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Abstract: Many studies have shown that most genomes are transcribed into non-coding 
RNAs (ncRNAs), including microRNAs (miRs) and long non-coding RNAs (lncRNAs), 
which can affect different cell characteristics. LncRNAs are long heterologous RNAs that 
regulate gene expression and various signaling pathways during homeostasis and develop
ment. Studies have shown that a lncRNA is an important regulatory molecule that can be 
targeted to change the physiology and function of cells. Expression or dysfunction of 
lncRNAs is closely related to various genetic, autoimmune, and metabolic diseases. The 
importance of ncRNAs in oral submucosal fibrosis (OSF) has garnered much attention in 
recent years. However, most research has focused on miRs. The role of these molecules in 
OSF is incompletely understood. This review focuses on the emerging role and function of 
lncRNAs in OSF as novel regulators. Finally, the potential functional role of lncRNAs as 
biomarkers for OSF diagnosis is also described. LncRNAs are expected to become a new 
therapeutic target, but more research is needed to understand their biological functions more 
deeply. 
Keywords: oral submucous fibrosis, long non-coding RNAs, function, mechanism, 
biomarker

Introduction
Oral submucosal fibrosis (OSF) is a chronic inflammatory oral disease that can 
cause scarring and tissue fibrosis.1 OSF symptoms include dry mouth, pain, dys
geusia, restricted movement of the tongue, cramps, difficulty in swallowing, and 
changes in tone activity.2 Due to the high prevalence of malignant transformation 
(1.5–15%), the mortality risk from OSF is worrisome.3

OSF pathogenesis is incompletely understood, but is thought to be caused by 
a combination of factors: chewing areca (betel) nut, immune process, genetic 
factors, and nutritional deficiencies.4 According to current epidemiological studies 
and research, chewing areca nut is the most prominent risk factor for OSF.5 

Arecoline in areca nut is the primary alkaloid that causes OSF.6–8 Arecoline can 
increase the expression of growth factors and cytokines in fibroblasts, as well as 
promote collagen deposition and prevent collagen breakdown.9 Transforming 
growth factor-β (TGF-β) is the main cytokine involved in OSF progression. TGF- 
β stimulates collagen formation significantly by activating the procollagen genes 
collagen type I (COL1)A2, COL3A1, COL6A1, COL6A3 and COL7A1.10 TGF-β 
can also upregulate expression of lysyl oxidase (which is a crosslinked product of 
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collagen fibers) and enhance procollagenase expression.11 

Flavonoids are the other important components of areca 
nut, and their synergistic effect with alkaloids can induce 
OSF.12

Inflammatory cells have also been linked to OSF initia
tion. Areca nut-induced mucosal inflammation attracts acti
vated T cells and macrophages, as well as stimulating 
production of basic fibroblast growth factors (bFGF) and 
TGF-β1. Continued overexpression of bFGF in oral cells 
can cause obstacles to collagen deposition in OSF.13 

Arecoline also upregulates expression of other proinflamma
tory and pro-fibrotic cytokines, such as interleukin (IL)-1, IL- 
6, IL-8, tumor necrosis factor (TNF)-α, platelet-derived 
growth factor (PDGF), and keratinocyte growth factor.14 

The wound-healing response is activated by cell inflamma
tion, which reduces matrix metalloproteinase (MMP) expres
sion while increasing tissue inhibitor of matrix 
metalloproteinase (TIMP) expression.15 Reduced levels of 
gelatin-degrading proteases (eg, MMP-2, MMP-9) secreted 
by fibroblasts and increased levels of TIMP-1 lead to a loss of 
extracellular matrix (ECM) balance in OSF.16

In addition, malnutrition (eg, insufficiency of proteins 
and vitamins, or anemia), as well as alterations in serum 
levels of iron and copper, are related to OSF 
development.17,18 Serum iron deficiency can alter the 
epithelial structure, increase mucosa permeability, and com
promise its barrier function. Copper aids in fibrosis devel
opment by increasing the activity of lysyl oxidase.19 It has 
been shown that people who are deficient in iron or vitamin 
B12 are more susceptible to OSF.20 The molecular and 
cellular mechanisms of OSF have been explored exten
sively, but some features have not been focused upon. For 
instance, OSF onset is recessive; some patients take about 
2–20 years to develop symptoms.21 The lack of an approach 
for early detection for this type of chronic occult disease is 
a problem. Tissue biopsy is the most common method of 
diagnosis. The biopsy specimens of patients with early OSF 
show aberrant proliferative alterations.22 Hence, early 
detection of precancerous lesions is crucial, as is knowledge 
of their pathophysiology and diagnostic procedures, in low
ering the risk of malignant OSF.

