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Patient-level data from completed clinical studies or electronic health records
can be used in the design and analysis of clinical trials. However, these external
data can bias the evaluation of the experimental treatment when the statistical
design does not appropriately account for potential confounders. In this work,
we introduce a hybrid clinical trial design that combines the use of external
control datasets and randomization to experimental and control arms, with
the aim of producing efficient inference on the experimental treatment effects.
Our analysis of the hybrid trial design includes scenarios where the distribu-
tions of measured and unmeasured prognostic patient characteristics differ
across studies. Using simulations and datasets from clinical studies in
extensive-stage small cell lung cancer and glioblastoma, we illustrate the
potential advantages of hybrid trial designs compared to externally controlled
trials and randomized trial designs.

Randomized controlled trials (RCTs) are essential to demonstrate
causal effects of an intervention on clinical outcomes. Randomi-
zation reduces the risk of bias by balancing potential confounders
across treatment arms'. Though valuable, RCTs often require
large samples sizes, resulting in long durations of accrual and high
costs®. Non-randomized single-arm trials compare experimental
treatments to historic benchmarks, and typically require smaller
sample sizes than RCTs; however, they carry a risk of over- or
underestimating treatment effects because of potential variations
in patient populations across clinical trials*~. The use of patient-
level external control (EC) data from prior clinical studies has
been proposed to reduce these risks and improve the evaluation
of experimental treatments®.

The integration of EC data in the design and analysis of clinical
trials can take several forms, including testing/estimating treatment
effects upon study completion’, sample size re-estimation at interim
analyses (IAs), and early decisions to terminate the study for futility or

efficacy’®. With the increasing availability of data from past trials, the
prospective use of EC data in the design, conduct, and analysis of
clinical trials has the potential to reduce the cost and time of evaluating
new treatments®°,

In this work, we introduce and examine a hybrid trial (HT) design
that combines the use of EC data and randomization (Fig. 1) to test
experimental therapeutics. We evaluate pivotal operating char-
acteristics of the HT design such as power, the control of the false
positive rates, and the average sample size and study duration. To
evaluate these operating characteristics, we use simulations and two
collections of datasets from clinical trials in newly diagnosed glio-
blastoma (GBM) and extensive-stage small cell lung cancer (ES-
SCLC). We compare the HT design to single-arm externally controlled
trials® (ECTs), which leverage EC data, and RCTs. These comparisons
illustrate the benefits, limitations, and risks of leveraging EC data
using established metrics, such as the bias of treatment effects esti-
mates and the average sample size.
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Fig. 1| Two-stage hybrid trial (HT) and externally controlled trial (ECT) designs.
Panel (A) shows a two-stage HT design, with n; and n, and enrollments to the
internal control (IC) and experimental arm in ratios ryg:ryc and rag:rpc during the first
and second stages of the study, respectively. An interim analysis (IA) determines if
the study is closed for futility or not, and potentially updates the randomization
ratio from rye:ric during the first stage to r, cir, g for the second stage of the study.
These decisions are supported by an index of dissimilarity (see Methods) between

time since 1%t enrollment

the IC and external control (EC) populations. The same index of dissimilarity is
recomputed at completion of the study and supports the decision to leverage the
EC data for estimating the treatment effects of the experimental therapeutic or not.
Panel (B) describes an ECT design that enrolls all n = n; + n, patients to the
experimental arm. The ECT uses patient-level data of the experimental arm and
external control data for a futility IA and for the estimation and testing (H, : TE<O0)
of treatment effects at the final analysis.

Results
We examined the operating characteristics of the HT design described
in Methods. As summarized in Fig. 1, the first stage of the design ran-
domizes n, patients to the experimental and internal control (IC) arms.
The IA then determines if the study is closed for futility or not, and
potentially updates the randomization ratio from 1:1 during the first
stage of the study to r,ciro¢ for the second stage of the trial. These
decisions are supported by an index of dissimilarity (see “Methods”)
between the EC data and the early data from the IC arm. The same
index of dissimilarity is recomputed at the completion of the study and
supports the decision to leverage the EC data for estimating the
treatment effects of the experimental therapeutic or not.

We compared HT, ECT®, and RCT designs using model-based
simulations and in silico clinical trials generated with a resampling
algorithm (see Methods) applied to ES-SCLC and GBM datasets.

Model-based simulations

We considered a study with a maximum sample size of 120 patients, an
IA after 60 enrollments, and a targeted type I error rate of a=0.05.
ECTs and HTs utilized an EC dataset with 1000 patients. The size of the
EC dataset is similar to the sample sizes of the ES-SCLC and GBM data
collections. The simulated RCTs randomized all 120 patients to the IC
and experimental treatment in a 1:1 ratio, while all 120 patients in the
ECT received the experimental treatment.

Table 1 summarizes the simulation scenarios that we used to
compare the study designs. To examine the robustness and illustrate
potential pitfalls of the trial designs, we included scenarios (2-5) where
relevant pre-treatment variables were not available for interim and
final analyses. Moreover, in scenarios 4 and 5, the conditional outcome
distributions of the IC and EC populations were different. Table 2
reports the results for each scenario, the average study duration, the
average sample size, the proportion of trials that were terminated early
for futility, and the type I error rate and power across 2000 (RCTs,
ECTs, and HTs) simulations.

Scenario 1 (defined in Table 1), where all relevant pre-treatment
patient characteristics are available for analysis, represents an ideal
condition for leveraging EC data. Here, all designs have type I error
rates close to the targeted 5% level (see Table 2). As expected, the ECT
has superior performance compared to HTs and RCTs. For instance,
without a positive treatment effect, 44% of ECTs were terminated early
for futility, compared to 7% and 15-20% for RCTs and HTs, respec-
tively. In scenario 1, the RCT had approximately 67% power, compared
to 93% and 70-73% for the ECT and HT designs.

