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Effect of tumor microenvironment on

pathogenesis of the head and neck
squamous cell carcinoma: a systematic
review
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Abstract

The tumor microenvironment (TME) is comprised of many different cell populations, such as cancer-associated
fibroblasts and various infiltrating immune cells, and non-cell components of extracellular matrix. These crucial parts of
the surrounding stroma can function as both positive and negative regulators of all hallmarks of cancer development,
including evasion of apoptosis, induction of angiogenesis, deregulation of the energy metabolism, resistance to the
immune detection and destruction, and activation of invasion and metastasis. This review represents a summary of
recent studies focusing on describing these effects of microenvironment on initiation and progression of the head and
neck squamous cell carcinoma, focusing on oral squamous cell carcinoma, since it is becoming clear that an
investigation of differences in stromal composition of the head and neck squamous cell carcinoma microenvironment
and their impact on cancer development and progression may help better understand the mechanisms behind
different responses to therapy and help define possible targets for clinical intervention.
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Introduction
The head and neck cancer (HNC) is considered one of
the malignities with the most severe impact on quality
of life of patients, caused mainly by relatively low re-
sponsiveness to treatment and severe drug resistance
[1–3]. HNC is a heterogeneous group of tumors arising
from the mucosal surfaces of the nasal and oral cavity,
oropharynx, larynx and hypopharynx. Up to 90% of
these tumors are head and neck squamous cell carcin-
omas (HNSCCs) [4], which represent the sixth most
prevalent cancer worldwide [5]. The survival rate still re-
mains very low, since up to 25% of patients develop sec-
ond cancer within 5 years after diagnosis [6]. The most
important prognostic determinant of HNSCC tumors is
considered the presence of lymph node metastases, since
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lymphatic metastatic spread correlates with a significant
decrease in the survival rate of patients [7]. While primary
risk factors are tobacco use and alcohol consumption [8],
the role of the oncogenic human papillomaviruses (HPVs)
has been implicated in HNSCC as well and many studies
have suggested HPV infection as a risk factor of the
HNSCC development [9–11].
In recent years, the outlook on cancer has changed

dramatically and the tumor is no longer viewed as a bulk
of malignant cancer cells, but rather as a complex tumor
microenvironment (TME) that other subpopulations of
cells corrupted by cancer cells get recruited into to form
a self-sufficient biological structure. The stromal compo-
nent of the tumor microenvironment is composed of
multiple different cell types, such as cancer-associated fi-
broblasts, neutrophils, macrophages, regulatory T cells,
myeloid-derived suppressor cells, natural killer cells,
platelets and mast cells. These subpopulations of cells
interact with each other as well as cancer cells via com-
plex communication networks through various secreted
cytokines, chemokines, growth factors and proteins of
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the extracellular matrix (ECM). This review will focus
on describing these major subpopulations of cells and
other factors influencing the TME and will discuss their
function in the development of cancer, in particular
HNSCC.

Tumor microenvironment
Cancer-associated fibroblasts
Cancer-associated fibroblasts (CAFs) are the predomin-
ant cell type within the tumor stroma and their main
function is to maintain a favorable microenvironment
for tumor cell growth and proliferation. CAFs modulate
the microenvironment primarily via secretion of large
variety of autocrine and paracrine cytokines and other
tumor-promoting factors critical for tumor cell prolifera-
tion, angiogenesis, invasion, inflammation, metastasis
and drug resistance. These factors include various growth
factors, cytokines and chemokines, such as epidermal
growth factor (EGF), hepatocyte growth factor (HGF), vas-
cular endothelial growth factor (VEGF), C-X-C motif che-
mokine ligands (CXCCLs) CXCL12 and CXCL14, C-C
motif chemokine ligands (CCLs) CCL5 and CCL7, and in-
terleukins (ILs) IL-6 and IL-17A [12–19]. CAFs are also
crucial producers of matrix-metalloproteinases (MMPs)
and therefore play an important role in modulating the
microenvironment by remodelation and degradation of
ECM, which ultimately results in promotion of the inva-
sive phenotype of cancer cells [20–22].
The morphology of CAFs is characterized by their elon-

gated spindle-like shape, sharing many similarities with
mesenchymal and smooth muscle cells [23]. CAFs have
distinctly different morphological and biological character-
istics compared with normal fibroblasts; they also differ
from normal fibroblasts by their constitutively activated
state. Several molecules, such as α-smooth muscle actin
(α-SMA), fibroblast activation protein (FAP), fibroblast-
specific protein-1 (FSP-1), platelet-derived growth factor
receptor α/β (PDGFR α/β) and vimentin are considered
some of the markers of activated CAFs [12, 24–26].
CAFs can be derived from various types of progenitor

cells, such as resting resident fibroblasts or pericytes
through mesothelial-mesenchymal transition (MMT)
[27], endothelial cells through endothelial-mesenchymal
transition (EdMT) [28], epithelial cells through
epithelial-mesenchymal transition (EMT) [29], adipo-
cytes [30] and bone marrow-derived mesenchymal cells
(BDMCs) [31]. The most common marker used to detect
CAFs in the tumor stroma is α-SMA, a specific marker
of myofibroblasts [32]. This myofibroblast phenotype of
CAFs is frequently observed in HNSCC and the upregu-
lation of α-SMA has been correlated to poor prognosis
in oral carcinoma [33]. Another marker of myofibro-
blasts widely used for detection of CAFs is FAP [34, 35].
FAP is overexpressed in sites of fibrosis and in the tumor
stroma of various carcinomas, including HNSCC. CAFs
can also be characterized by the absence of epithelial
and endothelial markers, such as cluster of differenti-
ation (CD) CD31 and cytokeratin [36, 37].