Analyses of gene-regulatory networks have concen
trated chiefly on protein-coding genes. Genomic analysis 
of the human genome has demonstrated that ~90% of 
transcripts are non-coding (nc)RNAs.23 Recent studies 
have shown that ncRNAs are essential regulators of gene 
expression and the signal transduction of cells.24 

Increasing evidence suggests that ncRNAs are critical 

determinants of gene expression during OSF.25 Zheng et 
al26 found microRNA (miR)-203 expression to be down
regulated significantly in OSF tissues compared with that 
in normal buccal mucosa tissues. Upregulation of miR-203 
expression inhibited cell growth and increased expression 
of the proteins of cytokeratin 19 and E-cadherin while 
suppressing expression of N-cadherin and vimentin. 
Expression of miR-200b and miR-200c was downregu
lated in OSF specimens. Arecoline treatment reduced 
miR-200c expression in buccal mucosal fibroblasts.27,28 

By targeting zinc finger E-box binding homeobox (ZEB) 
1 and ZEB2, miR-200c and miR-200b increased 
E-cadherin expression. ZEB1 interacts with the promoter 
of α-smooth muscle actin (α-SMA) and causes α-SMA 
overexpression in myofibroblasts during fibrogenesis. 
Therefore, the potential functional role of ncRNAs as 
targets and biomarkers for diagnosis and treatment has 
been proposed.

Long non-coding (lnc)RNAs are a family of regulatory 
non-coding RNA molecules with a transcript length >200 
nucleotides (nt).29 They are believed to play a part in 
physiological conditions and various human diseases: can
cer, metabolic diseases, and cardiovascular diseases.30 

Recent studies have shown that lncRNAs are key regula
tors in determining myofibroblast activation and OSF.31,32 

Expression of the lncRNA GAS5-AS1 is downregulated in 
OSF tissue.33 GAS5-AS1 inhibits phosphorylation of 
Smad2, as well as TGF/Smad signaling and α-SMA 
expression in myofibroblasts. LINC00084 has the opposite 
effects. LINC00084 shows aberrantly high expression in 
OSF tissues and myofibroblasts.34 The lncRNAs related to 
fibrosis pathogenesis mainly involve cell macromolecules 
(eg, chromatin, protein, RNA).35 The role of ncRNAs 
(especially lncRNAs) in fibrosis is being investigated gra
dually, and the underlying mechanism between them and 
OSF must be clarified.

In this review, we summarize recent advances in 
lncRNA research, as well as the molecular mechanisms 
and functions of lncRNAs during OSF. Finally, we discuss 
the potential role of a lncRNA-based diagnosis for OSF.

Overview of lncRNAs
LncRNAs are a new category of ncRNA transcripts. So far, 
~30,000 lncRNA transcripts in the human genome have been 
identified.36 Most lncRNAs are made by RNA polymerase II, 
and have little coding ability.37,38 However, they have many 
common features with mRNA, such as capping of the 5′ end, 
which usually contains exons and introns.39,40 lncRNAs have 
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a wide range of functions, which may be due to their ability to 
bind DNA, RNA, or proteins. These interactions can enable 
use of a lncRNA as a guide, enhancer, decoy, or scaffold for 
post-transcriptional and post-translational regulation of gene 
expression (Figure 1).41,42 For example, several lncRNAs 
have been shown to interact with chromatin modifiers (eg, 
polycomb repressor complex-2) and recruit them to target 
gene promoters to activate or inhibit their cis or trans tran
scription (usually at multiple sites).43,44 Conversely, 
a lncRNA can also act as a “bait molecule” to seize regula
tory factors in the nucleus or cytoplasm. If a lncRNA is 
transcribed, it binds directly to some protein molecules, 
such as chromosome-folding proteins or transcription regu
lators, thereby weakening the function of the protein.45 The 
lncRNAs in cytoplasm can bind directly to miR molecules, 
prevent them from binding to target genes, thereby upregu
lating expression of target genes.46 lncRNAs can be used as 
“central platforms” to enable different macromolecular com
plexes to be assembled, thereby promoting information 
fusion and integration between different signaling 
pathways.47,48 In addition, lncRNA can be used as secondary 
activators or enhancers for activation of target genes. 
lncRNAs and enhancer RNAs (eRNAs) can promote 

expression of protein-coding genes (PCGs) that are very 
close to their enhancers through preformed chromatin 
loops, thereby recruiting chromatin-activation complexes to 
the promoters of PCGs.49,50

Recent studies have shown that lncRNA is the primary 
vector of aging,51 cancer,52 and neurological diseases.53 

Increasing numbers of studies have shown that lncRNAs 
are also involved in the pathologic process of OSF, but the 
relationship between these processes is unclear. Therefore, 
a potential new link between lncRNAs and OSF opens up 
a new field for treatment and diagnosis.

