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Abstract

Cancer is characterized as a complex disease caused by coordinated alterations of multiple signaling pathways. The
Ras/RAF/MEK/ERK (MAPK) signaling is one of the best-defined pathways in cancer biology, and its hyperactivation is
responsible for over 40% human cancer cases. To drive carcinogenesis, this signaling promotes cellular overgrowth
by turning on proliferative genes, and simultaneously enables cells to overcome metabolic stress by inhibiting
AMPK signaling, a key singular node of cellular metabolism. Recent studies have shown that AMPK signaling can
also reversibly regulate hyperactive MAPK signaling in cancer cells by phosphorylating its key components, RAF/KSR
family kinases, which affects not only carcinogenesis but also the outcomes of targeted cancer therapies against
the MAPK signaling. In this review, we will summarize the current proceedings of how MAPK-AMPK signalings
interplay with each other in cancer biology, as well as its implications in clinic cancer treatment with MAPK
inhibition and AMPK modulators, and discuss the exploitation of combinatory therapies targeting both MAPK and
AMPK as a novel therapeutic intervention.
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Introduction
The Ras/RAF/MEK/ERK (MAPK) signaling is a funda-
mental pathway in cell biology, and its alteration causes
human cancers or developmental disorders. Given its cru-
cial roles in physiology and pathology, this pathway has
been extensively studied for over two decades. Unfortu-
nately, the regulation of MAPK signaling remains ambigu-
ous till now by virtue of its intrinsic complexity and
diverse crosstalks with other signalings. Here, we focus on
the complicated interplays between the MAPK and the
AMPK signalings in cellular carcinogenesis and their im-
plications in current targeted cancer therapies. We hope
this review would provide a conceptual framework for

developing more effective therapeutic approaches against
hyperactive MAPK signaling-driven cancers.

The Ras/RAF/MEK/ERK (MAPK) signaling and its
aberrant activation in cancers
The Ras/RAF/MEK/ERK (MAPK) signaling
The Ras/RAF/MEK/ERK (MAPK, mitogen-activated pro-
tein kinase) signaling is a central pathway that regulates
cellular proliferation, differentiation, and survival. This
signaling pathway was discovered in the 1970s–1980s,
when Ras small GTPases were identified as first onco-
genes from sarcoma viruses [1–6]. Later, studies on viral
oncogenes had also led to the discovery of a N-terminal
truncated version of RAF Ser/Thr kinase (RAF1 or CRAF)
[1–5]. In contrast, the other two components of this sig-
naling pathway, MEK (mitogen-activated protein kinase
kinase) and ERK (mitogen-activated protein kinase) were
identified as cytoplasmic protein kinases activated by mi-
togens in the 1990s [7–11]. Following these discoveries,
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RAF was identified as the upstream kinase of MEK in
1992 and the first direct effector of Ras in 1993 [12, 13],
resulting in the delineation of the whole MAPK signaling
pathway, which is considered as a milestone in our under-
standing of how cell senses external stimuli.
The first component of MAPK signaling, Ras small

GTPases, have three gene isoforms: H-ras, K-ras, and N-
ras, that encode four proteins with splicing isoforms of
K-ras giving rise to K-ras4A and K-ras4B. Although all
Ras proteins possess highly homologous sequences, they
have quite different activities, tissue expression patterns,
and effector preferences, which lead to their differential
physiological and pathological functions [14–17].
The downstream of Ras small GTPases is the RAF/

MEK/ERK kinase cascade [18]. The first kinases in this
cascade, RAF/KSR (kinase suppressor of Ras) family ki-
nases, include three RAF isoforms, i.e., CRAF, BRAF, and
ARAF, and two close pseudokinases, i.e., KSR1 and KSR2.
All RAF isoforms have highly homologous sequences and
similar structures with three conserved regions: conserved
region 1 (CR1) contains RAS-binding domain (RBD) and
a Cys-rich domain [19, 20]; conserved region 2 (CR2) is
characterized by a Ser/Thr-rich sequence; conserved re-
gion 3 (CR3) comprises of a putative kinase domain with a
N-terminal acidic motif (NTA) [21–23] and a C-terminal
regulatory tail [24–26]. Nevertheless, RAF isoforms have
variable kinase activities with an order as BRAF>CRA-
F>ARAF likely by virtue of their distinct NTA motifs and
APE motifs that contribute to the dimerization-driven
transactivation of RAFs [27–30]. In contrast to RAF iso-
forms, KSR proteins replace the RBD at the N-terminus
with a coiled-coil fused sterile α-motif and Pro-rich
stretch that are responsible for recruiting proteins to the
plasma membrane upon stimulation, and lack the catalytic
lysine in VAIK motif of kinase domain which impairs their
catalytic activity [31, 32]. Given their associations with
MEK and ERK as well as low kinase activity, KSR proteins
have been thought as scaffold proteins in a long term.
However, recent studies have indicated that KSR proteins
can also function as allosteric activators to stimulate the
catalytic activity of RAF proteins through dimerization
[27, 32–37]. The side-to-side dimerization of RAF/KSR
family kinases is critical not only for their activation but
also for their catalytic activity towards downstream ki-
nases [25, 38–42]. MEKs (MEK1 and MEK2) are the sec-
ond kinases of the RAF/MEK/ERK kinase cascade, which
have both redundant and non-redundant functions [43,
44]. These two dual-specific kinases comprise a short
regulatory N-terminus and a canonic kinase domain. The
N-terminal regulatory region of MEK1/2 contains a dock-
ing site for substrate ERKs, a nuclear export sequence that
controls the cytoplasmic-nuclear shuttling of proteins, and
a negative regulatory sequence that forms a helix and
locks kinase in an inactive conformation [11, 43, 44].

Further, through its kinase domain, MEK1/2 forms a face-
to-face heterodimer with RAF/KSR, or a homodimer/het-
erodimer with itself, which is indispensable for its activa-
tion stimulated by RAF and for its activity towards ERKs
[28, 45, 46]. Like MEKs, the terminal kinases of MAPK
signaling, ERKs, also include two highly homologous
members, ERK1 and ERK2, which have a central kinase
domain flanked by short N- and C-terminal tails. These
two isoforms also have redundant functions albeit differ-
ent expression patterns [7–10]. However, unlike RAFs and
MEKs that have very limited substrates, ERKs recognize
and phosphorylate numerous substrates that include tran-
scription factors, protein kinases and phosphatases, and
other functional proteins [47–51].
It should be noted that active Ras also turns on other

signaling pathways such as PI3K/AKT/mTORC, which
regulate different cellular functions [52]. In this review,
we focus only on the MAPK signaling given its domin-
ant role in cancer biology.