Macrophages
Macrophages are mononuclear phagocytes considered
one of the most important immune cells, mainly for
their prominent active role in tissue homeostasis and
both innate and acquired immune response against
pathogens [38]. Macrophages display a great plasticity,
M1 and M2 representing the extreme activation states.
However, the re-polarization of fully polarized macro-
phages in vitro towards the other phenotype by various
cytokines has been observed [39]. These two distinct
phenotypes are characterized by different receptor expres-
sion, function and cytokine and chemokine production
[40–43]. The “pro-inflammatory” classically activated M1
macrophages are characterized by their activation by the
T helper type 1 (Th1) cytokine interferon-γ (IFN-γ) and/
or bacterial lipopolysaccharide (LPS). They produce
pro-inflammatory cytokines, such as IL-12, IL-23 and
tumor necrosis factor-α (TNF-α), and chemokines
(CCL-5, CXCL9, CXCL10 and CXCL5). They participate
in anti-tumor immunity by contributing to the Th1 re-
sponse to infection, by inhibiting proliferation and by
exerting cytotoxic activity [44–46]. The “anti-inflamma-
tory” alternatively activated M2 macrophages play an im-
munoregulatory role and are involved in the tissue
remodeling, wound healing, angiogenesis and tumor pro-
gression [47–50]. The M2 phenotype is induced by vari-
ous Th cytokines (IL-4, IL-10, IL-13) and is characterized
by increased secretion of anti-inflammatory cytokines,
such as IL-1 receptor antagonist (IL-1ra), IL-10 and
TGF-β [51–53].
Tumor-associated macrophages (TAMs) represent a

major component of the macrophage population largely
contributing to proliferation, invasion and metastasis of
tumor cells, promotion of tumor progression, angiogen-
esis and suppression of T cell antitumor immune re-
sponse. Recent studies suggested the correlation
between the level of infiltration of TAMs and a poor
outcome in HNSCC, which could be used as a potential
prognostic marker [54–56]. In the past years, TAMs have
been considered a large subpopulation of macrophages
within the M2 phenotype, however it has become clear
TAMs are able to adopt a wide range of different activa-
tion states between M1 and M2, expressing both M2 and
M1 markers, such as upregulated IL-10 (M2) [57],
arginase-1 (M2) [58], peroxisome proliferator-activated
receptor γ (PPARγ) (M2) [59], TNF-α (M1) [60], MMP-9
(M1) [61] and increased levels of interferon-(INF)-inducible
chemokines CCL2, CCL5, CXCL9, CXCL10 and CXCL16
(M1) [62].
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Neutrophils
Neutrophils, also known as polymorphonuclear leuko-
cytes (PMNs), are essential effector cells of the innate
immune system and the most predominant leukocyte
population present in the circulation [63]. Neutrophils,
along with macrophages, represent the first line of
defense against pathogens and first responders at the site
of infection and injury [64], they are also directly in-
volved in adaptive immunity responses, playing an im-
portant role in mediation of T cell independent antibody
responses [65], as well as antigen presentation and T cell
activation [66, 67]. Until recently, neutrophils were
thought to act only as phagocytic cells by producing lytic
enzymes and reactive oxygen species (ROS). However,
neutrophils are able to form neutrophil extracellular
traps (NETs) by releasing their cytotoxic cytosolic and
granule proteins on a scaffold of decondensed chromatin
[68] in a cell death process called NETosis [69, 70]. It
has been reported NETs activate platelets and promote
thrombosis [71, 72], and indeed an increased risk of
cancer-associated venous thromboembolism (VTE) has
been reported in many types of cancer, including the
HNSCC [73].
The identification and characterization of the neutrophil

population based on the expression of specific surface
markers remains difficult since these specific markers have
yet to be identified. For the identification of pure human
neutrophil subpopulations, many studies use various
markers individually or in combination, such as CD11b,
CD14, CD15, CD16, CD62L and CD66b [74–76].
The contribution of tumor-associated neutrophils

(TANs) to the cancer progression remains unclear, the
main reason being TANs show both pro- and anti-tumor
properties. In TANs, in an analogy to TAMs, a phenotypic
duplicity in a form of polarization states has been ob-
served [77]. These anti-tumor and pro-tumor phenotypes
within the neutrophil population have been termed N1
and N2, respectively. The pro-tumor N2 phenotype is
characterized by increased expression of angiogenesis and
invasion promoting factors CXCR4, VEGF and MMP-9
with absent IFN-β [78] and is acquired by neutrophils fol-
lowing the TGF-β treatment [77]. However, neutrophils
can revert back to the cytotoxic N1 phenotype upon
the TGF-β blockade or in the presence of the IFN-β
[79], while expressing high levels of intercellular ad-
hesion molecule 1 (ICAM1) and TNF-α as well as in-
creasing NETs formation.