In scenarios 2-5, the set of available prognostic pre-
treatment variables for the interim and final analyses is incom-
plete and statistical assumptions for inference in ECTs are
therefore violated. In these scenarios, the ECT design performed
worse than the HT and RCT designs. For instance, in scenarios 2
and 4, without a positive treatment effect, 71% (>99%) of the
generated ECTs reported a false positive result (type | error),
compared to 5-8% for the HT design and 5% for the RCT design.
Moreover, in scenario 3, the power of the ECT design declined to
12% compared to >53% for the RCT and HT designs.

We also compared HT, ECT and RCT designs when the experi-
mental treatment is inferior to the SOC (TE<O, see Tables S9 and
$10). Similar to the scenarios without treatment effects (TE = O, rows
2-6 in Table 2), the HT design reduces the type I error rate compared
to the ECT if there is confounding (Supplementary Table 9, scenarios
4 and 6). Moreover, when TE < O, the HT design terminates the study
early for futility with higher probability than the RCT design.

In silico trials in ES-SCLC

We performed a literature review and identified pre-treatment char-
acteristics associated with overall survival (OS) in ES-SCLC (column 1 of
Supplementary Table 1). Only three of these variables (sex, age, and
ECOG performance status) were available in the datasets (CALGB-
9732", GALES" and Pirker et al.”) and were included in our analyses
(Supplementary Table 1).
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Table 1| Model-based simulation scenarios

Scenarios Distribution of pre-treatment vari- Effect of pre-treatment variables on Response rates for the EC, IC, and EXPT

ables in the EC population the outcome in the EC (and HT)

population

P, P, [ Os1 s, Os3 EC IC and EXPT (TE=0)  EXPT (TE > 0)
1 0.2 0.8 0.5 0.5 -0.5 0.0 0.43 0.50 0.68
2 0.2 0.8 01 0.5 -0.5 1.5 0.46 0.66 0.79
3 0.2 0.8 0.9 0.5 -0.5 1.5 0.73 0.66 0.79
4 0.2 0.8 01 0.5 -1.5(1.5) 1.5 0.30 0.66 0.79
5 0.2 0.8 0.9 0.5 -1.5(1.5) 15 0.55 0.66 0.79

We consider three binary pre-treatment variables X = (Xj, X2, X3). The variable X is not available and is not used in the interim and final analyses. For patients enrolled in the hybrid trial (HT), the three
pre-treatment variables are independent, with p(X;=1)=0.5 for j=1, 2, 3. Columns 2-4 report the distribution p(X; =1) of the three independent variables in the external control (EC) population.
Patient outcomes Y, given the pre-treatment variables, were randomly generated from a logistic model, p(Y =1|X, A, S) =F(§A +X’95),A =0,1and S=0,1, where F(t)=1/(1+exp{—t}). Columns
5-7 show the effects (63’/, log odds ratio) of the pre-treatment variables Xjon the expected outcome Y in the EC (S=1) and HT (S = 0) populations. When 00,/ = 01'/ we omit the value in parenthesis (90,/).
The treatment effect (TE, log odds ratio) for ineffective and effective experimental treatments equals 6 =0, 0.8. Columns 8-10 show the average response probability for the EC (A=0, S=1), the
internal control (IC) (A=0, S=0), and the experimental treatment (EXPT, A=1, S=0) populations with and without treatment effects.

Table 2 | Operating characteristics of the HT, ECT and RCT designs

No treatment effect (TE=0)
Design HT HT HT ECT RCT HT HT HT ECT RCT

Positive treatment effect (TE > 0)

randomization ratio r,¢ : o 11

1:2

0:1

0:1

11

11

1:2

0:1

0:1

1:1

Scenario 1: No unmeasured confounding, P(Y=1A=0,S=1)>P(Y=1A=0,S=0)

Type | error rate (%) 6 4 6 4 5 - - - - -
Power (%) - - - - - 70 7 73 93 67
% of trials stopped at IA 20 15 15 44 7 0 0 0 o] 0
Average study duration 21 22 22 18 23 24 24 24 24 24
Average sample size 108 112 m 93 115 120 120 120 120 120
Scenario 2: Unmeasured confounding, P(Y=1A=0,S=1)>P(Y=1A=0,S=0)

Type | error rate (%) 6 7 8 7 5 - - - - -
Power (%) - - - - - 54 55 56 100 54
% of trials stopped at IA 8 8 8 2 7 0 0 0 0 0
Average study duration 23 23 23 24 23 24 24 24 24 24
Average sample size 15 115 15 119 15 120 120 120 120 120
Scenario 3: Unmeasured confounding, P(Y=1A=0,S=1)<P(Y=1A=0,S=0)

Type | error rate (%) 5 5 6 0 B - - - - -
Power (%) - - - - - 54 53 54 12 53
% of trials stopped at IA 18 12 12 98 7 4 3 3 42 0
Average study duration 22 22 22 12 23 23 23 23 19 24
Average sample size 109 113 13 61 116 18 118 118 95 120
Scenario 4: Unmeasured confounding, P(Y=1A=0,S=1)>P(Y=1A=0,5=0)

Type | error rate (%) 5 5 6 >99 5 - - - - -
Power (%) - - - - - 53 53 53 100 54
% of trials stopped at IA 7 7 8 0 7 1 0 1 0 1
Average study duration 23 23 23 24 23 24 24 24 24 24
Average sample size 16 116 15 120 16 120 120 120 120 120
Scenario 5: Unmeasured confounding, P(Y=1A=0,S=1)>P(Y=1A=0,S=0)

Type | error rate (%) 6 7 9 15 5 - - - - -
Power (%) - - - - - 65 65 65 93 53
% of trials stopped at IA 22 15 15 55 7 1 1 1 1 1
Average study duration 21 22 22 17 23 24 24 24 24 24
Average sample size 107 m m 87 15 19 19 19 19 120