Hyperactive Ras/RAF/MEK/ERK (MAPK) signaling in
cancers
The MAPK signaling plays a crucial role in cell biology
and is tightly regulated in normal cells. Upon engage-
ment of receptor tyrosine kinases (RTKs) or other stim-
ulations, Ras small GTPases are activated by GTP/GDP
exchange factors (GEFs), which in turn recruit RAF/
MEK complexes to the plasma membrane and trigger
the RAF/MEK/ERK kinase cascade through facilitating
RAF/RAF (or KSR), RAF/MEK, and MEK/MEK interac-
tions as well as subsequent phosphorylations [53]. Active
ERKs are further translocated into the nuclei or stay in
the cytoplasm, where they phosphorylate a number of
substrates that regulate cell functions [49–51, 54, 55].
On the other hand, active MAPK signaling also turns on
some negative feedback loops, which help cells return to
quiescent status [56–58]. An aberrant activation of
MAPK signaling frequently induces human cancers or
developmental disorders, though an extremely high
MAPK signaling may induce cell death or senescence
under some conditions [59–63].
Hyperactive MAPK signaling exists in over 85% of

cancers, which is caused directly by genetic alterations
of its upstream activators or components, including
RTKs, Ras, and BRAF, or indirectly by those independ-
ent of Ras or RAF [64–66], and significantly promotes
disease progression [67]. Since genetic alterations of
RTKs in cancers have been extensively reviewed in re-
cent years [68–73], here we focus on oncogenic muta-
tions of Ras and BRAF. As a small GTPase, Ras cycles
between active GTP-bound status and inactive GDP-
bound status, which is regulated by GEFs and GTPase-
activating proteins (GAPs). Oncogenic Ras mutations
can be mainly classified into two groups: (1) mutations
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on glycine 12 or 13 (G12/13) that impair GAP associa-
tions and (2) mutations on glutamine 61 (Q61) that di-
minish the intrinsic GTPase activity of Ras [74], both of
which lead to an extended half-life of GTP-loaded Ras.
Oncogenic Ras mutations have both isoform and
cancer-type preferences. K-ras is mostly mutated in all
cancers (85%), followed by N-ras (12%) and H-ras (3%),
and its mutations prevail in pancreatic cancers, while
those of N-ras in myeloma and melanomas, and H-ras
in adrenal gland cancers [75, 76]. This phenomenon may
reflect underlying fundamental signaling landscapes, and
RAS mutants interplay with these landscapes. As the
downstream effector of Ras, RAF is another dominant
target of oncogenic mutations in the MAPK signaling
pathway. Similarly, RAF mutations have isoform prefer-
ence in cancers as Ras mutations with BRAF >> CRAF >
ARAF, which may arise from their different basal activ-
ities. Overall, a single point mutation that converts Val
600 into Glu in the activation loop of BRAF accounts for
> 90% cases [77]. Although BRAF (V600E) exists only in
~ 7% of all cancers, it is highly prevalent in some tissue-
specific cancers such as melanoma (50~60%), thyroid can-
cer (40~50%), and histiocytosis (~50%) [78–81], albeit the
underlying molecular mechanism(s) remains unknown. In
contrast to Ras and RAF, MEK and ERK have rare muta-
tions in cancers though their mutations have been shown
to be responsible for some RAF inhibitor (RAFi)-resistant
cases in current cancer therapies [82–85].

Targeting the Ras/RAF/MEK/ERK (MAPK) signaling
pathway for cancer therapy: promising but challenging
Given their high prevalence in cancers, great efforts have
been made to develop specific inhibitors against oncogenic
Ras and RAF mutants in the last decades. These inhibitors
that have been approved for clinic treatment of Ras/RAF-
mutated cancers or under clinical trials are listed in Table 1.
However, none of these inhibitors can effectively target the
large portion of Ras mutants in cancers. Since having no at-
tractive docking sites suitable for designing high-affinity and
selective small molecule inhibitors, Ras mutants have been
thought as “undruggable” cancer drivers in a long term. Until
recently, a group of covalent small inhibitors that are docked
into a previously unknown pocket of GDP-bound Ras and
are linked to the adventive cysteine of Ras(G12C) have been
developed and achieved encouraging outcomes for treating
Ras(G12C)-driven cancers as a single agent in clinical trials
[86–91] (Fig. 1). To further enhance their efficacy, these
Ras(G12C) inhibitors are also undergoing clinical evaluation
when combined with SHP2 (Src homology region 2 domain-
containing phosphatase-2) inhibitors that block the pathway
reactivation caused by the relief of negative feedback loops
[92, 93] (Clinical Trial: NCT04330664). In addition, these in-
hibitors have also been further developed into Ras(G12C) de-
graders by conjugating with ligands of ubiquitin E3 ligases,

which effectively deplete Ras mutant proteins in cancer cells
[94, 95] though their efficacy in vivo remains unknown. Un-
like Ras(G12C), the majority of Ras mutants remain “undrug-
gable” at present [96].
It has been shown that Ras activates downstream ef-

fectors through direct interactions. Therefore, disrupting
Ras/effector interactions might be an alternative ap-
proach that can effectively block cancer growth driven
by Ras mutations. Such a type of small molecule
blockers include rigosertib, sulindac, and MCP110, and
among which, the therapeutic efficacy of rigosertib com-
bined with nivolumab for Ras-mutated cancers is being
determined by phase I/II clinical trials currently [97]
(Clinical Trial: NCT04263090). However, it has to be
noted that these inhibitors impair the MAPK signaling
in both Ras-mutated cancers and normal tissues and
thereby their therapeutic index may not be high.
Genetic studies have revealed that the ablation of the

RAF/MEK/ERK kinase cascade but not other effector
pathways is a most efficient approach to inhibit the
growth of Ras-mutated cancers [98], which leads to ex-
tensive developments of specific inhibitors against this
kinase cascade for treating Ras-mutated cancers. More-
over, these inhibitors should be also effective for treating
RAF-mutated cancers. Indeed, a number of RAF/MEK/
ERK inhibitors have been developed and applied to clin-
ical trials for treating Ras/RAF-mutated cancers [67, 99–
107]. At present, three RAF inhibitors and three MEK
inhibitors have been approved to treat late-stage
BRAF(V600E)-harboring cancers as a single agent or in
combination with other chemotherapeutics and exhib-
ited excellent efficacies [101, 108–116] (Fig. 1). However,
Ras-mutated cancers possess intrinsic resistance to both
RAF and MEK inhibitors [98], and even BRAF (V600E)-
harboring cancers develop acquired resistance after 6–10
months treatment [111, 117]. Mechanistic studies have
shown that active Ras facilitates the RAF dimerization
on plasma membrane, which leads to both intrinsic and
acquired resistance to RAF inhibitors [118–120]. To
overcome the drug resistance arising from enhanced
RAF dimerization, the second-generation RAF inhibitors
such as PLX8394, BGB283, TAK-580, and CCT3833
have been developed and are undergoing clinical evalua-
tions (Clinical Trials: NCT02428712, NCT02610361,
NCT03905148, NCT02327169, NCT02437227). These
novel RAF inhibitors reduce the RAF dimerization-
driven resistance through distinct mechanisms: (1)
PLX8394 and BGB283 impair RAF dimerization upon
loading on RAF proteins [121–123]; (2) TAK-580 binds
to and inhibits both protomers in RAF dimers [124]; (3)
CCT3833 inhibits both RAF and upstream kinases of
Ras and thereby prevents the activation of Ras by the re-
lief of negative feedback loops [125, 126]. Besides these
second-generation RAF inhibitors, a unique RAF/MEK
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Table 1 Summary of small molecule inhibitors approved and under clinical trials for treating Ras/RAF-mutated cancers