Myeloid-derived suppressor cells
Myeloid-derived suppressor cells (MDSCs) comprise a
heterogeneous population of immature inhibitory immune
cells in various stages of myelopoiesis [80]. This cell popu-
lation plays a crucial role in negative regulation of the im-
mune response in many pathological conditions, such as
cancer and inflammation, by inhibiting both the adaptive
and innate immunity. MDSCs are induced by various
tumor-derived factors in the microenvironment, mainly
granulocyte-macrophage colony-stimulating factor (GM-
CSF), VEGF and IL-6 [81], and modulate the inflamma-
tory microenvironment via depletion of many amino acids
(such as L-arginin, L-tryptophan and L-cystein) [82–84],
via increased production of nitric oxid (NO), ROS, indu-
cible NO synthase (iNOS) and arginase-1 [85–87], and via
expression of programmed death receptor ligand 1
(PD-L1), which ultimately inhibits T cell activation and
proliferation and causes T cell apoptosis [88]. MDSCs
also regulate the activity of natural killer (NK) cells
and the induction of immunosuppressive regulatory T
cells (Tregs) [89, 90].
MDSCs were originally described in peripheral blood

of HNSCC patients as immature CD34+ cells exhibiting
the ability to suppress the activity of T cells [91–93].
The identification of MDSCs based on the expression of
surface markers is challenging mainly because of the
phenotypic diversity of the MDSCs population, since dif-
ferent subpopulations within the MDSCs express combi-
nations of various myeloid markers, including CD11b,
CD33, CD14, CD15 and CD16 but lack the expression
of HLA-DR. Although MDSCs have been first discov-
ered for their immune-suppressive function in cancer,
recently the presence of MDSCs has also been linked to
other processes within the TME, such as promotion of
tumor angiogenesis via production of pro-angiogenic
factors [94, 95], degradation of ECM via production of
significant levels of MMPs, especially MMP-9, and most
importantly the formation of premetastatic niches.

Regulatory T-cells (Tregs)
Regulatory T cells comprise a unique subset of T cells
responsible for suppression of excessive immune re-
sponse, for maintaining self-tolerance and homeostasis,
and for regulation of other immune cells, including CD4
and CD8 T-cells, B cells, NK cells, macrophages and
dendritic cells; and the loss of these cells ultimately re-
sults in various autoimmune diseases [96]. Tregs are
characterized by their expression of markers CD4, CD25
and transcription factor forkhead box P3 (FOXP3) [97].
However, the markers CD4 and CD25 are also expressed
by effector T cells, thereby making it difficult to distin-
guish these two populations. In addition, the intracellu-
lar localization of FOXP3 requires cell permeabilization
for its detection, which makes the isolation of viable
Tregs challenging. Tregs also express high levels of cyto-
toxic T-lymphocyte-associated protein 4 (CTLA-4) and
glucocorticoid-induced tumor necrosis factor receptor
family-related protein (GITR) [98, 99].
Treg cells display great heterogeneity within the popu-

lation, thus can be divided into phenotypically and
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functionally distinct subpopulations based on their
localization, origin and expression profile of markers
[100]. CD25+CD4+ Tregs arising in the thymus, termed
natural regulatory T cells, express the FOXP3 transcrip-
tion factor constitutively and are crucial for the mainten-
ance of self-tolerance. In contrast, peripheral
CD25+CD4+ Tregs can differentiate from conventional
mature CD4+ T cells outside of the thymus, thus are
called induced or adaptive Tregs. These T cells require
activation in the presence of cytokines, such as IL-2 and
TGF-β, to upregulate FOXP3 [101] and their main func-
tion is to prevent local inflammation.
Since their discovery, the molecular mechanisms by

which Tregs exert their suppressor function have been
intensely studied. It has been observed Tregs can influ-
ence the immune system via either contact-dependent
or contact-independent mechanisms. Vignali et al. ar-
ranged these mechanisms into four modes of action: (1)
suppression by inhibitory cytokines (such as IL-10, IL-35
and TGF-β), (2) suppression by cytolysis via granzyme-A/
B-dependent and perforin-dependent killing of target cells,
(3) suppression of effector T cells by metabolic disruption
via depletion of IL-2, and (4) suppression by modulation
of dendritic-cell (DC) maturation or function [102].