We consider different distributions of measured (X;, X,) and unmeasured (X;3) patient pre-treatment characteristics (see Table 1 for details). We provide results for an experimental treatment with
(columns 7-11) and without (columns 2-6) positive treatment effects (TEs). For each scenario, we report the type | error rate (i.e., the probability of rejecting the null hypothesis when TE = 0), the power
(i.e., the probability of rejecting the null hypothesis when TE > 0), the proportion of trials stopped early for futility, the average sample size, and average study duration (months) across

2000 simulations.
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Fig. 2 | Operating characteristics of in silico HTs, ECTs and RCTs generated by
resampling the control arms of the ES-SCLC studies. The top row shows type |
error rates (panel A, solid vertical lines with a cross), power (Panel A, dotted vertical
lines with an arrow), and the variability/bias of the treatment effect estimates (panel
B). In panel (B), the dots indicate the average treatment effect estimates across in
silico trials (n = 75) and the vertical bars indicate the 5% and 95% quantiles. Panels

Study design

(A) and (B) are representative of an ideal setting, without unmeasured con-
founders, and identical conditional outcome distributions of the SOC across stu-
dies. The bottom row (Panels C and D) shows the same operating characteristics as
the top row when we used the leave-one-study-out resampling algorithm to gen-
erate in silico trials (n = 75).

The effects of pre-treatment variables on OS were estimated for
patients treated with the standard of care (SOC) using a Cox model",
with baseline survival stratified by studies (Supplementary Table 3).
Sex (male vs female, HR 1.45, p < 0.001), age (<65 years vs 265, HR 0.7,
p <0.001), and performance status (1vs O HR1.28, p = 0.024,2 vs OHR
2.54, p<0.001) had a significant association with OS. To investigate
heterogeneity across studies, we estimated study-specific random
effects in a Cox model for OS (column 3 of Supplementary Table 3).
These random effects represent differences of the outcome distribu-
tions across trial populations that are not attributed to the available
patient pre-treatment characteristics. The estimates suggest differ-
ences in the conditional outcome distributions (i.e., given the available
pre-treatment variables) between studies. The limited availability of
pre-treatment patient characteristics, as well as the random effects
analyses, indicate limitations of the ES-SCLC datasets as EC for future
ES-SCLC trials.

We considered a study with a size of 75 patients and OS at
9 months (0S-9) as primary endpoint. For the HT design, 50 and 25
patients were enrolled during the first stage (1:1 randomization) and
second stage (rp c:ro ¢ equal to 0:1), respectively. We report results for

additional values of the design parameters in the Supplementary
Information. We used block randomization; for example, for RCTs, 12
patients per arm (experimental and control) were assigned during the
second stage (25 patients) and the last patient was randomly assigned.

Figure 2 shows selected characteristics of the ECT, HT, and RCT
designs based on 2000 resampled trials. The resampling algorithm to
generate these in silico trials is described in Methods. The bottom row
of Fig. 2 illustrates the operating characteristics when we apply the
resampling algorithm. Each panel includes three columns that indicate
the study (CALGB-9732", GALES" and Pirker et al.””) that was resam-
pled to generate in silico trials. The results reflect the underlying study-
to-study heterogeneity and the described limitations of the ES-SCLC
datasets.

The top row of Fig. 2 illustrates the same operating characteristics
of the three trial designs under an ideal setting, without unmeasured
confounders and differences of the conditional outcome distributions
under the control treatment across studies. This was achieved by first
randomly permuting the study membership labels of patients in the
ES-SCLC datasets and then applying the resampling algorithm. These
results serve as a reference to illustrate differences between the
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operating characteristics of ECTs and HTs under ideal settings for
leveraging EC data (top row) and with the actual study-to-study dif-
ferences (bottom row) in the ES-SCLC datasets.

Panels A and C of Fig. 2 show the estimated type I error rates (solid
vertical lines; target value 5%) and power (dotted vertical lines) of the
HT, ECT, and RCT designs when we resampled the CALGB-9732",
GALES?, and Pirker et al.” studies. As expected, without cofounding
(Fig. 2A), the ECT was the most powerful design, with 94%, 97%, and
93% power for the CALGB-9732, Pirker et al., and GALES studies,
respectively, compared to 76%, 80%, and 65%, and 54%, 62%, and 43%
for the HT and RCT designs in each of the three studies, respectively. In
contrast, because of study-to-study heterogeneity, the resampling
algorithm (Fig. 2C) showed that the ECT design inflates the type | error
rates, which reaches 59% for the GALES study. The type I error rates
were considerably lower for the HT design (5%, 8%, and 5% for CALGB-
9732", GALES™ and Pirker et al.”®), as the dissimilarity analyses (see
“Methods”) recognize the limitations of the EC data.

We also compared the HT, ECT, and RCT designs for clinical trials
with overall survival as primary outcome (see Section SL.5 of the
Supplementary Information for statistical details). In particular, Sup-
plementary Fig. 5 illustrates operating characteristics of in silico HTs,
ECTs and RCTs that we generated applying the model-free resampling
algorithm to the CALGB-9732", GALESY, and Pirker et al.”® datasets.
Similar to the results for in silico trials with binary outcomes (Fig. 2),
the type I error rates of the ECT design deviate substantially from the
nominal 5% level, i.e. <1% for the CALBG-9732 and Piker et al. studies,
and 14% for the GALES study. In contrast, for the HT, we observed type |
error rates very close to the nominal 5% level (5.0%, 5.2%, and 4.9%).

In silico trials in GBM

We used five GBM’" datasets (see Methods and Supplementary
Table 5) to compare HT, ECT, and RCT designs. We considered a study
with a sample size of 100 patients, OS-12 as the primary endpoint, and
an IA after 50 enrollments. The initial randomization ratio ry c:ry g was
1:1 for both the HT and RCT designs. For the HT design, the rando-
mization ratio during the second stage remained 1:1 or was updated to
r,croe (we considered 1:2 and 0:1). We generated in silico trials
resampling from GBM datasets (Chinot et al.', Dana-Farber Cancer
Institute’ [DFCI], and University of California, Los Angeles® [UCLA])
with more than 100 patients treated with the current SOC”, temozo-
lomide in combination with radiation therapy.

