systems and other factors including the number of subsets,
image objects, and noise levels [16–18]. In addition to the
power factor ℎ, the threshold value 𝜔 determines the recon-
struction result and the convergence rate of the proposed
algorithm. For simulated data, we adjusted the threshold
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value (𝜔) to generate the best performance in terms of
RRMSE. For phantom data, the value of 𝜔 was adjusted in
terms of lower image noise while maintaining acceptable
spatial resolution similar to or better than that without TV.
Unlike the previous studies [6, 8] that used the projected
gradient method [36] to automatically determine 𝜔, our
study used fixed values of 𝜔. This is because the automatic
determination of the threshold would increase computation
cost [8]. More importantly, dynamic adaptation of 𝜔 may
not guarantee an optimal image quality [23]. An efficient
optimization of the step size is necessary. This is beyond the
goal of this study but will be studied in our future work.

In addition to the acceleration techniques used in this
study, many techniques for improving the convergence rate
of the two-step alternating minimization algorithm are avail-
able. For example, one can use improved TV-based recon-
struction algorithms such as TV minimization with dual
dictionaries [20], anisotropic TV minimization [21], WTD
minimization [22], and TVminimizationwith half-threshold
filtering [23]. However, combining these algorithms does
not guarantee optimal results. For example, we had applied
WTD [22] to our AOSTR-TDM-STF-FISTA algorithm, and
there was a slight improvement in terms of image quality
(data not shown).However, weighting values calculated using
the neighboring voxels would increase computation time
considerably, especially in three-dimensional cases. Despite
the previous study [22] that showed the advantage of WTD
over TD, combining our AOSTR-TDM-STF-FISTA algo-
rithm with WTD may not be beneficial. More importantly,
acceleration techniques that add extra parameters to the
existing algorithm may lead to unstable and inaccurate
results. Further study is possible on exploring this.

5. Conclusion

We have presented a CS-based reconstruction framework
that combines several acceleration techniques. Both simula-
tion and phantom studies show that, by using the proposed
method, the convergence rate of the two-step alternating
minimization algorithm can be improved substantially.
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