Platelets
Platelets, also known as thrombocytes, are anucleated
cells arising as fragments of megakaryocytes in the bone
marrow, that serve as another major cellular group of
first responders at the site of injury. It has been thought
the primary function of platelets is thrombosis, wound
healing and maintaining of homeostasis, but in recent
years numerous studies started to focus on the role of
blood platelets in regard of cancerogenesis, tumor biol-
ogy and inflammation.
Platelets mediate the tumor microenvironment via

three types of secretory granules - dense granules, lyso-
somes and α-granules. During platelet activation, the
cargo from these granules is released into the extracellu-
lar environment, leading to platelet aggregation, vaso-
constriction and regulation of cell proliferation through
secretion of numerous growth factors [103]. The dense
granules contain mainly small molecules, including ADP,
ATP, calcium, 5-HT (5-hydroxytryptamine, also known
as serotonin) and pyrophosphate [104–106]. Dense gran-
ules also contain membrane proteins CD63 and
lysosomal-associated membrane protein 1/2 (LAMP1/2),
glycoprotein-(GP)-Ib, P-selectin, and integrin αII-β3
[107]. Lysosomes represent another type of platelet gran-
ules. The function of these granules has not yet been
fully eluciated, however they contain an acidic pH with
acid hydrolases, which are able to degrade and remodel
the ECM and vasculature. Also similarly to dense gran-
ules, lysosomes express membrane proteins CD63 and
LAMP1/2 [108]. The most abundant group, α-granules,
contains a vast number of proteins and factors import-
ant in hemostasis, thrombosis and adhesion, including
vitronectin, thrombospondin, fibrinogen, fibronectin and
von Willebrand factor (VWF). In addition, α-granules
contain proteins involved in inflammation and angiogen-
esis, many mitogenic growth factors, a variety of chemo-
kines and various MMPs [109–113]. The release of these
factors from α-granules attracts other cells to form tumor
cell–platelet emboli, stimulating tumor cell growth and
angiogenesis. α-granules also express number of trans-
membrane proteins, such as integrins, GP αIIbβ3, CD36,
glucose transporter 3 (GLUT3), GPVI and P-selectin
[114–117]. P-selectin, a surface protein translocated dur-
ing platelet activation, is responsible for mediating
platelet-leukocyte interactions via binding to leukocyte
P-selectin glycoprotein ligand-1 (PSGL-1) [118].

Mast cells
Mast cells (MCs) represent another important myeloid
component of the immune system that contributes to
both innate and acquired immune responses. Like other
immune cells, mast cells originate from pluripotent pro-
genitor cells in the bone marrow, which they exit undif-
ferentiated and migrate to target peripheral tissues to
complete maturation. This terminal differentiation is
strongly regulated by various factors provided by the
microenvironment, including stem-cell factor (SCF) and
IL-3 [119]. The activation of a mast cell is mediated by
the cross-linkage of the IgE receptor (FcεRI) expressed
on their surface, which leads to the release of the gran-
ule inflammatory cargo into the extracellular space, in-
cluding histamine, TNF-α, heparin, chondroitin sulfate
E, prostaglandin D2 (PGD2), tryptase, chymase, cathepsin
G, carboxypeptidase A (CPA1), leukotriene C4 (LTC4),
various interleukins and GM-CSF [120]. In addition to
the rapid secretion of the granule content through exocyt-
osis, mast cells release their contents selectively via
piecemeal degranulation [121]. Interestingly, piecemeal
degranulation has been particularly detected in areas of
chronic inflammation or tumors and has been reported to
be a preferred secretory pathway of tumour-associated
mast cells (TAMCs) [122].
The aforementioned profile of mediators secreted by

TAMCs suggests that TAMCs can play both pro- and
anti-tumorigenic roles in cancer development. Tumor-
promoting functions of TAMCs include angiogenesis
through the production of VEGF and fibroblast growth
factor-(FGF)-2 [123], ECM degradation via production
of MMPs and various proteases, which results in tumor
cell invasion and migration [124], and induction of
tumor cell proliferation via production of histamine
[125]. In addition, mast cells produce a variety of
chemotactic factors in order to recruit other immune
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cells into the tumor [126, 127]. In contrast, in some
types of tumors, the tumor suppressive effects of
TAMCs have been reported, mainly by supporting
tumor rejection [128] and mediating tumor cell apop-
tosis via the production of IL-4 and TNF-α [129, 130].

Natural killer cells
Natural killer cells (NK cells) play a crucial role in the
innate immune system, since their main function in the
organism is the ability to quickly detect and kill
virus-infected or malignant cells. NK cells are character-
ized as large granular CD3- lymphocytes that can be
classified into two subsets, depending on their expres-
sion levels of surface markers CD16 and CD56.
CD56dim/CD16bright subpopulation constitutes the ma-
jority, approximately 90% of all peripheral blood NK
cells, and is responsible for high natural cytotoxicity
[131]. CD56bright/CD16dim subpopulation is character-
ized by higher expression levels of variety of immuno-
modulatory cytokines. The most prominent cytokines
secreted by NK cells are IFN-γ and TNF-α. However, NK
cells have been reported to produce a variety of other im-
portant factors, including GM-SCF, IL-5, IL-8, IL-10, IL-13,
CCL2, CCL3, CCL4, CCL5 and CXCL10 [132–135].
NK cell function is tightly regulated by the ratio of sig-