In contrast to ES-SCLC, the GBM datasets included all major
prognostic patient pre-treatment characteristics identified through a
literature review’. This difference between the ES-SCLC and GBM
datasets is consistent with results obtained from Cox regression
models with study-specific random effects (Supplementary Table 6).
The estimated model indicates lower study-to-study variability in the
GBM datasets compared to the ES-SCLC datasets.

Table 3 shows selected operating characteristics of the ECT, HT,
and RCT designs based on 2000 in silico trials generated by resam-
pling the SOC arms of the Chinot et al. (rows 4-10 and 26-32), DFCI
(rows 11-17 and 33-39), and UCLA (rows 18-24 and 40-46) datasets.
Rows 4-24 (26-46) correspond to in silico RCTs, ECTs, and HTs that
evaluated an experimental treatment with (or without) a positive
treatment effect.

All three study designs showed type I error rates across in silico
trials close to the targeted 5% level. Both the ECT and HT designs had a
higher probability (42-50% for ECTs and 24-27% for the HTs) of
stopping the study early when the treatment effect was null compared
to the RCT design (6-7%). This translates into reductions of the aver-
age sample size of the in silico ECTs and HTs compared to the RCTs,
from 96 patients for the RCT design to 75-79 patients and 86-88
patients for the ECT and HT designs. Moreover, for the in silico GBM
trials that evaluated an effective experimental treatment (rows 26-46),
we observed gains in power for ECT (85-92%) and HT (73-77%,

78-82%, and 74-78% with r, c:rp g equal to 1:1,1:2, and O:1, respectively)
designs compared to conventional RCTs (58-63%).

Discussion

The increasing availability of patient-level data from completed clinical
studies and electronic health records constitutes an opportunity for
the development of novel trial designs that leverage EC data®’*">'%,
Recent contributions®®*® have proposed methodologies to integrate
EC data into the analysis of single-arm trials (ECTs). These methods
replace published estimates of the SOC’s efficacy used as a benchmark
with patient-level EC data. The EC data in ECTs allow the analyst to
account for variations in the distribution of prognostic pre-treatment
characteristics across clinical studies. This approach has the potential
to reduce bias, false positive/negative rates, and ultimately improve
the evaluation of experimental treatments*”.

As illustrated in recent retrospective studies**?° and in Table 2,
under ideal conditions—without unmeasured confounding and with
moderate variations of the patient pre-treatment profiles across study
populations—the ECT design is an attractive alternative to the RCT
design. However, it is challenging to anticipate mechanisms, such as
unmeasured confounding and variations of the trial population during
the enrollment period, which can bias the primary findings of the study.

Statistical methods applicable to ECTs, such as marginal structural
models (MSMs)?, matching”, and inverse-probability weighting?
(IPW), rely on key assumptions that are difficult to validate. They
assume that (a) all confounding pre-treatment variables are available
and included in the analyses; (b) consistent definitions and standards
are used to measure patient profiles and outcomes during the trial and
in the EC; and (c) identical conditional outcome distributions, given
the patient pre-treatment characteristics, under the control therapy
for the EC and the trial population. If these assumptions are violated,
then the treatment effects estimate can be biased, and the control of
false positive rates can be compromised (see Table 2 and Fig. 2).

During the design phase of an ECT, it is challenging to quantify the
risks associated with leveraging EC data. For example, unexpected
confounding variables may not be included in the EC data, or subtle
differences in the definition or measurement standards of the patient
characteristics and treatment outcomes may remain unnoticed.
Importantly, the data generated during the trial do not provide evi-
dence in favor or against the ECT assumptions, as the study does not
have a control arm.

In consideration of these challenges, we introduced a hybrid
design that combines randomization and the use of EC data. We
developed the design to achieve and balance two goals. First, we aimed
for reliable inference of the treatment effects even in settings where
the EC data have limitations. This included unmeasured confounding
and other mechanisms that translate into poor operating character-
istics of ECTs (see Table 2 and Fig. 2). Second, we sought to achieve
efficiency levels comparable to ECTs in the ideal setting, when the EC
data have no limitations and the ECT assumptions hold. In these sce-
narios, it is convenient to leverage the EC data to improve the trade-off
between power and the resources for conducting the trial (Table 3).

In settings where discrepancies between the conditional outcome
distributions of the EC group and the control arm are likely to occur,
both the HT and ECT designs are not applicable. If multiple EC datasets
are available, then meta-analyses and resampling algorithms (see
“Methods” section) can be used to scrutinize the EC data and detect
confounding>*®. Nonetheless, potential pitfalls associated with the
use of EC data in a future study cannot be ruled out. These risks include
potential unmeasured differences between the patients that will be
enrolled and the EC group, as well as overlooked incongruences in the
definitions of the outcomes’. For example, discrepancies between
patient imaging schedules in the trial and the EC group correlate with
the assessment of progression free survival outcomes and can intro-
duce confounding.
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Table 3 | Resampling-based evaluation of the operating characteristics of the HT, ECT, and RCT designs in GBM

Design HT HT HT ECT RCT
Assignment ratio rp c:ro g 11 1:2 0:1 0:1 11
No treatment effect (TE=0)
Chinot et al.®
Type | error rate (%) 5 6 5 3 5
% of trials stopped at IA 24 24 24 42
Average study duration 17 17 17 16 19
Average sample size 88 88 88 78 96
Average TE estimate -0.02 -0.02 -0.02 -0.01 -0.01
(10% and 90% quantiles) (-0.16,0.12) (-0.15,0.12) (-0.14,0.10) (-0.09,0.07) (-0.16,0.12)
DFCP
Type | error rate (%) 6 5 4 3
% of trials stopped at IA 27 27 25 50
Average study duration 17 17 17 15 19
Average sample size 86 87 88 75 96