Function Role of lncRNAs in OSF
OSF is a multi-factor, multi-step process involving genes, 
epigenetics, and the environment. Regulation of lncRNAs 
cannot be ignored in the occurrence and development of 
OSF. Accordingly, we elaborate on the regulation of 
lncRNAs in OSF (Table 1).31–33,54–57

H19
The H19 gene is expressed as a single allele on the chromo
somes of maternal origin in mice and humans. H19 shares 
a common regulatory sequence with other genes (including 

Figure 1 The general function and mechanism of LncRNA. (1) In the nucleus, lncRNAs can guide chromatin modifiers and various transcriptional regulators to DNA, 
thereby inhibiting and/or activating gene expression. LncRNAs can be used as enhancers of target gene activation. They can also act as molecular baits to move proteins away 
from specific DNA locations. (2) In the cytoplasm, lncRNAs can be used as scaffolds to bring two or more proteins into the complex. In addition, they also act as sponges for 
other transcripts or proteins, as protein templates, or regulate mRNA degradation and translation.
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insulin-like growth factor-2) in the cluster.58 H19 encodes 
a 2.3-kb non-coding RNA, is expressed abundantly on 
almost all maternal alleles in fetal tissues, but its expression 
drops sharply after birth and it is expressed only in the 
myocardium and skeletal muscle.59,60 H19 shows high 
expression in cancers of different tissue origins, owing to 
the loss of imprinting in some cases. H19 has been shown to 
have carcinogenic and anti-cancer properties 
simultaneously.61 Reports have suggested that H19 is 
related to various diseases, including those involving tissue 
fibrosis.62–65 There is clear evidence that H19 is involved in 
OSF pathogenesis. Yu et al31 showed H19 expression in 
OSF tissues to be upregulated. Abnormal expression of H19 
can enhance myofibroblast activity, such as the contractility 
and migration ability of collagen gel. H19 acts as 
a “sponge” for miR-29b in fibrotic buccal mucosal fibro
blasts (fBMFs) and prevents miR-29b from binding directly 
to the 30th untranslated region of COL1A1. The latter is 
considered to be the main component of excessive collagen 
deposition in fibrosis.66 Downregulation of miR-29b 
expression augments COL1A1 expression, whereas sup
pression of H19 reduces COL1A1 expression. Ectopic 
expression of miR-29b can ameliorate the phenotype of 
fBMFs and expression of α-SMA and fibronectin-1.31 

These discoveries require further research to ascertain the 
role of H19 in OSF progression.

HOXA Terminal Transcript (HOTTIP)
HOTTIP is a lncRNA encoded by the 5’ terminal genomic 
region of HOXA.67 HOTTIP is a 3764-nt spliced, poly
adenylated lncRNA.68 Its genomic location gives it a role 

in activation of several 5’ HOXA genes.68 Functional 
studies have shown that the chromosomal loop enables 
HOTTIP to lie adjacent to HOXA, HOTTIP binds directly 
to WD repeat domain (WDR)5 protein, and then the 
WDR5/MLL complex recruits across HOXA sites, leading 
to methylation of histone 3 lysine 4, and activation of 
HOXA transcription.69 This transfer of signals from the 
higher-order chromosomal configuration to the chromatin 
code69 not only means that HOTTIP is involved in the 
development process but also enhances its role as a cancer- 
related lncRNA. Huang et al70 demonstrated that HOTTIP 
can be used as a biomarker for overall survival of oral 
squamous cell carcinoma (OSCC) patients. HOTTIP also 
promotes OSF development. Lee et al32 found that 
HOTTIP expression was upregulated in human fBMFs in 
a study on OSF. Inhibition of HOTTIP expression reduced 
myofibroblast activity (contraction and migration ability of 
collagen gel) and the development of proinflammatory 
cytokines (IL-6, TNF-α). Furthermore, they showed 
HOTTIP expression to be positively associated with OSF- 
related variables, including COL1A1, TGF-β, and α-SMA, 
indicating that HOTTIP is an oncogene and fibrosis med
iator. Those data point to a possible mechanism for 
HOTTIP in OSF, which could lead to new treatment 
options.

Hypoxia-Inducible Factor 1A Antisense 
RNA 1 (HIF1A-AS1)
HIF1A-AS1 is a natural antisense transcript derived from 
the HIF-1α sequence, which encodes the 30th untranslated 

Table 1 LncRNAs are Involved in Regulating Oral Submucosal Fibrosis

lncRNA Targets Expression Functions Reference

LINC00974 TGF-β + Activates TGF-β/Smad signaling to promote OSF [54]

H19 miR-29b + Suppresses OSF via H19/miR-29b/COL1A1 axis. [31]

HOTTIP TNF-α + Promotes the persistent activation of myofibroblasts as well as the chronic 

inflammation and collagen deposition.