Target Compound Development stages Description

KRas
G12C

AMG-510 Phase III,
NCT04303780

Phase I results showed 54% ORR of non-small cell lung cancer (NSCLC) harboring KRas G12C.

MRTX849 Phase I/II,
NCT03785249
Phase I/II,
NCT04330664

Evaluation of clinical activity of MRTX849 alone and combined with TNO155
(SHP2 inhibitor) in KRas G12C mutated cancers.

JNJ-
74699157

Phase I, NCT04006301 Safety and PK of JNJ-74699157.

Ras Rigosertib Phase I/II,
NCT04263090

Evaluation of safety and clinical efficacy of Rigosertib plus Nivolumab (PD-1 Ab)
in KRas mutated NSCLC.

BRAF Vemurafenib Approved Late-stage or unresectable melanoma expressing BRAF V600E in 2011.
Erdheim-Chester disease (ECD) with BRAF V600E mutation in 2017.

Dabrafenib Approved Late-stage or unresectable melanoma expressing BRAF V600E in 2013.
Combination with trametinib for the treatment of unresectable or metastatic melanoma with
BRAF V600E/K in 2014.
Combination with trametinib for the treatment of metastatic NSCLC with BRAF V600E in 2017.
Combination with trametinib for the adjuvant treatment of melanoma with BRAF V600E/K in 2018.
Combination with trametinib for the treatment of anaplastic thyroid cancer (ATC) that cannot
be removed by surgery or has spread to other parts of the body with BRAF V600E in 2018.

Encorafenib Approved Combination with binimetinib for the treatment of patients with unresectable or metastatic
melanoma with BRAF V600E/K in 2018.
Combination with cetuximab (EGFR Ab) for the treatment of metastatic colorectal cancer
with BRAF V600E in 2020.

PLX8394 Phase I/II,
NCT02428712

PLX8394 with cobicistat (CYP3A inhibitor) was well tolerated and showed promising activity
in BRAF-mutated refractory cancers.

BGB283 Phase I, NCT02610361
Phase I/II,
NCT03905148

Evaluation of safety and PK of BGB-283 alone and combination with mirdametinib.

TAK-580 Phase I, NCT02327169
Phase I, NCT03429803

TAK-580 is the inhibitor of BRAF V600E and dimers.
Treatment in pediatric low-grade glioma.

CCT3833 Phase I, NCT02437227 CCT3833 is a pan-RAF inhibitor of mutant BRAF, CRAF and SRC kinases.

RAF/MEK RO5126766 Phase I, NCT00773526
Phase I, NCT03681483
Phase I, NCT03875820
Phase I, NCT02407509

RO5126766 is a dual inhibitor for both RAF and MEK.
Treatment of advanced KRas-mutant lung adenocarcinomas.
Evaluation of safety and PK of RO5126766 with VS-6063 (FAK inhibitor) or everolimus
(mTOR inhibitor).
RO5126766 showed activity across Ras- and RAF-mutated malignancies, with significant
response in lung and gynecological cancers.

MEK1/2 Trametinib Approved A single-agent oral treatment for unresectable or metastatic melanoma with BRAF
V600E/K in 2013.
Combination with dabrafenib for the treatment of unresectable or metastatic melanoma
with BRAF V600E/K in 2014.
Combination with dabrafenib for the treatment of metastatic NSCLC with BRAF V600E in 2017.
Combination with dabrafenib for the adjuvant treatment of melanoma with BRAF V600E/K in 2018.
Combination with dabrafenib for the treatment of ATC that cannot be removed by surgery
or has spread to other parts of the body with BRAF V600E in 2018.

Cobimetinib Approved
Phase I/II,
NCT03989115

In combination with vemurafenib to treat advanced melanoma with BRAF V600E/K in 2015.
Dose-escalation of combination of RMC-4630 (SHP2 inhibitor) and cobimetinib.

Binimetinib Approved Combination with encorafenib for the treatment of patients with unresectable or metastatic
melanoma with BRAF V600E/K in 2018.

Selumetinib Approved Selumetinib was approved for neurofibromatosis type 1 with symptomatic, inoperable plexiform
neurofibromas according to NCT01362803

Mirdametinib Phase II,
NCT03962543
Phase II,
NCT02022982
Phase I/II,
NCT03905148

Evaluation of mirdametinib in the treatment of symptomatic inoperable
neurofibromatosis type-1 (NF1)-associated plexiform neurofibromas (PNs).
Combination of mirdametinib with palbociclib in the treatment of KRas
mutant non-small cell lung cancer (NSCLC).
Evaluation of safety and PK of BGB-283 alone and combination with mirdametinib.

SHR-7390 Phase I, NCT02968485 Evaluation of safety and PK of SHR-7390.
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dual inhibitor, RO5126766, has been developed and ex-
hibited a strong potential against both Ras- and RAF-
mutated cancers in phase I clinical trials [127–130]. This
allosteric inhibitor docks on MEK and prevents the re-
lease of MEK from RAF as well as the subsequent phos-
phorylation of MEK by RAF [128], which gives it much
more advantages than all other known RAF inhibitors
according to the regulatory mechanism of the RAF/
MEK/ERK kinase cascade [46]. As to small molecule in-
hibitors that target the terminal kinase, ERK, although a
number of them have been developed and are undergo-
ing clinical trials [131, 132], their therapeutic values for
treating Ras/RAF-mutated cancers remain unknown.
Like MEK inhibitors, these ERK inhibitors may not
achieve a good therapeutic index as single agents by
virtue of their inhibitory role in both malignant and nor-
mal tissues. However, they may contribute to anti-Ras/
RAF cancer therapy as synergetic agents combined with
Ras/RAF inhibitors.
Overall, targeting hyperactive MAPK signaling has

achieved exciting outcomes for treating Ras/RAF-mu-
tated cancers. However, although some effective small
molecule inhibitors have been developed and applied to
clinical treatment, drug resistance and side effects re-
main remarkable challenges and there is still a long way
to develop a long-effective approach with manageable
side effects for treating Ras/RAF-mutated cancers.
Although hyperactive MAPK signaling has a dominant

role in cancer biology, it is fine-tuned by other signalings
such as PI3K/AKT/mTORC and AMPK during disease
progression [133]. These signaling interplays have im-
portant impacts on both cancer progression and clinical

treatment based on MAPK inhibition. In this review, we
will focus on the crosstalk between MAPK and AMPK
signalings.