Average TE estimate(10% and 90%

-0.02 (-0.16,0.12)

-0.02 (-0.15,0.11)

-0.01(-0.14,0.10)

-0.02 (-0.09,0.07)

-0.01(-0.16,0.12)

quantiles)
UCLA®
Type | error rate (%) 5 6 5 3
% of trials stopped at IA 25 24 24 42 6
Average study duration 17 17 17 16 19
Average sample size 88 88 88 79 97
Average TE estimate -0.02 -0.02 -0.02 -0.02 -0.01
(10% and 90% quantiles) (-0.14,0.12) (-0.15,0.11) (-0.14,0.09) (-0.09,0.06) (-0.14,0.12)
Positive treatment effect (TE > O)
Chinot et al.”
Power (%) 73 78 84 85 58
% of trials stopped at IA <1 <1 <1 <1 <1
Average study duration 20 20 20 20 20
Average sample size 100 100 100 100 100
Average TE estimate 0.15 0.15 0.15 0.15 0.15
(10% and 90% quantiles) (0.04,0.25) (0.05,0.25) (0.05,0.24) (0.09,0.21) (0.06,0.26)
DFCP
Power (%) 77 82 88 92 63
% of trials stopped at IA <1 <1 <1 <1 <1
Average study duration 20 20 20 20 20
Average sample size 100 100 100 100 100
Average TE estimate 0.17 0.17 0.17 0.18 0.17
(10% and 90% quantiles) (0.04,0.3) (0.06, 0.27) (0.08,0.26) (0.11,0.24) (0.06,0.28)
UCLA®
Power (%) 73 78 85 86 58
% of trials stopped at IA <1 1 <1 <1 <1
Average study duration 20 20 20 20 20
Average sample size 100 100 100 100 100
Average TE estimate 0.15 0.15 0.15 0.14 0.15
(10% and 90% quantiles) (0.04,0.26) (0.04,0.25) (0.05,0.24) (0.08,0.21) (0.04,0.26)

We used individual-level data from patients treated with TMZ+RT from five GBM datasets. Rows 3-24 and 25-46 show results for an experimental treatment without a treatment effect (TE, rows 3-24)
and with a positive TE (rows 25-46), respectively. We report the type | error rate (i.e., the probability of rejecting the null hypothesis when TE = 0), the power (i.e. the probability of rejecting the null
hypothesis when TE > 0), the proportion of trials stopped early for futility, the average sample size, the average study duration (months), and the average (10% and 90% quantiles) estimate of the
treatment effect, TE=E[p(Y =1|X,A=1) — p(Y =1|X, A=0)] across 2000 in silico trials.

A major difference between ECTs and HTs is the use of pro-
spective dissimilarity analyses to attenuate the outlined risks. HTs
evaluate if there is evidence of differences between the conditional
outcome distributions in the EC group and in the control arm of the

study. The EC data are used for inference on the treatment effects only

if the resulting index of dissimilarity does not suggest different con-
ditional distributions. The dissimilarity thresholds of the HT design can

be tuned using simulations, to balance the trade-off between (i)
leveraging EC data in settings without confounding mechanisms and
(i) the goal of controlling the risk of bias and inflated false positive or
negative rates.

The integration of EC data and the proposed HT design can
increase the power of the study. For example, consider a clinical
trial with binary outcomes and an overall sample size of 100
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patients. The response probabilities for the SOC and the experi-
mental treatment are 0.6 and 0.78. An RCT with 1:1 randomization,
which controls the type I error rate at the 5% level, has 62% power.
We compare the RCT to a HT design with an EC group of 1000
patients and 1:1 randomization for the first 50 enrolled patients. The
randomization changes to 1:2 (or 1:3) for the next 50 patients if
W; <w; (see “Methods” for the definition of the dissimilarity indices
W; and W,). Assume for simplicity that there are no relevant pre-
treatment variables or other confounding mechanisms. The HT
design has 90% conditional power when the dissimilarity summaries
don’t exceed the dissimilarity thresholds and therefore the EC data
are used in the final analyses. Here the conditional power indicates
the probability of rejecting the null hypothesis given W; <w; and
W, <w,. In the outlined example, when we focus on HTs in which
randomization changed to 1:2 (or 1:3) during the 2nd stage of the
HT, but the final analyses don’t include the EC data (i.e., W; <w; and
W, >w,), the conditional power (61.7% and 60.9%) remains similar
to the power of the RCT (62%).

For the proposed HT design, if randomization is updated during
the second stage (i.e. W; <w;), but the dissimilarity index at the final
analysis exceeds the threshold, then the conditional power (given
W; <w; and W, 2w,) of the study may be below the targeted overall
power level, say 80%. In our previous example, a randomization ratio
rc2rg, of 12 (or 1:3) led to minor reductions (<2% points) in condi-
tional power compared to the power of an RCT with identical sample
size. But a ratio rc,:rg; of 0:1 would reduce the conditional power of
the HT by approximately 13% compared to the RCT. We can consider
two strategies to address this potential limitation. First, the HT design
can include a sample size extension, and enroll an additional group of
N; patients after the 2nd dissimilarity and futility IA (when W; <w,; and
W, >w,). In this case the futility IA avoids a sample size extension if the
data are not promising. The sample size N5 can be selected to ensure a
conditional power of 80% (when W; <w; and W, 2w,). The second
solution consists in selecting the overall sample size of the HT and the
randomization ratios to ensure that the conditional power does not
drop below a prespecified minimum, say 77% (i.e., we accept a reduc-
tion of <3% conditional power compared to the targeted overall power
of 80%) when the final analysis of the HT excludes the EC data, W; <w;
and W, 2 w,.