[32]

HIF1A-AS1 – + Promotes the arecoline-induced migration activity of human oral mucosal 

fibroblasts

[55]

LINC00312 YBX1 + Promotes OSF via LINC00312/YBX1 axis. [56]

LINC00084 miR-204 + Promotes myofibroblast transdifferentiation of buccal mucosal fibroblasts [56]

GAS5-AS1 p-Smad2 - Attenuate the activation of myofibroblasts. [33]

ADAMTS9-AS2 – - Suppresses OSF via AKT signaling pathway. [57]
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region of HIF-1α mRNA.71 HIF1A-AS1 is located on 
chromosome 14, and has a length of 2100 nt.72 

Increasing numbers of studies have shown that HIF-1α 
dysfunction is related to various oral diseases in humans, 
including cancer and fibrosis. Lee et al73 found that HIF- 
1α expression in areca nut chewing-related OSCC was 
upregulated significantly. Uehara et al74 revealed that 
HIF-1α may play an important part in the lymph-node 
metastasis and prognosis of OSCC patients. According to 
several studies, HIF-1α expression is upregulated in OSF 
tissues, which indicates changes in the proliferation, 
maturation, and metabolic adaptation of cells, and 
increases the possibility of malignant transformation.75 

Wang et al55 demonstrated that HIF1A-AS1 expression 
was upregulated abnormally in OSF tissues and fBMFs, 
and that arecoline could induce an increase in HIF1A-AS1 
expression in BMFs. Simultaneously, they discovered that 
HIF1A-AS1 knockout inhibited the migration ability of 
BMFs stimulated by arecoline and inhibited the myofibro
blast activity induced by arecoline. Therefore, measuring 
HIF1A-AS1 expression in OSF tissue aids understanding 
of whether HIF1A-AS1 is involved in OSF carcinogenesis.

Linc00312
LINC00312 (also known as NAG7) is located on chromo
some 3p25.3.76,77 LINC00312 is a transmembrane protein 
containing phosphorylation sites for protein kinase C and 
sites for myristyl alcohol. LINC00312 was initially reported 
in nasopharyngeal cancer.78 Studies have shown that 
LINC00312 can regulate cancer progression through numer
ous pathways, compounds, and miRs.79–81 LINC00312 can 
downregulate expression of cyclin B1 in cancer cells and 
induce cell-cycle arrest in the G2-M phase, thereby inhibiting 
cell proliferation and tumor progression in vivo.81 However, 
unlike the inhibitory effect of LINC00312 in various types of 
cancer, Yu et al81 discovered that LINC00312 expression in 
human OSF tissues was increased. Furthermore, fibrotic 
factors such as α-SMA, COL1A1, and fibronectin are linked 
favorably with LINC00312 expression. α-SMA has been 
demonstrated to upregulate the contractile activity of 
fibroblasts,82 and is a marker of myofibroblasts. Fibronectin 
deposition also causes OSF.83 Inhibition of LINC00312 
expression has been shown to reduce myofibroblast activity, 
including the contraction and migration of collagen gel, 
wound healing, as well as the gene expression of myofibro
blast markers. In addition, Y-box-binding protein (YBX)1 
expression is regulated by LINC00312. The myofibroblast 
activity induced by LINC00312 was found to be restored 

after YBX1 knockout. Those results indicate that 
LINC00312-mediated myofibroblast activation requires 
YBX1. Overall, those findings have revealed that 
LINC00312 may be involved in the fibrosis process of OSF 
and regulate OSF progression. The LINC00312/YBX1 axis 
may become a target for developing treatments for OSF.

Growth Arrest Special (GAS)5
GAS5 is the host gene of small nucleolar RNA (snoRNA). 
GAS5 is located on chromosome 1q25, and has a total length 
of ~630 nt.84 GAS5 in humans comprises 12 non-conserved 
exons, which encode 10 box C/D snoRNAs and two mature 
lncRNAs (GAS5a and GAS5b) in its introns. GAS5 is a 5’ 
terminal oligopyrimidine chain (5’ top) RNA, and is charac
terized by an upstream oligopyrimidine chain sequence.85 