nals from two different types of receptors present on the
cell surface – activating and inhibitory receptors. The
self-MHC class I molecules expressed on healthy cells
act as inhibitory stimuli preventing NK cell activation
[136]. Malignant or virus-infected cells downregulate
MHC-I expression in order to escape cytotoxic T cells; this
however, results in recognition by NK cells. In addition,
activating receptors on the target cells’ surface are upregu-
lated in response to the virus infection or their malignant
transformation [137]. The activation of NK cells is then
followed by number of possible inductions of apoptosis of
target cell, including exocytosis of perforin and granzymes,
Fas ligand (FasL), TNF-related apoptosis-inducing ligand
(TRAIL) activation or antibody-dependent cellular cyto-
toxicity (ADCC) [138–141].
In contrast to cytotoxic T cells, NK cells do not re-

quire prior sensitization or stimulation for their effector
function. However, some recent studies provide evidence
that a subpopulation of NK-like cells, termed natural
killer T cells (NKT cells), may play an important role in
the immune response, since this subpopulation lies at
the interface between innate and adaptive immune sys-
tems [142]. NKT cells are of lymphoid lineage and they
share many morphological and functional characteristics
of T cells and NK cells since they are defined by the ex-
pression of both T cell and NK cell surface markers
[143]. NKT cells require prior priming for their function
and can develop antigen-specific immunological mem-
ory [144–146]. One subset of NKT cells, the invariant
natural killer T cells (iNKT cells), express a highly re-
stricted invariant aβ T cell receptor (TCR) and low levels
of these iNKT cells in peripheral blood predict poor out-
come in HNSCC patients [147, 148].
These and other aforementioned subpopulations are

summarized in Table 1.

Extracellular matrix
The extracellular matrix (ECM) is a non-cellular net-
work of macromolecules, including fibrous structural
proteins, glycoproteins, growth factors and proteogly-
cans that form a structure providing other surrounding
cells with physical and biochemical support. In cancer,
ECM becomes frequently deregulated and disorganized,
which directly stimulates malignant cell transformation
[149, 150]. ECM produces high amounts of MMPs.
MMPs are a group of zinc-dependent protein and pep-
tide hydrolases secreted and activated by malignant cells,
capable of degradation of ECM proteins of the basement
membrane, as well as other important molecules, such
as growth factors, cell surface receptors and adhesion
molecules [151–155].
The first hypothesis surrounding the function of MPPs

has been attributed to their capability of degrading ECM
and helping tumor cells migrate to local and distant
sites. In recent years, it has been observed the crucial
function of MMPs in the ECM is activating growth fac-
tors or releasing them from the matrix, thus promoting
the initiation and proliferation of primary tumors.
MMPs are also involved in tumor angiogenesis by acti-
vating basic fibroblasts growth factor (bFGF), VEGF and
TGF-β [156–158]. Although tumor cells were considered
to be the source of MMPs in the stroma to help degrade
the surrounding ECM, it is now becoming clear that
most of the MMPs are produced by the stromal cells in
the tumor microenvironment, such as fibroblasts and in-
flammatory cells [159, 160].
Proteins of ECM, such as collagen, elastin, fibronectin,

laminin and tenascin influence cell adhesion and prolif-
eration as well as provide a structural support along
which cells migrate out of and into the TME. Increased
production of collagen, laminin and elastin also results
in elevated stiffness of tumor compared to surrounding
normal tissue [161–163]. Increased tumor stiffness has a
strong impact on cancer progression by activating onco-
genic intracellular signaling, such as Akt, β-catenin, focal
adhesion kinase (FAK) and phosphatidylinositol 3-kinase
(PI3K) pathways, while simultaneously inhibiting tumor
suppressor genes for phosphatase and tensin homolog
(PTEN) and glycogen synthase kinase 3α/β (GSK3α/β)
[164]. Increased matrix stiffness also promotes the acti-
vation of surrounding fibroblasts to a CAF phenotype,
which is maintained via mechanosensitive transcription
factor yes-associated protein (YAP) [165].



Table 1 Different cell populations exhibit distinct functions within the tumor microenvironment

Cell type Markers (human) Increased production Activity Function Ref.