The integration of EC data in HTs can improve interim decisions.
For example, we used data from the experimental and control arms of
the Pirker et al.” study and conducted retrospective analyses to eval-
uate the likelihood of terminating the study early for futility using
either an RCT design or a HT design. The reported OS Kaplan-Meier
curves and the median OS (approximately 40 weeks) were nearly
identical for the experimental and control arms of the study. We
considered RCT and HT designs with an overall sample size of 100
patients, OS-9 primary outcome, and an IA after the outcomes of the
first 50 enrolled patients become available. We used a resampling
algorithm that is nearly identical to the one used in the Results Section.
The HT design, leveraging EC data, stopped 57% of in silico trials for
futility at the IA. In comparison, 19% of the in silico RCT (without using
EC data) were stopped at the IA.

We used datasets from completed clinical studies and electronic
health records to create realistic scenarios that highlight potential risks
and benefits of the ECT and HT designs. ES-SCLC and GBM datasets
were used to compare HT, ECT, and RCT designs. The scenarios
defined by resampling the control arms of the ES-SCLC datasets are
representative of settings where ECTs have poor operating char-
acteristics due to confounding. Scenarios defined through GBM data-
sets were markedly different. In the resulting in silico GBM trials,
leveraging EC data translated into efficiency gains compared to RCTs
while maintaining control of false positive rates. The analyses based on
model-based simulations (Table 2) and in silico trials obtained by
resampling the GBM datasets® (Table 3) indicated potential efficiency

gains of HTs compared to RCTs when EC data without substantial
limitations are available. We showed improvements of power, average
study duration, and sample size.

A limitation of our analyses is the relatively small number of GBM
and ES-SCLC datasets used to evaluate the HT and ECT designs. A
larger number of datasets could provide a more representative
sample of outcome distributions and other important differences
across SOC arms of recent RCTs in GBM and ES-SCLC. Moreover, only
a small subset of known prognostic pre-treatment variables (Sup-
plementary Table 1) was available in the ES-SCLC datasets for statis-
tical adjustments in ECTs and HTs. One study was open label
(GALES?") and another one was only partially randomized (CALGB-
30504%). Additionally, there were variations of the eligibility criteria
across the ES-SLCLC studies, and etoposide with either platinum-
based cisplatin or carboplatin chemotherapy were two SOC regimens
in these trials. With these data limitations, the type I error rate of the
ECT design in ES-SCLC, accounting for a limited set of available
prognostic variables (Supplementary Table 1), was as high as 59% in
our analyses.

When there is uncertainty regarding the risks associated with
available EC data, the proposed HT design can be an attractive alter-
native to the ECT and RCT designs. Limitations of the EC data can
impact the operating characteristics of ECTs, while at the opposite end
of the spectrum RCTs do not utilize EC data. HTs can be viewed as a
compromise between ECTs and RCTs, as HTs prospectively evaluate
potential limitations of the EC data which are compared to the IC arm.

The described limitations of the datasets (e.g., different eligibility
criteria), the random effects analysis (Supplementary Table 3), and the
in silico ECTs (Fig. 2) consistently associated the use of the ES-SCLC
datasets to specify an EC group with risks of bias and inadequate
control of false positive/negative rates. We used the ES-SCLC datasets
primarily to illustrate that HTs could substantially reduce these risks
compared to ECTs.

ECTs have been considered previously in settings beyond ES-
SCLC and GBM. Carrigan et al.'” demonstrated the feasibility of gen-
erating external controls in non-small cell lung cancer (NSCLC) using
real-world data from the Flatiron Health database. Similarly, in Project
Switch?, FDA investigators showed that ECTs can estimate OS hazard
ratios by exchanging the control arms between trials in second-line
NSCLC with docetaxel controls.

The integration of EC data into clinical trials requires high-quality
and up-to-date patient-level datasets representative of the current
SOC. Factors such as changes in the SOC and the discovery of new
prognostic biomarkers pose challenges in maintaining con-
temporaneous EC datasets. On the other hand, HTs and EC data with
biomarker information can be useful for testing novel treatments in
subpopulations with low enrollment rates. Moreover, HT designs can
be extended to alternative study aims, such as testing non-interiority.
Recent data sharing efforts®®, such as the National Cancer Institute
(NCI) NCTN/NCORP Data Archive, Project Data Sphere?”, YODA?,
Vilvi¥’, and CancerLinQ*°, provide valuable data sources for this
endeavor.

Methods
The research complied with ethical regulations and was approved by
an institutional review board at DFCI.

We use Y to indicate the binary primary outcome. We also report
results for time-to-event primary endpoints Y (e.g., OS) in the Sup-
plementary Information. The binary variable A indicates whether the
patient received the experimental (A =1) or control (A=0) therapy,
and the vector X includes a fixed set of pre-treatment patient char-
acteristics (e.g., age, sex, etc.). The indicator S distinguishes patients
enrolled during the trial (S=0) from patients in the external control
(EC) dataset (S=1). Patients in the EC group were treated with the
control therapy (A =0). We use Pr(Y|X, 4, S) to indicate the conditional
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outcome distribution of patients with pre-treatment characteristics X
and treatment Ain the trial population (S=0) or in the EC group (S=1).

Hybrid design

Figure 1A describes a HT design that uses EC data and randomization

to the experimental and control (internal control, IC) arms to estimate

and test treatment effects. For simplicity, we focused on a two-stage
design with sample size n=n, + n,. During the first stage n; patients are
randomized to the IC and experimental arms in the ratio ry c:ry g (1:1in
our analyses). At completion of the first stage, after enrollment of the
first n; patients, an IA is used to decide (a) if the clinical study continues
to the second stage or is stopped for futility; and, if the study is not
stopped for futility, (b) whether or not to update the randomization
ratio to r, cirp ¢ for the remaining n,patients during the second stage.

These two decisions are supported by an index of dissimilarity (W,

Supplementary Information), computed using early data from the trial

and the EC dataset. The summary W; quantifies the evidence of dif-

ferences between the conditional outcome distributions

Pr(Y|X,A=0, S)of the IC (§=0) and EC (S=1) populations. Large values

of W, indicate dissimilarity between the two conditional distributions.