GAS5 transcripts show various alternative splicing patterns; 
although GAS5 has a short open reading frame (ORF), the 
putative ORF does not seem to encode functional proteins, and 
its role may be as a snoRNA host gene.86 GAS5 may exert 
a functional effect by interacting with steroid receptors that 
inhibit its action.87 GAS5 was discovered in normal murine 
fibroblasts, and was identified as a potential tumor-suppressor 
gene overexpressed during growth arrest.88 GAS5-mediated 
glucocorticoid-dependent transcription in epithelial cells 
serves as a “decoy” for glucocorticoid response element 
(GRE) to compete with DNA GRE for binding to the DNA- 
binding domain of the glucocorticoid receptor, thereby redu
cing cell metabolism.89 According to a growing body of 
research, GAS5-AS1 overexpression lowers the markers of 
endothelial–mesenchymal transition (EMT).90 Lin et al33 dis
covered that GAS5-AS1 expression in OSF samples and 
fBMFs was reduced. Increased expression of GAS5-AS1 
can inhibit the contraction and migration of collagen in 
fBMFs. The myofibroblast marker α-SMA decreased in 
GAS5-AS1 overexpressed myofibroblasts, α-SMA is posi
tively correlated with the severity of OSF and the ability to 
wrinkle deformable substrates and enhance the shrinkage of 
collagen gels. Overall, those findings show that regulation of 
GAS5-AS1 expression reduces myofibroblast activation. This 
phenomenon may provide a great starting point for developing 
treatment methods to prevent OSF progression.

Linc00084
LINC00084 is an antisense transcript of the protein-coding 
gene nuclear enriched abundant transcript-1. LINC00084 
is located on human chromosome 11q13.1. It is a nuclear- 
retained lncRNA that uses the nuclear cytoplasmic RNA 
components of human fibroblasts and lymphoblasts.91 
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Usually, LINC00084 is found adjacent to the nucleus but, 
if the inflammasome is activated, it dissociates from the 
nucleus and moves to the cytoplasm.92 LINC00084 
expression is increased substantially in oral precancerous 
lesions, and LINC00084 enhances the proliferation and 
invasion of oral cancer cells by regulating miR-365/ 
RGS20 signaling, so LINC00084 has been linked to the 
progression of oral cancer.93,94 Evidence also suggests that 
LINC00084 expression boosts the stress response and 
promotes OSF development.95 According to Lee and col
leagues, LINC00084 is up-regulated in OSF tissues and 
myofibroblasts generated from OSF specimens, and is 
favorably linked with a number of fibrotic variables.34 

Silencing LINC00084 expression has been shown to pre
vent arecoline-induced activities (eg, contraction and 
migration of collagen gel, and wound-healing capacities). 
LINC00084 interacts with miR-204, and prevents it from 
binding directly to ZEB1. The latter is an important tran
scription factor in EMT, and can upregulate α-SMA 
expression and myofibroblast transdifferentiation from 
BMFs if it is induced by arecoline.96 Upregulation of 
LINC00084 expression stimulates ZEB1 expression, 
whereas ectopic expression of miR-204 suppresses it. 
Those findings suggest that inhibition of LINC00084 
expression could help to reduce the fibrotic characteristics 
of fBMFs and slow the course of OSF.

Currently, a considerable number of lncRNAs have 
been discovered as miRNA sponges, and they play a key 
role in the onset and progression of various fibrosis. 
However, research into the role of lncRNA as a miRNA 
sponge in OSF is just being started. Only a few studies 
have been confirmed in vitro, and their influence on OSF 
has yet to be experimentally proven. New technologies, 
including as third-generation sequencing, can aid research
ers in better understanding lncRNA and predicting its 
function, accelerating the field’s progress. At the same 
time, it is necessary to learn from related research, such 
as the fibrosis mechanism of other organs.

Regulatory Mechanisms of lncRNAs 
in OSF
So far, lncRNAs are involved in various signaling path
ways, such as TGF-β, PI3K/Akt/mTOR, MAPK/ERK, and 
Wnt/β-catenin signaling pathways have been shown to 
regulate OSF. Studies have shown that targeting the 
PI3K/Akt/mTOR pathway can effectively treat the OSCC 
that occurs in the context of OSF.97 Activation of TGF-β/ 

Smad signaling is considered to be one of the main reasons 
for inducing myofibroblast transdifferentiation in OSF.98 

Those signaling pathways may also become critical ther
apeutic targets for OSF (Figure 2).