M1 TAMs CD68+ IL-12, IL-23, TNF-α, CCL-5, CXCL9,
CXCL10, CXCL5

anti-tumor contribution to the Th1 response,
inhibition of proliferation,
cytotoxic activity

[44–46]

M2 TAMs CD68+ IL-1ra, IL-10, TGF-β, arginase-1 pro-tumor promotion of tumor progression,
angiogenesis, suppression of T
cell antitumor immune response

[47–53]

N1 TANs CD11b+, CD14+,
CD15+, CD16+,
CD62L+, CD66b+

ICAM1, TNF-α anti-tumor cytotoxic activity, increased NET formation [79]

N2 TANs CD11b+, CD14+,
CD15+, CD16+,
CD62L+, CD66b+

CXCR4, VEGF, MMP-9 pro-tumor promotion of angiogenesis, invasion [77, 78]

MCs CD117+,
CD203c+,
FcεRI+

histamine, heparin, chondroitin sulfate
E, PGD2, tryptase, chymase, CPA1, LTC4,
GM-CSF, MMPs, IL-4, TNF-α, cathepsin G

pro-tumor promotion of angiogenesis,
ECM degradation, stimulation of cancer cell
proliferation, recruitment of immune cells

[120, 123–127]

MDSCs CD11b+, CD33+,
CD14+, CD15+,
CD16+, HLA-DR-

NO, ROS, iNOS, arginase-1, PD-L1, MMP-9 pro-tumor immunosuppression, inhibition of
T cell activation and proliferation,
promotion of angiogenesis,
degradation of ECM

[82–88, 94, 95]

NK cells CD3-, CD16+,
CD56+

IFN-γ, TNF-α, GM-SCF,
IL-5, IL-8, IL-10, IL-13, CCL2, CCL3,
CCL4, CCL5, CXCL10

anti-tumor cytotoxic activity without prior antigen
presentation, modulation of adaptive
immune response

[132–135, 138–141]

NKT cells CD3+,CD56+,
CD161+,
CD1a+, CD16+

IFN-γ, TNF-α, GM-CSF, TGF-β, IL-2 ,
IL-4, IL-5,
IL-6, IL-10, IL-13, IL-17A

anti-tumor cytotoxic activity, antigen-specific
immunological memory

[142–146]

Tregs CD4+, CD25+,
FOXP3+

IL-10, IL-35, TGF-β, VEGF pro-tumor immunosuppression, promotion
of angiogenesis

[97–99, 101, 102]

Platelets CD41+, CD42a+,
CD42b+, CD61+

ADP, ATP, calcium, 5-HT, CD63,
LAMP1/2, GP-Ib,
P-selectin, integrin αII-β3, fibrinogen,
vitronectin, thrombospondin,
fibronectin, VWF, MMPs, GLUT3

pro-tumor thrombosis, wound healing, maintaining of
homeostasis, vasoconstriction,
promotion of cell proliferation,
immunoevasion by platelet aggregation

[105–107, 109–111,
113–116]

CAFs α-SMA+, FAP+,
FSP-1+, CD33-,
absent cytokeratin

EGF, HGF, VEGF, CXCL12, CXCL14,
CCL5, CCL7, IL-6, IL-17A, MMPs

pro-tumor stimulation of tumor growth, invasion,
angiogenesis, metastasis, induction of
chemo- and radio-resistance,
ECM degradation

[12–19]

Abbreviations: TAMs tumor-associated macrophages, TANs tumor-associated neutrophils, MCs mast cells, MDSCs myeloid-derived suppressor cells, NK natural killer
cells, NKT natural killer T cells, Tregs regulatory T cells, CAFs cancer-associated fibroblasts
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Up to the 30% of the ECM protein mass constitutes of
collagen, which provides the cell with tensile strength
and support for migration, therefore playing an import-
ant role in the regulation of the cell behavior and devel-
opment [166]. Besides the mechanical and structural
contributions, collagens also play a crucial role in a wide
range of biological functions, such as tissue scaffolding,
cell adhesion, cell differentiation, cell migration and
wound repair [167–170]. Along with collagen, one of the
most abundant glycoproteins of the ECM is fibronectin
(Fn), which is produced by various different cell types,
such as fibroblasts and endothelial cells [171, 172]. Fi-
bronectin structure contains binding and interaction
sites for several other molecules present in the ECM,
such as integrins, fibrin, heparin, tenascin, collagen, gel-
atin and syndecan [173–177]. In regards to cancer devel-
opment, increased levels of fibronectin have been
associated with tumor progression, migration, invasion
and reduced responsiveness to treatment [178–182].
Moreover, CAF-derived matrices exhibit aligned fibro-
nectin organization, which mediates directional migra-
tion of cancer cells [183].

Metabolic reprogramming of TME
A common feature of the rapid progression of solid tu-
mors is intratumoral hypoxia, which arises as a conse-
quence of insufficient oxygen supply to the tissue. Rapidly
growing tumors quickly exhaust the available oxygen,
which stimulates an upregulation of production of
pro-angiogenic factors, such as VEGF, to form new vessels.
However, these newly formed blood vessels are often char-
acteristic of high leakage and irregular structure, which
impair their function [184]. Hypoxic microenvironment
has also been implicated as a crucial contributor to radio-
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and multidrug-resistance [185, 186]. Hypoxia leads to up-
regulation of hypoxia-inducible factor 1 (HIF-1) [187].
HIF-1 represents a key player in mediating the adaptive
cellular response to low oxygen levels in the microenvir-
onment. As a major transcription factor, HIF-1 has been
implicated in the regulation of the expression of various
genes associated with tumor cell growth, survival and pro-
liferation [188–190], including genes involved in cellular
energy metabolism. HIF-1 induces upregulation of many
glucose transporters (GLUTs) and enzymes (such as lac-
tate dehydrogenase A) [191], thus triggering the shift from
oxidative phosphorylation (OXPHOS) to less energetically
efficient glycolytic pathway in tumor cells, a process
known as the Warburg effect.
Warburg effect describes an observation, in which glu-