In particular,

(a) if W, exceeds a predefined threshold w; (W;>uw;,), then the EC
data are excluded from the futility analysis and, if the trial is not
stopped for futility, the assignment ratio during the second stage
remains 1:1, as in the first stage.

(b) If W, <wj, then the futility IA utilizes both IC and EC data. If the
trial is not stopped for futility, the proportion of patients
assigned to the IC during the second stage is decreased by
updating the assignment ratio to the prespecified value rc:ryk .
We considered ratios of 1:1, 1:2, and 0:1. When r,ciroe =
O:1patients are not randomized during the second stage.

At completion of the trial, after the primary outcomes of all n
patients become available, we recompute the index of dissimilarity
(W,) using all the available data. If W, is larger than a predefined
threshold w,, then the EC data are excluded from the final analyses. If
W, <w,, the final trial analyses leverage the EC data.

Externally controlled trial (ECT) designs

ECTs’ (Fig. 1B) are a particular case of the class of designs in Fig. 1,
without randomization. The design assumes identical SOC conditional
outcome distributions Pr(Y|X, A =0, S)for the trial and EC populations,
which makes the indicator S unnecessary. Patient-level data of the
experimental arm and EC data are used to estimate the treatment
effect (TE),

TE=) {E[Y|X=X,A=1] - E[Y|X =Xx,A=0]}Pr(X=x). M

Here, the expected outcome E[Y|X=X,A] of patients receiving
experimental (A = I) and control (A = 0) treatments with pre-treatment
characteristics x are weighted by a distribution Pr(X =x), for example,
the distribution of pre-treatment variables X in the experimental arm.

We considered different procedures to estimate the TE in (1),
including matching®, IPW*, and MSMs* (see Supplementary Fig. 1).
We did not observe substantial differences between these methods
and used MSMs in our analyses.

Testing the null hypothesis of no treatment effects at comple-
tion of the study

For ECTs, as well as HTs when W, <w,, we utilized MSMs” to estimate
treatment effects and test the null hypothesis H,, : TE <0, using the
data available at completion of the trial and the EC data. Whereas for
RCTs and for HTs with W, >w, we utilized only the trial data to esti-
mate treatment effects (estimator: difference of the empirical

response rates between the experimental and IC) and test H, (test:
2-sample z-test for proportions™).

Permutation test. We also considered an alternative permutation test
(see Supplementary Fig. 7) for HT designs that utilize trial data and EC
data (i.e., HTs with W, <w,). The procedure controls the type I error
rate at a predefined a-level, both when the standard assumptions of
adjustment methods, such as MSM, holds or are violated, for example
in settings with unmeasured confounders, or when the conditional
outcome distributions Pr(Y|X,A=0,5) of the IC (§=1) and EC (§=0)
groups differ. The procedure has three components:

(i) First, a treatment effects estimate TE(Dyy, Dic)is calculated
using the HT data and the EC data. Here
Dyr={(Y;, X, A, S;=1)};.,, indicates the HT data, whereas
Dgc ={(Y X1, A;=0,5;=0)}, ;< .+ n, includes information for ngc
EC patients. The index i identifies the patients.

(ii) Next, we randomly permute /=1, ...,1000 times the treatment

assignment variables {4;}; _, inthe HT (4, A, ....A, ), while the
assignment variables {A;=0};,, in the EC remain identical. For
each 1</<1000, we obtain a permuted dataset
Dyrp, = {(YiXiAp, , Si= O)}l_snandcompute the esti-
mate TE, = TE(Dyr ,, Dgc)-

We then estimate the p-value (H,, : TE<0) as the proportion of
permutations ¢ with statistics TE, larger than the actual esti-
mate TE.

(iii)

Evaluation of the trial designs

We evaluated the operating characteristics of the HT, ECT, and RCT
designs using model-based simulations and a leave-one-study-out
resampling algorithm.

Model-based simulations. We generated clinical studies using a

parametric model (Table 1) for

(@) Pr(X|S), the distributions of pre-treatment variables in the trial
(§=0) and EC (§=1) populations, and

(b) Pr(Y|X,A,S), the conditional outcome distributions in the trial
(§=0) and EC (5§=1) populations.

We considered scenarios where the distributions of pre-treatment
variables (a) and the conditional outcome distributions (b) differ
between the two populations (S = 0, 1), as well as scenarios with
unmeasured confounding.

Leave-one-study-out resampling algorithm. To evaluate the operat-
ing characteristics of the HT design we used a resampling scheme
similar to the one described by Ventz et al.’ applied to datasets from
completed clinical trials and electronic health records in ES-SCLC and
GBM (see Fig. 3 and Supplementary Fig. 6). The algorithm provides
estimates of the operating characteristics, including type I error rate,
power and the average sample size.

ES-SCLC datasets. We used patient-level data available at Project Data
Sphere? from three randomized Phase Il clinical trials: CALGB-9732"
(N =283, NCT00003299), Pirker et al.” (N = 232, NCT00119613), and
GALES* (N = 455, NCT00363415). For the Pirker et al. study, a random
subsample containing 80% of the original study population was avail-
able. The datasets are available for download (via the NCT-id) from
Project Data Sphere” at https://data.projectdatasphere.org/. We used
data from patients who received etoposide in combination with
platinum-based cisplatin (CALGB-9732, Pirker et al., GALES) or carbo-
platin (Pirker et al.) chemotherapy; both treatments were SOC regi-
mens in ES-SCLC. The statistical procedure to estimate the treatment
effects in ECTs and HTs assume identical conditional outcome dis-
tributions, given the available pre-treatment characteristics, for these
two SOC regimes. The comparison of cisplatin and carboplatin has
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SOC arm of
dataset 1

SOC arm of
dataset 3

SOC arm of
dataset 2

Step (i):

outcomes (X,Y) from
the SOC arm

Interim Analysis

- Dissimilarity index Wy

- If Wi > wy use only
the HT data for futility IA
- If Wy < wy use EC and
HT data for futility IA

SOC and EXPT
arms in ratio
T,ciTLE

[ 1% stage data: SOC arm ]
1%t stage data: EXPT arm ]

SOC arm of
dataset K

inratio ry i1y p if Wy <wy
-inratio ry i1y g if Wy = wy

Final analysis

- Dissimilarity index W,
- if W, > wy, use only
HT data for the analyses
-if Wp < wp, use HT
and EC data for the
analyses

( 2" stage data: SOC arm )

[ 2" stage data: EXPT arm ]

| Repeat 2,000 times with different random subsamples from the SOC arm of dataset 1 I

Repeat for datasets k=2, ...