AMPK signaling and its roles in cancer biology
AMPK signaling and cellular metabolism
AMPK (AMP-activated protein kinase) is an energy sensor
that monitors the AMP:ADP:ATP ratio in eukaryotic cells.
This atypical protein kinase was firstly discovered as a
contaminant during the purification of acetyl-CoA carb-
oxylase (ACC), a well-studied substrate of AMPK for fatty
acid (FA) synthesis nowadays [134–136] (Fig. 2). However,
the phosphorylation of ACC by AMPK in response to the
high AMP/ATP ratio had not been revealed until a decade
later [137], and the enzyme was thus named as AMPK
thereafter [138] (Fig. 2). Biochemical studies have shown
that AMPK consists of three subunits including the cata-
lytic α subunit and the regulatory β and γ subunits [139–
148] (Fig. 2). In mammals, AMPK subunits are encoded as
several isoforms (α1, α2; β1, β2; γ1, γ2, γ3), which are
preferentially expressed in specific tissues or organisms
[145, 149, 150]. For instance, the α2 subunit associates
only with β1 in type I muscle fibers, while it binds to both
β1 and β2 in type II muscle fibers [150, 151]. Also, the
liver formulation of AMPK subunits differs among species
as that α1β2γ1 is dominant in human whereas α1β1γ1
and α2β1γ1 in dog and rat, respectively [152]. Although
an isoform replacement of AMPK subunits may not ex-
tensively affect the basal activity of AMPK as adaptive re-
sponses such as exercise do [153], it alters AMPK’s
subcellular locations and sensitivity as well as interactions
with other signaling pathways [147]. The organism/tissue/

Table 1 Summary of small molecule inhibitors approved and under clinical trials for treating Ras/RAF-mutated cancers (Continued)

Target Compound Development stages Description

CS-3006 Phase I, NCT03516123
Phase I, NCT03736850

Evaluation of safety and PK of CS-3006.

ERK1/2 Ulixertinib Phase I/II,
NCT01781429
Phase I, NCT04145297
Phase II,
NCT03698994
Phase I, NCT03454035

Responses to ulixertinib in NRas, BRAF V600 and non-V600 BRAF mutant cancers.
Evaluation of ulixertinib alone or combined with hydroxychloroquine, palbociclib
(CDK4/6 inhibitor) in MAPK mutated cancers.

MK-8353 Phase I, NCT01358331
Phase I, NCT03745989
Phase I, NCT02972034

MK-8353 was optimized from SCH772984 for better pharmacokinetics, and exhibited
inhibition of BRAF V600 mutant cancers.
Evaluation of combination of MK-8353 with selumetinib or pembrolizumab (PD-1 Ab)
in advanced malignancies.

LY3214996 Phase I, NCT04081259
Phase I, NCT04391595
Phase I, NCT02857270
Phase II,
NCT04386057

Evaluation of treatment of MK-8353 alone or combined with abemaciclib
(CDK4/6 inhibitor),
Hydroxychloroquine in advanced malignancies.

ASTX029 Phase I/II,
NCT03520075

Evaluation of safety and PK of ASTX029.

ATG-017 Phase I, NCT04305249 Evaluation of safety and PK of ATG-017.

KO-947 Phase I, NCT03051035 Evaluation of safety and PK of KO-947.
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stage-specific selectivity of subunit isoforms complicates
AMPK’s regulation.
As a key sensor of cellular energy stress, the activity of

AMPK is predominantly regulated by cellular AMP/ADP/
ATP that competitively binds to the γ subunit of AMPK
and thus promotes or inhibits the phosphorylation of
Thr172 on α subunit by the tumor suppressor liver kinase
B1 (LKB1) or the dephosphorylation of this site by phos-
phatases [154, 155] (Fig. 2). Besides adenine nucleotides,
intracellular calcium ions activate AMPK through cal-
cium/calmodulin-dependent protein kinase kinase 2
(CAMKK2, also called CAMKKβ) [156–158] (Fig. 2),
which acts downstream of the hormone-activated recep-
tors such as muscarinic receptors and ghrelin receptor on
endothelial cells or neuron cells [159–162]. On the other
hand, AMPK can be inhibited by a metabolite of glucose,
fructose 1,6-bisphosphate (FBP), which binds to the aldol-
ase and prevents the interaction of AMPK with LKB1 in
glucose-rich environments [163] (Fig. 2). Active AMPK

has more than 100 downstream substrates that regulate
the metabolism of lipids, cholesterol, carbohydrates, and
amino acids.
Active AMPK promotes the oxidation of fatty acids

and inhibits the synthesis of fatty acids and cholesterol,
which involves largely in acetyl-CoA. AMPK phosphory-
lates and inhibits HMG-CoA reductase (HMGR) that re-
quires acetyl-CoA in its reduction reaction [138, 164,
165] (Fig. 2). Also, AMPK phosphorylates ACC that con-
verts acetyl-CoA to malonyl-CoA and therefore slows
down the de novo fatty acid (FA) synthesis and increases
the FA oxidation [166] (Fig. 2). Alternatively, AMPK reg-
ulates the lipid metabolism through altering the mito-
chondria structure and function. In the mitochondria,
AMPK phosphorylates A-kinase anchoring protein 1
(AKAP1), a key scaffold protein for protein kinase A
(PKA), and facilitates the phosphorylation of a mito-
chondria fusion factor, dynamin-related protein 1
(DRP1) by PKA, which promotes mitochondrial fusion