cose taken up by the tumor tends to get metabolized
into lactate to generate ATP even in a sufficient pres-
ence of oxygen via aerobic glycolysis instead of oxidative
phosphorylation [192]. It has been suggested, that the
Warburg effect may promote the creation of more ad-
vantageous TME for cancer cell proliferation, survival
and invasion. Due to these metabolic alterations, tumor
cells produce elevated amounts of lactate, H+ and CO2,
which results in enhanced acidification of the TME, thus
increasing the tumor metastatic potential and resistance
to treatment [193–195]. Interestingly, tumor-derived lac-
tate has been reported to contribute to the polarization
of TAMs into the M2 phenotype [196]. In addition to
glucose, tumor cells can utilize L-lactate as an alternative
energy source via lactate shuttle, which is regulated by
the conversion of lactate into pyruvate by the lactate de-
hydrogenase (LDH) as well as by the transport of lactate
across the tumor cell plasma membrane [197, 198]. The
proton-linked transport of L-lactate, pyruvate, acetate
and ketone bodies across the plasma membrane is
facilitated by monocarboxylic acid transporters
MCT1-MCT4 [199]. In tumors, the influx and efflux of
excessive levels of L-lactate into and out of tumor cells
are directed by MCT1 and MCT4. The overexpression
of these two MCTs has been reported in several tumors,
including HNSCC, and has been associated with poor
prognosis [200–203]. Many types of cancer, including
HNSCC, exhibit a metabolic symbiosis between tumor
cells and surrounding stroma, CAFs in particular. A re-
cent study demonstrated that the glycolytic switch in
HNSCC cancer cells is induced by CAF-derived HGF
and in turn HNSCC-secreted bFGF promotes lactate
consumption by CAFs [204].

TME in the pathogenesis of HNSCC
Premalignant lesion
HNSCC is associated with severe immunosuppression,
however, the milieu of the premalignant lesion has
yet to be well defined. It has been reported that oral
leukoplakia shows a significant infiltration of proin-
flammatory immune cells, such as TAMs, CD8+ T
cells and NK cells [205–207]. Costa et al. conducted
a study to examine the differences in the immuno-
logical phenotype of the premalignant and malignant
stages of HNSCC using a mouse model of
4-nitroquinoline 1-oxide (4-NQO)-induced oral car-
cinogenesis [208]. It was observed that the premalig-
nant stage is associated with elevated levels of
inflammatory Th1, Tc1 and Th17 cells compared to
controls and HNSCC-bearing mice, while the number
of Tregs increased in HNSCC-bearing mice. The
same mouse model was utilized to investigate the
shift in the inflammatory cytokine profile depending
on the malignant progression [209]. It has been ob-
served, that premalignant oral lesions are associated
with an increased level of IL-17, as well as IL-23,
compared to controls or HNSCC, thus promoting the
Th17 phenotype. In contrast, HNSCC tissues showed
a downregulation of IL-23 and upregulation of
TGF-β, most likely to skew the Th17 phenotype to-
ward the Treg phenotype. Another study showed that
premalignant lesions secrete many proinflammatory
mediators, such as CCL5 (also known as RANTES),
monocyte chemoattractant protein 1 (MCP-1),
granulocyte-colony stimulating factor (G-CSF) and
prostaglandin-E2 (PGE2) compared to HNSCC cells,
suggesting the premalignant microenvironment to be
more immune stimulatory than the microenvironment
of an established HNSCC [210]. Some research has
also been conducted on saliva samples of patients
with premalignant oral lesions, which showed in-
creased levels of proinflammatory cytokines TNF-α
and IL-6 [211–213]. Several studies investigated the
effect of immune cell infiltration on the progression
of the premalignant lesion to malignant phenotype
through angiogenesis. Immunohistochemical analyses
have shown the total number of immune cells infiltra-
tion to be significantly elevated depending on the se-
verity of the lesion, with lowest numbers observed in
normal gingival tissue. In addition, the mast cell
density (MCD) significantly correlated with microves-
sel density (MVD) depending on the progression of
the malignancy [214–217].
In addition to the immune cell infiltration, the contri-

bution of CAFs to the progression from the premalig-
nant lesion to oral squamous cell carcinoma (OSCC) has
been investigated. These studies have focused on the dis-
tribution of the CAFs marker α-SMA, which has been
detected in samples of premalignant lesions, while ab-
sent in normal epithelium [218–220]. Interestingly, in-
creased frequency of CAFs correlated with the
progression from normal mucosa and potentially malig-
nant disorders to an invasive phenotype. Potentially
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malignant oral leukoplakia also shows elevated expres-
sion of ECM components tenascin, MMP-2, as well as
FGF-2 and its receptors FGFR-2 and FGFR-3, which are
predictive of progression to OSCC [221–223].