TGF-β/Smad Signaling Pathway
The most common pro-fibrotic cytokine in OSF is TGF-β. 
It sends signals through Smad-dependent and non-Smad 
pathways, causing various biological effects in the 
process.99 Haque and colleagues showed TGF-β expres
sion to be upregulated in OSF tissue.100 The nuclear loca
lization of p-SMAD2 in OSF tissue shows an activation 
effect.101,102 This activation of TGF-β signal transduction 
in OSF tissue may be caused by upregulation of the ligand 
(TGF-β1) and its two activating factors: αvβ6 integrin and 
THBS-1.71 Expression of lncRNAs is dynamic, and sev
eral lncRNAs take part in the TGF-β signaling pathway. 
This action leads to expression of the genes related to 
collagen accumulation and ECM protein-coding genes 
(eg, COL14A1, COL16A1, COL12A1, COL8A1) and 
myofibroblast differentiation.103 Recently, Lin et al33 stu
died the role and function of lncRNA GAS5 in OSF. They 
concluded that arecoline-induced upregulated expression 
of p-Smad2 is inhibited by GAS5-AS1 overexpression. 
Multiple RNA-Smad binding elements are found in 
GAS5 and compete with Smads to prevent them from 
binding to the promoter of the TGF-β target gene. The 
TGF-β/Smad signaling pathway is negatively regulated by 
it on the SBE. Fang et al54 found that LINC00974 may act 
as an upstream regulator of TGF-β signaling after areco
line stimulation. Expression of several downstream targets 
of the TGF-β pathway is increased in OSF tissues, and 
there is a positive correlation between LINC00974 expres
sion and myofibroblast markers. In myofibroblasts inhib
ited by LINC00974, TGF-β secretion and expression of 
phosphorylated smad2 are inhibited. Yu et al31 demon
strated that lncRNA H19 is another downstream factor of 
TGF-β1. TGF-β expression is upregulated in arecoline- 
stimulated BMFs, which induces upregulation of lncRNA 
H19 expression, and lncRNA H19 acts as a sponge of 
miR-29b and prevents its binding to COL1, thereby inhi
biting the anti-fibrotic effect of miR-29b.

PI3K/Akt Signaling Pathway
EMT in OSCC and OSF is closely related to activation of the 
PI3K/Akt pathway. Inhibition of PI3K activation reduces 
ECM accumulation, whereas inhibition of Akt expression 
leads to a reduction of oral submucous fibroblast markers in 
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OSF.104 TGF-β can activate PI3K/Akt and other Smad- 
independent signaling pathways to promote wound healing 
or fibrosis.105 TGF-β activates PI3K through its receptor or 
transactivates it through epidermal growth factor and PDGF 
receptors. PI3K activation phosphorylates phosphatidylinosi
tol 4,5-bisphosphate (PIP2) into phosphatidylinositol 3,4,5-tri
phosphate (PIP3), a phospholipid-membrane protein that 
binds to Akt. Upon binding, Akt is phosphorylated and acti
vated by phosphoinositide-dependent kinase-1. Phosphatase 
and tensin homolog (PTEN) promote dephosphorylation of 
PIP3.106 PTEN is considered to be a negative regulator of 
myofibroblast differentiation in fibroproliferative diseases. 
The increase in TGF-β expression in OSF may lead to 
a decrease in PTEN level and unrestricted Akt activity, thereby 
prolonging the survival time of fibroblasts and, ultimately, 
leading to fibrosis.107 In addition, the relationship between 
lncRNA and activation of the PI3K/Akt pathway has been 
studied recently. Through the analysis of miR target genes 
regulated by exosomal ADAMTS9-AS2, Zhou et al57 discov
ered several significantly enriched pathways: metabolic, 
PI3K-Akt signal transduction, and tumorigenesis. Exosomal 

ADAMTS9-AS2 inhibited the malignant behavior of OSCC 
cells by modulating EMT and Akt signaling pathways.

Hypoxia-Dependent Signaling Pathway
Hypoxia-inducible factor (HIF) is the primary mediator of 
the well-known adaptive response to hypoxia in various 
pathophysiological processes.108,109 HIF is an essential 
helix–loop–helix transcription factor, consisting of 
a hypoxia-induced α-subunit and a constitutively 
expressed nuclear β-subunit. If a sufficient level of oxygen 
is available, the conserved proline residues of HIF-α sub
units are hydroxylated by HIF-prolyl hydroxylase domain 
protein (PhD) and then serve as substrates for the ubiquitin 
ligase complex The von Hippel–Lindau protein that recog
nizes the component can identify hydroxylated HIF-α, and 
degrade it rapidly by inducing E3 ubiquitination of α- 
subunits.110 The enzyme activity of PhD is inhibited in 
hypoxic environments, so unmodified HIF-α escapes 
destruction and forms a functional complex with HIF-β 
and its transcriptional co-activator CBP/p300.110 This 
complex combines with the hypoxia response element 