Fig. 1 Target hyperactive Ras/RAF/MEK/ERK (MAPK) signaling for cancer therapy. The Ras/RAF/MEK/ERK (MAPK) signaling functions downstream of
receptor tyrosine kinases (RTKs). Upon engagement by their ligands, RTKs activates guanine exchange factors, Sos proteins, which load GTP to Ras
GTPases. Then, GTP-bound Ras GTPases recruit RAF/MEK heterodimers in cytosol to plasma membrane where they form transient tetramers through
the side-to-side dimerization of RAFs. The RAF dimerization not only turns on RAFs but also loosens RAF/MEK heterodimerization and facilitates MEK
homodimerization on RAF dimer surface, which leads to the activation of MEKs by RAFs. Once MEKs are activated, they phosphorylate ERKs, and then
active ERKs phosphorylate a number of downstream effectors. In cancer cells, hyperactive Ras/RAF/MEK/ERK (MAPK) signaling arising from genetic
mutations of Ras GTPases and BRAF can be targeted by small molecular inhibitors of Ras G12C, BRAF(V600E), MEK, and ERK
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and oxidative phosphorylation [167]. Moreover, AMPK
accelerates the mitochondria biogenesis likely through
phosphorylating and activating the transcriptional acti-
vator, proliferator-activated receptor gamma coactivator
1-alpha (PGC1α) [168, 169] (Fig. 2). However, upon en-
ergy stress, AMPK plays an opposite role in mitochon-
dria biology. Under this condition, AMPK is essential for
the fragmentation of mitochondria. AMPK phosphory-
lates mitochondrial fission factor (MFF) on Ser129 and
thereby facilitates the translocation of DRP1 from cyto-
sol to mitochondria membrane in energy stress-driven
mitochondria fission [170, 171]. Then, AMPK promotes
the clearance of damaged mitochondria through autoph-
agy. In this process, AMPK binds directly to and phos-
phorylates the unc-51-like autophagy activating kinase 1
(ULK1), Autophagy-related gene 9 (ATG9), and Beclin
1, which triggers the autophagosome formation [172–
175] (Fig. 2).
Active AMPK directly regulates the carbohydrate me-

tabolism or indirectly through altering the fatty acid me-
tabolism as described above. Activation of AMPK
stimulates the expression and plasma membrane trans-
location of solute carrier family member (GLUT) pro-
teins and thereby facilitates glucose import [152, 176–
181] (Fig. 2). Intracellularly, AMPK phosphorylates and
activates 6-phosphofructo-2-kinase (PFK2) that is

responsible for the synthesis of fructose 2,6-bispho-
sphate, a potent stimulator of glycolysis, and thus accel-
erates glycolysis [182] (Fig. 2). Furthermore, AMPK
appears to phosphorylate and inhibit glycogen synthase
in the liver, which dampens glycogen synthesis and thus
indirectly enhances glycolysis [183].
Active AMPK maintains cellular amino acid homeo-

stasis mainly by controlling the activity of mammalian
target of rapamycin complex 1 (mTORC1). The
mTORC1 is a central sensor of cellular amino acids that
samples amino acids in both cytosol and lysosome [184,
185]. Upon activation by amino acids, mTORC1 stimu-
lates protein synthesis by phosphorylating ribosomal
protein S6 kinase B1 (S6K) and eukaryotic translation
initiation factor 4E binding protein 1 (4E-BP1), which
enhances the consumption of cellular amino acids.
Moreover, active mTORC1 blocks cellular autophagy by
phosphorylating ULK1 and impairs the recycling of
amino acids [186]. Both effects of mTORC1 lead to a re-
markable drop of cellular amino acid reservoir. Active
AMPK has been shown to inhibit the activity of
mTORC1 direct and indirectly upon energy stress,
which limits the expenditure of amino acids. Alterna-
tively, active AMPK can restrict protein synthesis by
phosphorylating and thereby inhibiting eukaryotic trans-
lation elongation factor 2 (eEF2) kinase, a key regulator

Fig. 2 AMPK signaling and its downstream effectors. AMPK is activated by liver kinase B1 (LKB1) or calcium/calmodulin-dependent protein kinase
kinase 2 (CAMKK2/β) through phosphorylation on Thr172 of α subunit and is inactivated through dephosphorylation of this site by protein
phosphatases in response to changes of cellular AMP:ADP:ATP ratio. Downstream effectors activated by AMPK are indicated as arrows, and those
inhibited by AMPK are shown as bar-headed lines
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of protein synthesis [187]. To restore cellular amino acid
reservoir, active AMPK stimulates cellular autophagy as
discussed above, which degrades surplus or dysfunc-
tional proteins into amino acids [186]. In addition, it is
worth noted that cellular amino acids can affect the
activity of AMPK reversely. Dependent on conditions/
contexts, either amino acids may inhibit or stimulate the
activity of AMPK though underlying molecular mecha-
nisms remain ambiguous [188–190].

AMPK signaling in cancer biology
It is well known that AMPK is a putative substrate of
tumor suppressor, LKB1 [154, 155, 191] (Fig. 2). There-
fore, AMPK has been generally considered as a key ef-
fector that mediates the tumor-suppressive function of
LKB1. Indeed, a genetic ablation of the AMPK α subunit
in mice accelerates Myc-driven lymphomagenesis through
facilitating a metabolic shift to aerobic glycolysis [192].
Simultaneously, AMPK inhibitors (AMPKi) promote
epithelial-to-mesenchymal transition (EMT) in breast and
prostate cancers [193]. These studies validate AMPK as a
tumor suppressor under certain circumstances. Further
mechanistic studies have demonstrated that AMPK pre-
vents cancers through phosphorylating multiple targets
that play indispensable roles on different layers of disease
progression. AMPK phosphorylates angiomotin like 1
(AMOTL1), an adaptor protein in the Hippo-Yap path-
way, and thus blocks Yes1 associated transcriptional regu-
lator (YAP) activity, which impairs cancer cells’
proliferation and survival [194]. AMPK also phosphory-
lates TSC complex subunit 2 (TSC2) and regulatory asso-
ciated protein of MTOR complex 1 (Raptor) and thereby
inactivates mTORC1 [195, 196], which in turn elevates
cellular autophagy activity and inhibits cancer initiation.
To bypass this inhibitory effect, cancer cells can activate
the MAGE family member A 3/6 (MAGEA3/6)-tripartite
motif containing 28 (TRIM28) ubiquitin ligase complex
that targets the AMPK α subunit for degradation and thus
re-activates mTORC1 to restrict cellular autophagy [197].
Moreover, AMPK is able to phosphorylate enhancer of
zeste 2 polycomb repressive complex 2 subunit (EZH2)
and thereby disrupts the polycomb repressive complex 2
(PRC2), which relieves the epigenetic silence of tumor
suppressors in cancers [198]. Alternatively, AMPK phos-
phorylates and stabilizes another epigenetic master regula-
tor, Tet methylcytosine dioxygenase 2 (TET2), which
functions as a putative tumor suppressor to prevent
tumorigenesis [199]. Altogether, these findings indicate
that AMPK has a pronounced anti-tumor activity as its
upstream kinase, LKB1 does.
Although significant studies have shown that AMPK

dampens the pathogenesis of cancers, some emerging
findings indicate that it may promote disease progression
under other circumstances. In T cell acute lymphoblastic