, K

Fig. 3 | Graphical representation of the leave-one-study-out resampling algo-
rithm. Step (i), we randomly sample with replacement n patient profiles and the
corresponding outcomes from the control arm (SOC) of study k. Step (ii), we use
the control arms of the remaining studies as externally controlled (EC) data. Step
(i) we randomize n; of the patients in Step (i) to the experimental treatment (EXPT)
and the SOC arms of our in silico trial and compute the index W;. If

W; <w; (W, >w;), the futility interim analysis (IA) leverages (does not leverage) EC
data, and we use the ratio rpciry g (ry,cirge) for the remaining n, = n—n; patients
during the 2nd stage. For the final analysis, we recompute the dissimilarity index
W,, and use (don’t use) EC data for inference on treatment effects if

W, <w,(W, >w,). We repeated these Steps (i) to (iii) 2000 times using different
random samples.

been previously discussed®. Supplementary analysis using data on
patients randomized to the control arm of NCT00119613, which
received either etoposide plus carboplatin or etoposide plus cisplatin
supported this assumption (Log-rank test: p-value 0.4). Nonetheless,
undetected differences between these two regimes could impact the
operating characteristics of trial designs that leverage EC data.

GBM datasets®®. We used patient-level data from a phase IlI study
(Chinot et al.'® [NCT00943826], 460 patients), two phase Il studies
(Cho et al.*® [PMID: 22120301], 16 patients; Lee et al.>* [NCT00441142],
29 patients) and two real-world datasets’ (378 and 305 patients) from
DFCI and UCLA. We only used data from patients treated with temo-
zolomide and radiation therapy (TMZ+RT), the SOC in GBM". Pre-
treatment variables included age, sex, Karnofsky performance status,
MGMT methylation status, and extent of tumor resection® (see
Supplementary Table 5).

Algorithm. For each ES-SCLC (or GBM) study, the algorithm repeat-
edly samples at random, without replacement, a subset of patients
from the control arm. These subsets are used to mimic the data gen-
erated during the HTs. Patient-level data from the control arms of the
remaining ES-SCLC (or GBM) datasets are used as EC.

Specifically, for each ES-SCLC (or GBM) study k, we randomly
generated 2000 trials by repeating the following steps (see also Fig. 3)
2000 times (using different computer-generated random subsamples):

(i) Randomly subsample (with replacement) n patient profiles X and
the corresponding outcomes Y from the control arm (SOC) of
study k.

(ii)  Use the control arms of the remaining studies as EC data.

(iii) Randomize (with replacement) n; of the patients in Step (i) to the
experimental and control arms of the in silico HT inratior; ¢ : ry ¢
and compute the index W;.
(iii.a) If W, <w, use the ratio r, c:ro ¢ for the remaining n, =n — n;
patients in stage 2.
(iii.b) If W, >w,, use the ratio ry c:ry g for the remaining n,=n — n;
patients in stage 2.

(iv) Use the output of Steps (i-iii) to generate an in silico HT trial,
including the futility IA and, if the in silico HT is not discontinued,

final hypothesis testing (Fig. 1A).

We used the statistical software R*® to implement the algorithm.

The n, patients (randomly selected) from the control arm of study
kin Step (iii.a) allowed us to mimic the data of the experimental and IC
arms of the HT during the first stage of the study, whereas the
remaining n, patients in Step (iii.b) mimicked the second stage of the
HT. In these in silico HTs, the treatment effect is null by construction of
the algorithm because the outcome distributions in the two arms of
the trial are identical.

To evaluate the power of the HT design, we added a component to
Step (iii) of the algorithm (see Supplementary Fig. 6), which allowed us
to produce in silico HTs with positive treatment effects. For each
enrollment i to the experimental arm (A4;=1), if the patient had a
negative response (¥;=0), we randomly generate a binary random
variable R;, with Pr(R;=1) =, representative of the treatment effect
for patient i. If R;=1, then the negative outcome is relabeled as a
positive outcome (i.e., we set YV;=1). If R;=0, then the outcome
remains unchanged (Y;=0). We used m=0.4 for ES-SCLC and m=0.5
for GBM analyses reported in the “Results”, and different values of 1t
for analyses reported in the Supplementary Information.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability

Source data are provided with this paper. The SCLC datasets
(NCT00003299, NCT00119613, NCT00363415, NCT01439568, NCT-
00453154) used in this study are available for download from Project
Data Sphere” at https://data.projectdatasphere.org/. The GBM data
were not generated for the purpose of this study, are protected and are
not publicly available due to data privacy laws. We received permission
to use the GBM data from Brian M. Alexander, Patrick Y. Wen and
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Rifaquat Rahman, and since restrictions apply to the availability of
these data, please contact Drs Alexander (Brian Alexander@
dfci.harvard.edu), Wen (Patrick Wen@dfci.harvard.edu) and Rahman
(RRAHMAN@BWH.HARVARD.EDU) for access to these data. De-
identified patient-level data (treatment outcomes and pre-treatment
patient characteristics) will be shared upon request starting 1 months
after publication for up to 3 years for research purposes. The
remaining data are available within the Article, Supplementary Infor-
mation or Source Data file. Source data are provided with this paper.

Code availability

R code used to generate the HTs, ECTs and RCTs, and implement the
leave-one-study-out resampling algorithm are available as ‘Supple-
mentary Software 1'.
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