Figure 2 LncRNAs participate in the regulation of oral submucosal fibrosis through multiple signaling pathways. LINC00974 and GAS5-AS1 activate the type I TGF-βR and 
recruit the receptor-activated Smads, the R-Smads (Smad2/3), which are phosphorylated to form a complex with Smad4. The inhibitory Smads (I-Smads) negatively regulate 
the Smad activation by competing with Smad2 and Smad3 for binding to the type I TGF-βR. Feedback loops between transcription factors and H19 also regulate the TGF-β 
induced EMT. Furthermore, Inhibition of ADAMTS9-AS2 and overexpression of HOTTIP involved in the PI3K/Akt signalling pathway could promote fBMFs activation and 
subsequently induce oral submucosal fibrosis.
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(HRE) to regulate several HIF-regulated genes at the tran
scriptional level, thereby synergistically producing a series 
of compensatory responses to hypoxia at cellular and 
physiological levels.109,111 Hypoxia causes tissue fibrosis, 
leads to phenotypic changes, and promotes EMT.106 In 
a healthy person, HIF-1α undergoes ubiquitination and 
subsequent proteasome degradation.106 Under hypoxic 
conditions, HIF-1α is stable and interacts with co- 
activators such as p300/CBP to regulate its transcriptional 
activity.112 HIF-1α can induce EMT by combining the 
promoter regions of ZEB1113 and Snail1,114 thereby 
improving its trans activity and expression. HIF-1α helps 
cells survive and proliferate in the early stage of cancerous 
transformation under hypoxic conditions.75,115 Studies 
have shown that HIF1A-AS1 may be a new regulator of 
HIF-1α and TGF-β3 under oxidative stress because its 
expression is related directly to HIF-1α expression.116 

OSF pathophysiology is thought to be influenced by oxi
dative stress and TGF-β signaling.117

Signal pathways such as TGF-β and AKT appear to 
interact in the pathogenesis of OSF, according to 
a growing body of research. Although the cell biology of 
the TGF-β and AKT pathways has been well documented 
in the pathophysiology of cell growth and many disorders, 
little is known about the mechanisms of these pro-fibrotic 
pathways in OSF. Simultaneously, the majority of research 
have focused on detecting pro-fibrotic cytokines and EMT- 
related proteins (such as ZEB1). This suggests that 
lncRNAs are important in the development of OSF, 
although the exact regulation mechanism involving 
lncRNAs and these proteins is unknown. More research 
is needed to figure out the exact intricacies of how the 
lncRNA network influences OSF via signal transduction 
pathways like TGF-β.

Future Expectations
OSF is diagnosed primarily by a subjective clinical diag
nosis, with histopathological analysis remaining the “gold 
standard” for the diagnosis.118 Tissue biopsy is an intru
sive evaluation for which the test report can take a long 
time to be provided.9 If treated inappropriately, the suffer
ing of OSF patients can be exacerbated. Some OSF 
patients refuse to have a biopsy, so a non-invasive, accu
rate detection tool to aid the clinical diagnosis is needed 
urgently.

With the emergence of “precision medicine” in fibrosis 
treatment, use of disease-specific biomarkers can help 
treatment adjustment for individuals or subgroups of 

patients. Compared with the fibrosis biomarkers used 
recently, increasing evidence suggests that dysregulated 
lncRNAs can cause (or be related to) the carcinogenesis 
of OSF. Therefore, lncRNAs may become promising bio
markers for OSF diagnosis. Through RNA sequencing of 
OSF patients, OSCC patients, and healthy controls, Zhou 
et al119 found 687 lncRNAs to show significantly different 
expression during OSF progression, of which 231 were 
upregulated and 456 were downregulated, Those data indi
cated that lncRNAs are involved in regulation of different 
stages of OSF development. Five newly discovered 
lncRNAs (HCG22, RP11-397A16.1, LINC00271, CTD- 
3179P9.1, ZNF667-AS1) show different expression during 
OSF progression, which suggests the importance of these 
lncRNAs in the malignant development of OSF. However, 
clinical studies have involved only a small number of 
patients or healthy controls, so larger study cohorts and 
in vivo animal models are needed to determine the best 
new biomarkers.