leukemia (T-ALL), oncogenic Notch signaling induces a
high level of aerobic glycolysis which needs to be re-
strained by AMPK, and loss of AMPK results in energy
stress-driven apoptosis of leukemic cells and slows down
disease progression [200]. Similarly, in acute myeloid
leukemia (AML), metabolic stress elevates the ROS level
and induces DNA damage in leukemia-initiating cells
(LICs), and AMPK confers metabolic stress resistance to
LICs [201]. AMPK knockout or pharmaceutical inhibition
under metabolic stress kills LICs and inhibits
leukemogenesis. Moreover, AMPK plays a determinant
role in maintaining the NADPH homeostasis in cancer
cells upon energy stress, which is critical for cancer cell
survival [202]. Depletion of the AMPK α subunit or its up-
stream kinase, LKB1 makes cancer cells susceptible to
death upon energy stress, such as glucose limitations,
anchorage-independent growth, and solid tumor forma-
tion in vivo. In KrasG12D-driven non-small cell lung can-
cer, the failure of AMPK activation by virtue of LKB1
mutation sensitizes cancer cells for phenformin-induced
metabolic stress, further supporting that AMPK adapts
cancer cells for metabolic stress [203]. Alternatively, a syn-
thetic lethal screening has revealed that AMPK activation
by AMPK-related kinase 5 (ARK5) is essential for Myc-
driven cancer progression [204]. Consistent with this find-
ing, AMPK has been shown to promote survival of Myc-
positive melanoma cells with N-Ras mutation by restrain-
ing oxidative stress [205]. In addition, AMPK sustains the
activation of oncogenic protein kinase B (AKT) signaling
upon stress or epidermal growth factor receptor (EGFR)
engagement in breast cancers [206]. Besides these direct
effects on cancer cells, AMPK may promote cancer pro-
gression by altering the cancer microenvironment. AMPK
signaling has been shown to intrinsically promote the im-
munoregulatory activity of myeloid-derived suppressor
cells (MDSC), which dysfunctions T cells in cancer tissue
[207]. All these findings indicate that AMPK can signifi-
cantly contribute to the disease progression of variable
cancers via distinct manners.
Unlike LKB1, which is frequently mutated or deleted in

cancer genomes [208–210], AMPK has nearly no muta-
tions, and on the contrary, is upregulated in some types of
cancers such as glioblastoma [211], suggesting that it may
play a paradoxical role in carcinogenesis. Dependent on
origins of cancers, driver mutations, developmental stages,
and external conditions, AMPK may dampen or promote
the disease progression of cancers, and uncovering under-
lying mechanisms would propel cancer therapy develop-
ment by targeting this signaling pathway.

The crosstalk between MAPK and AMPK
signalings
As described above, the MAPK signaling controls cellular
proliferation, differentiation, and survival, whereas the
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AMPK signaling regulates cellular metabolism. However,
many studies have indicated that these two distinct signal-
ings have profound and complicated interplays in both
physiological and pathological processes. In quiescent
cells, the AMPK signaling maintains energy homeostasis
by switching on catabolic pathways that generate ATP,
while switching off anabolic pathways that are required
for cell growth [142, 146, 176–183, 204, 212–215]. Upon
mitogen stimulation, the MAPK signaling is turned on
and drives cellular proliferation/differentiation, which
needs cells shifting their metabolic program from cata-
bolic to anabolic for biomass synthesis [216, 217]. To
achieve this, the MAPK signaling activates transcription
factors such as Myc and Hypoxia inducible factor 1 sub-
unit alpha (HIF-1α), which control the expression of
glycolytic enzymes and promote aerobic glycolysis [218–
221]. Furthermore, the MAPK signaling directly regulates
AMPK signaling and thus constrains the AMPK signaling-
driven oxidative phosphorylation of biomaterials [167,
222]. These interplays frequently occur with marginal co-
ordination when cells response to different stimuli such as
oncogenesis and cell stress. Recent studies have revealed
that the MAPK signaling regulates AMPK signaling on
different layers under distinct circumstances. Firstly, ERK
and ribosomal protein S6 kinase A (RSK), two downstream
kinases of MAPK signaling, have been shown to phosphoryl-
ate and inhibit the upstream activator of AMPK, LKB1, and
thereby block the activation of AMPK by LKB1 in
BRAF(V600E)-driven melanoma [223] (Fig. 3a). Secondly,
ERK likely phosphorylates the α subunit of AMPK directly
on negative regulatory sites Ser485/491 and impairs its cata-
lytic activity, which is essential for C-C motif chemokine re-
ceptor 7 (CCR7)-dependent survival of mature dendritic cells
[224]. Thirdly, KSR, one of the key components of MAPK
module, has been shown to interact with all AMPK subunits
and regulate the AMPK-dependent energy expenditure [225,
226] (Fig. 3b). In addition, the MAPK signaling controls the
subcellular localization of AMPK and thus alters its function
under cell stress [227]. All these findings suggest that AMPK
could function as a downstream effector of MAPK signaling.
The interplays between MAPK and AMPK signalings

are binary, and the AMPK signaling can regulate MAPK
signaling reversely. Conclusive evidence shows that
AMPK can directly phosphorylate the RAF/KSR family
kinases, the pivotal components of MAPK module, and
alter their activities under variable conditions. It is well
established that the hetero-/homo-dimerization of RAF/
KSR family kinases plays a determinant role in the acti-
vation of MAPK signaling, which requires the associ-
ation of 14-3-3, a dimeric scaffold protein with their
carboxyl-terminus [228, 229]. Mechanistic studies have
revealed that a 14-3-3 dimer associates with the C-
terminus of two individual RAF/KSR molecules and fa-
cilitates their dimerization and subsequent activation

[25, 230, 231] (Fig. 4a). Since RAF/KSR family kinases
have the other conserved 14-3-3 binding site at the N-
terminus, however, if a 14-3-3 dimer binds to the N-
and C-terminus of a single RAF/KSR intramolecularly, it
will stabilize RAF/KSR in an autoinhibitory conform-
ation and thus prevent the dimerization-driven activa-
tion of kinases [38, 77, 232] (Fig. 4b). AMPK has been
shown to phosphorylate the C-terminal 14-3-3 binding
site of RAF/KSR family kinases and promote the intra-
or inter-molecular 14-3-3 associations with these kinases
respectively [233, 234] (Fig. 4). Among RAF/KSR family
kinases, CRAF is the first member that has been shown
being phosphorylated by AMPK on its C-terminal 14-3-
3 binding site [234]. AMPKi by pharmaceutical inhibi-
tors abolishes the dimer-dependent paradoxical activa-
tion of MAPK signaling driven by the RAF inhibitors in
Ras-mutated cancers, suggesting that AMPK-mediated
phosphorylation of the C-terminal 14-3-3 binding site
on CRAF promotes the intermolecular association of 14-
3-3 dimers with CRAF homo- or hetero-dimers [231]
(Fig. 4a). This molecular mechanism may also be re-
sponsible for the hyperactive MAPK signaling induced
by metabolic stress in Ras-mutated melanoma. Upon
metabolic perturbations, AMPK is activated in this type
of melanoma cells and promotes KSR/CRAF heterodi-
merization likely through altering 14-3-3 binding man-
ners, which leads to a highly activated MAPK signaling
[230]. Besides CRAF and KSR, the association of BRAF
with 14-3-3 is also regulated by AMPK-mediated phos-
phorylation. In BRAF(V600E)-harboring melanoma,
metabolic stress-activated AMPK phosphorylates the C-
terminal 14-3-3 binding site of BRAF and promotes the
intramolecular association of a single BRAF molecule
with a 14-3-3 dimer [233], which breaks the BRAF/KSR
heterodimer and thus inhibits MAPK signaling [230],
although whether active AMPK phosphorylates the N-
terminal 14-3-3 binding site of BRAF under this condi-
tion needs further investigation (Fig. 4b). Consistent
with these findings, AMPK activators have been shown
to inhibit the proliferation of BRAF(V600E)-harboring
melanoma and enhance the therapeutic efficacy of BRAF
inhibitors on this type of melanoma [235, 236]. Over all,
the distinct regulations of RAF/KSR family kinases by
AMPK lead to completely different outputs of MAPK
signaling, which determine cell fates under variable
conditions.
The interplays between MAPK and AMPK signalings

also alter cellular autophagy, particularly that of cancer
cells. Cancer cells with Ras/RAF mutations have much
higher activity of autophagy [237–240], which signifi-
cantly contributes to disease progression [238, 240–246],
although how autophagy is upregulated in these cancer
cells remains unknown. Elevated autophagy in Ras/RAF-
mutated cancer cells preserves mitochondrial and
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glycolytic functions by recycling dysfunctional mito-
chondria [247, 248]. Disruption of autophagy by deplet-
ing Atg7 or Atg5 induces cellular senescence and
reduces cancer burden in these diseases [238, 240–246].
The critical role of autophagy in K-ras-driven cancers is
further confirmed by a synthetic lethal screening for fac-
tors that support K-ras addiction, which identified Atg7
and RAF kinases as a minimal oncoeffector combination
that best discriminates K-ras cancer cells from normal
cells [249]. It is well known that AMPK is a prominent
regulator of autophagy in spite of its key role as an en-
ergy sensor, which drives cellular autophagy machinery
via the LKB1/AMPK/ULK1 axis [250–252]. Since LKB1
is inhibited by hyperactive MAPK signaling, this signal
axis should not be responsible for elevated activity of au-
tophagy in Ras/RAF-driven cancers. However, it pro-
vides cancer cells a protective strategy for adapting
themselves to MAPK inhibition [248, 253, 254]. Indeed,
MAPK inhibition (MAPKi) by RAF/MEK/ERK inhibitors
in Ras/RAF-mutated cancer cells further elevates au-
tophagic flux through AMPK, which restores cellular
metabolic hemostasis and leads to tolerance towards
MAPKi.

Combinatorial targeting of MAPK and AMPK
signalings to treat Ras/RAF-mutated cancers
Hyperactive MAPK signaling is responsible for a large
portion of cancers, and genetic alterations that aber-
rantly activate this pathway mainly occur on receptor
tyrosine kinases (RTKs), Ras small GTPases, and BRAF
[63]. In current cancer therapies, hyperactive RTKs can
be effectively targeted by tyrosine kinase inhibitors
(TKIs) or neutralizing antibodies [255–263], while there
are no drugs that are able to specifically target most Ras
mutants [264]. To treat Ras/BRAF-mutated cancers,
RAF/MEK inhibitors such as vemurafenib, dabrafenib,
encorafenib, trametinib, cobimetinib, and binimetinib
have been developed and applied to disease management
[99–101, 265]. These inhibitors have exhibited a promis-
ing efficacy towards most BRAF-mutated cancers [101,
108–116] (Fig. 5). In contrast, Ras-mutated cancers are
intrinsically resistant to these drugs, which do not in-
hibit but paradoxically activate the MAPK signaling
through promoting RAF family kinases’ dimerization
[266]. Furthermore, even BRAF-mutated cancers develop
adaptive resistance to these drugs after 6~10 months
treatment by either activating Ras or alternatively spli-
cing BRAF mutant [266]. Therefore, for most cases, once

Fig. 3 AMPK signaling is inhibited by hyperactive Ras/RAF/MEK/ERK (MAPK) signaling in cancers. a In BRAF(V600E)-harboring cancers, hyperactive
ERKs and downstream RSKs phosphorylate LKB1 on Ser325 and Ser428 sites, which inactivates LKB1 and thus blocks the activation of AMPK by
LKB1. b In Ras-mutated cancers, the activity of AMPK is partially inhibited likely by hyperactive MAPK signaling, though the underlying molecular
mechanism remains ambiguous. However, this moderate AMPK activity is indispensable for disease progression in Ras-mutated cancers
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cancer cells possess high Ras activity, these drugs lose
their efficacy as a monotherapy. To improve the efficacy
of MAPKi against Ras/RAF-mutated cancers, emerging
evidence indicates that disruption of MAPK signaling
complex, particularly dimerization of RAF family ki-
nases, and/or synergistic targeting of synthetic lethality
of MAPK signaling should be two feasible strategies
[267–272], both of which are involved in AMPK
signaling.
It has been shown that the components of MAPK sig-

naling form a super complex in cancer cells with active
Ras [273, 274], which leads to resistance towards
MAPKi. Assembly of this complex involves in RAF/RAF
(or KSR), RAF (or KSR)/MEK, MEK/MEK, as well as
RAF (or KSR)/14-3-3 interactions, and disruption of
these interactions contributes to an effective inhibition
of MAPK signaling. As discussed above, AMPK directly
regulates RAF (or KSR)/14-3-3 interaction by phosphor-
ylating the 14-3-3 binding sites on RAF (or KSR) and
thus facilitates or impairs RAF/RAF (or KSR)
dimerization. In Ras-mutated cancer cells or RAFi-
resistant cancer cells with active Ras, CRAF is the key
isoform of RAF family kinases responsible for disease
progression and drug resistance [27, 32, 275–278],
whose phosphorylation on the C-terminal 14-3-3