Recently, development of biopsy of body fluids has 
shown less invasiveness, shorter waiting times for test 
reports, and greater patient acceptance.120 lncRNAs in bio
logical fluids (eg, saliva, plasma) and exosomes are stable 
Hence, the precise detection of lncRNA profiles in biological 
fluids is attractive in clinical-translational research for bio
marker development and diagnoses.121,122 Using real-time 
reverse transcription-quantitative polymerase chain reaction 
(RT-qPCR), expression of the lncRNA SAMMSON in the 
serum of OSCC patients and healthy controls was measured 
by Zheng and colleagues.123 They found that SAMMSON 
expression in the serum of OSCC patients was increased 
significantly compared with that of healthy controls, and 
that SAMMSON had high diagnostic sensitivity and speci
ficity. Zhang et al124 discovered that expression of the 
lncRNA CASC15 in the plasma of OSCC patients was 
upregulated compared with that in patients with oral ulcers 
and in healthy controls, which suggested that CASC15 was 
a potential diagnostic biomarker of OSCC. In liquid biopsies, 
exosomes have abundant detectable targets, such as proteins, 
DNA, RNA, and lipids.125 Exosomes are key components of 
the oral microenvironment. They can promote or inhibit 
EMT, regulate the conversion of fibroblasts to myofibro
blasts, help fibroblasts proliferate, and promote fibrosis in 
the process of immune regulation and mitochondrial 
damage.126 One can speculate that exosomes have unique 
advantages and potential in the screening and prognostic 
prediction of OSF. Therefore, quantities of lncRNAs can 
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be measured using RT-qPCR or high-throughput analysis if 
they are present in exosomes and extracellular vesicles.

Fluorescent probes have been used for non-invasive 
diagnoses in medical imaging.127 Compared with conven
tional protein probes, lncRNAs are the preferred potential 
targets because they are smaller molecules and are more 
diverse than proteins.128 Hence, the designed fluorescent 
probe can be synthesized readily, penetrate cells efficiently, 
and be used for in vivo imaging of OSF. Autofluorescence 
spectroscopy takes advantage of the fact that different dis
eased tissues have unique tissue morphologic characteristics. 
If tissue is excited to the appropriate wavelength, the internal 
fluorophores produce different fluorescence emission 
spectra.117 In recent years, scholars have developed 
a series of bright and stable fluorescent RNAs (referred to 
as “peppers”). These RNAs can be inserted into different 
non-coding and coding RNA sequences without affecting 
the transcription, localization, translation, or degradation of 
the target RNA and other vital functions, fluorescent label
ling, and real-time imaging of various RNAs in living 
cells.129 These fluorescent RNAs can be used for real-time 
imaging in various situations, including OSF (Figure 3).

However, several unresolved problems persist. First, 
a specific disease may be related to multiple lncRNAs, and 
a given gene may be regulated by multiple lncRNAs. 

Therefore, the interaction between lncRNAs may affect the 
protein expression of target genes and may complicate the 
potential role of lncRNAs as diagnostic markers of OSF. The 
specificity of established lncRNA targets should be verified 
before application. Second, lncRNAs, like other ncRNAs, 
are potential biomarkers. The design and identification 
methods in experiments are complicated, and these technol
ogies must be standardized. In addition, lncRNAs lack clin
ical application, and current research conclusions are based 
on the results of only a small number of OSF patients. Often, 
there are large differences in results between different 
groups, and data reproducibility is lacking. Therefore, the 
accuracy and reproducibility of lncRNAs as biomarkers 
should be verified but, nevertheless, they are very attractive 
as simple and accurate biomarkers, especially for OSF.

Conclusion
Many new insights into OSF pathobiology have been 
gained as a result of intensive research of lncRNAs. 
Through the lncRNAs–miRs–mRNAs axis, lncRNAs can 
operate as miR sponges, and control expression of down
stream pro-fibrotic molecules, which implies that lncRNAs 
are important regulators of OSF progression. lncRNAs 
from the blood samples or saliva samples of patients 
could be non-invasive clinical biomarkers (especially for 

Figure 3 These images show various ways to use lncRNA as a diagnostic marker. Through minimally invasive sampling of cell-free fluids (blood, urine, saliva, cerebrospinal 
fluid, pleural effusion), quantitative detection of lncRNAs in exosomes, apoptotic bodies and extracellular vesicles. Fluorescent probe bioimaging technology can not only 
detect the abundance of clinically relevant biomarkers in OSF samples, but also detect their heterogeneity and spatial distribution.
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early diagnosis) due to their exceptional stability as well as 
the simplicity and reproducibility of detection. However, 
research of lncRNAs in OSF is in its early stages, and 
much work must be done to fully comprehend the mole
cular mechanisms of lncRNAs and OSF. Our review cov
ers a small portion of the lncRNAs involved in OSF 
development. More novel lncRNAs associated with OSF 
may be discovered soon thanks to new technologies such 
as high-throughput sequencing. Furthermore, due to the 
complexity of the regulatory network of lncRNAs, the 
underlying molecular mechanism of OSF is mostly 
unknown. As a result, additional in vitro and animal- 
model investigations are required. If scholars can over
come some of the challenges associated with regulating 
these lncRNAs, patients with OSF may benefit greatly.
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