binding site by AMPK plays a determinant role in the
paradoxical effect of RAF inhibitors, and AMPKi sensi-
tizes these cancer cells to RAF inhibitors both in vitro
and in vivo [231] (Wang & Hu, unpublished data) (Fig.
4b). Although the components of MAPK signaling do
not assemble a super complex in BRAF-mutated cancer
cells, constitutively active BRAF mutant still functions as
homo- or hetero-dimers (BRAF/BRAF or BRAF/KSR)
that can be disrupted by AMPK-driven phosphorylation
of both N- and C-terminal 14-3-3 binding sites [230,
231, 233]. In this type of cancers, AMPK activators have
been shown to significantly enhance the therapeutic effi-
cacy of RAF inhibitors [235, 236]. Taken together, alter-
ing RAF/KSR dimerization by using either AMPK
inhibitors or activators may remarkably improve the tar-
geted therapies of Ras/RAF-mutated cancers with RAF
inhibitors.
Since most oncogenic Ras mutants are undruggable,

efforts for developing effective approaches against Ras-
mutated cancers have been switched to identify and tar-
get synthetic lethal vulnerabilities of Ras mutants over
decades, which led to the discovery of some putative fac-
tors essential for in vitro growth of Ras-mutated cancer
cells [267, 279]. Unfortunately, most factors except those
regulating cellular autophagy exhibit little-to-no

Fig. 4 AMPK regulates differentially hyperactive Ras/RAF/MEK/ERK (MAPK) signaling in Ras- versus BRAF(V600E)-mutated cancers. a In Ras-mutated
cancers, the C-terminal 14-3-3 binding site of CRAF is phosphorylated by AMPK, which facilitates CRAF dimerization through improving the
association of CRAF dimer with 14-3-3 dimer and thus elevates the activity of CRAF, particularly upon RAF inhibitor treatment or metabolic stress.
Under these conditions, CRAF forms homodimers with itself or heterodimers with KSR or BRAF. b In BRAF(V600E)-harboring cancers, AMPK
phosphorylates the C-terminal 14-3-3 binding site of BRAF(V600E), which prevents BRAF(V600E) dimerization with KSR through enhancing the
association of a single BRAF(V600E) molecule with 14-3-3 dimer and thus blocks the activity of BRAF(V600E) upon metabolic stress
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therapeutic values for treating Ras-mutated cancers
in vivo so far. As we know, Ras/RAF-mutated cancer
cells have a high basal activity of autophagy though
hyperactive MAPK signaling inhibits the LKB1-AMPK-
ULK1 signaling axis, which is critical for maintaining
cellular metabolic homeostasis. MAPKi relives the
LKB1-AMPK-ULK1 axis and thus further elevates au-
tophagic flux in Ras/RAF-mutated cancer cells, which
adapts Ras-mutated cancer cells to MAPKi [25, 254], or
promotes drug tolerance and subsequent resistance of
RAF-mutated cancer cells [253] (Fig. 5). Pharmaceutical
blocking of AMPK by compound C has been shown to
remarkably reduce the RAFi-resistant clones arising
from BRAF-mutated melanoma [231]. Furthermore,
combinations of autophagy inhibitors with RAF/MEK/
ERK inhibitors (chloroquine plus vemurafenib, hydroxy-
chloroquine plus trametinib, or chloroquine plus
SCH772984) can effectively block the growth of K-ras-
mutated pancreatic ductal adenocarcinoma, N-ras-
mutated melamona, as well as BRAF-mutated colorectal
cancer and melanoma in vivo [248, 253, 254, 280] (Fig. 5).
However, it has to be noted that although both AMPK in-
hibitors and activators may synergistically enhance the

therapeutic efficacy of RAF inhibitors against BRAF-
mutated cancers, molecular mechanisms underlying these
phenomena are completely different.
Combinatorial inhibition of both MAPK and AMPK

signalings has shown promising potentials for treating
Ras/RAF-mutated cancers. To target MAPK signaling,
the first-generation RAF/MEK/ERK inhibitors have been
developed and applied to clinic treatment, and the
second-generation drugs that can inhibit RAF mutants
with elevated dimer affinity or have much less paradox-
ical effect have also undergone clinical trials [102, 121,
281, 282]. In contrast, the drug development of AMPK-
specific activators and inhibitors lags far behind the
needs for treating cancers, though some AMPK activa-
tors such as O304 are undergoing clinical trials for other
diseases [148]. Currently, only two non-specific AMPK
activators, phenformin and metformin, that have been
approved for treating type II diabetes are undergoing
clinic evaluations as combinatorial agents for treating
BRAF-mutated melanoma together with vemurafenib or
dabrafenib/trametinib. As to AMPK-specific inhibitors,
only compound C has been tested in animal models at
present [283]. Although a combination of compound C

Fig. 5 Combinatorial targeting of hyperactive Ras/RAF/MEK/ERK (MAPK) signaling and AMPK-mediated autophagy to treat Ras/RAF-mutated
cancers. Blocking hyperactive Ras/RAF/MEK/ERK (MAPK) signaling by MAPK inhibitors in Ras/RAF-mutated cancer cells elevates autophagic flux
through relieving LKB1/AMPK/ULK1 axis and inhibiting glycolysis and mitochondrial functions, which leads to drug tolerance and/or acquired
resistance. Combinatorial inhibition of both hyperactive MAPK signaling and autophagy remarkably improves therapeutic efficacy of drugs against
these cancers
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with RAF inhibitor, vemurafenib can effectively inhibit
the growth of Ras-mutated cancer cells in vitro [231],
and its therapeutic efficacy/benefit needs further investi-
gations by using preclinical animal models and through
clinical trials. Overall, these unmet needs for AMPK-
specific activators and inhibitors in targeted cancer
therapies appeal to accelerate their pharmaceutical
development.

Conclusions and perspectives
Recent studies have provided compelling evidence that inter-
plays between MAPK and AMPK signalings play a critical
role in cell physiology and have important implications in
disease treatment, particularly for cancer. Combinatory tar-
geting both MAPK and AMPK signalings represents for a
promising therapeutic intervention. However, although the
framework by which these two signalings interact with each
other has been illustrated, the precise molecular basis and
their impacts on cancer therapies remain largely unresolved.
For instance, how the AMPK signaling differentially regulates
the dimerization of different RAF isoforms (BRAF versus
CRAF) and thus distinctly alters the outputs of MAPK sig-
naling in Ras- versus RAF-mutated cancers is unclear. Be-
sides elevating autophagic flux, does the AMPK signaling
plays other roles in the MAPKi-resistance of Ras/RAF-mu-
tated cancers? Addressing these questions would deepen our
understanding of MAPK/AMPK interplays and help us de-
velop better combinatorial therapies for cancers and other
diseases. In addition, developing AMPK-specific activators/
inhibitors would be an attractive research topic for both
academy and pharmaceutical industry in the next years given
their absence and unmet needs in clinic treatment.
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