Primary tumor
The growth of primary tumor is associated with the
presence of immune cells, which cause inflammation
frequently observed in HNSCC (shown in Fig. 1). Sev-
eral studies investigated the significance of the overall
population of tumor-infiltrating lymphocytes (TILs) as
a prognostic marker of HNSCC. In these studies, vari-
ous representative subsets of TILs, such as CD8+ cyto-
toxic T cells, CD4+ helper T cells, CD68+ macrophages
and MDSCs, CD163+ macrophages, CD57+ NK cells
and FOXP3+ Tregs, were evaluated and correlated with
clinicopathologic characteristics of HNSCC patients.
Immunohistochemical analysis revealed that tumors
heavily infiltrated by TILs were associated with better
outcome [224–227].
The infiltration of TAMs is a major contributor to

the inflammation in HNSCC and is associated with
poor prognosis, lymph node metastasis and low sur-
vival [228–232]. Kross et al. found the level of
monocyte-derived IL-6 predicted recurrence and sur-
vival of HNSCC patients using an in vitro coculture
system of monocytes with spheroids derived from
HNSCC patients [233]. Costa et al. reported a pre-
dominance of M2 macrophages expressing TGF-β and
IL-10 in oral squamous cell carcinoma (OSCC) group
compared with healthy controls, which was further
correlated with worse prognosis [234]. A recent study
by Jiang et al. showed that compared to peritumoral
macrophages OSCC-derived TAMs expressed higher
Fig. 1 Cellular constituents within the tumor microenvironment. In addition t
supporting cell populations as well as the extracellular matrix, which crucially
individual cell populations are described in the Table 1. Abbreviations: TAM tu
myeloid-derived suppressor cell, NK natural killer cell, Treg regulatory T cell, C
levels of PD-L1, which correlated with increased T
cell apoptosis [235], and this has been confirmed by
other studies [236]. Beside tumor cells, macrophages
also constitute an important source of VEGF, thus
may contribute to tumor development via neovascu-
larization [237–240]. Several studies also evaluated
the prognostic significance of CD68+ macrophage in-
filtration regarding HPV status of HNSCC, which
show that higher macrophage infiltration in HPV+
compared with HPV- HNSCC correlated with better
prognosis [56, 241]. Also, high infiltration of neutro-
phils in OSCC is associated with poor clinical out-
comes. A study by Trellakis et al. showed that high
neutrophil infiltration correlated with poor patient
survival [242]. This was confirmed by Wang et al.,
who correlated high neutrophil infiltration with high
tumor stage, recurrence and lymph node metastases
[243]. An in vitro study by Trellakis et al. investigated
the interaction of neutrophils and HNSCC cancer
cells, which reported that HNSCC-conditioned
medium reduced neutrophil apoptosis, increased
chemotaxis of neutrophils and induced the production
of MMP-9 and CCL4 by neutrophils [244]. Mast cells
influence the primary tumor mainly by the production
of many pro-angiogenic factors, such as VEGF, bFGF,
TGF, TNF-α, tryptase, heparin and various MMPs,
which are associated with ECM degradation, angio-
genesis, progression and growth of OSCC [245, 246].
Mast cell and microvessel densities are increased in
OSCC compared with normal mucosa, however, no
significant correlation has been found [247–251].
Various studies focused on the presence of NK cells
in HNSCC patients, in which an increased number of
NK cells predicted improved survival [252, 253].
o the cancer cells, the tumor stroma is comprised of many other
contribute to the tumor progression. The characteristics and function of
mor-associated macrophage, TAN tumor-associated neutrophil, MDSC
AF cancer-associated fibroblast, ECM extracellular matrix
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Korrer et al. found that NK cells derived from
HNSCC primary tumors significantly downregulated
activating receptors NKG2D, DNAM-1, NKp30, CD16
and 2B4, and upregulated their inhibitory receptors
NKG2A and PD-1 compared with NK cells from the
blood of the same patients [254]. A significantly in-
creased number of Tregs in peripheral blood, lymph
nodes and tumors in HNSCC patients have been ob-
served [255–258], which has been correlated with
cancer recurrence [259]. Although HNSCC patients
show increased levels of Tregs compared to healthy
controls, various studies provide conflicting results in
terms of the prognostic significance of Tregs [260–262].
In addition, Tregs are increased in HNSCC patients
after treatment [263]. HNSCC displays a high abun-
dance of circulating MDSCs, which correlates with
advanced stages of HNSCC [264]. Although the main
function of MDSCs is the inhibition of T cell activa-
tion, a study by Zheng et al. demonstrated that
MDSCs-derived caspase-1 promotes HNSCC cancer
cell proliferation in a T cell-independent manner both
in vitro and in vivo [265]. Moreover, several studies
demonstrated that targeting MDSCs leads to en-
hanced antitumor immunity via increasing the num-
ber of CD8+ cytotoxic T cells in HNSCC [266–268].
Immunohistochemical analyses of primary OSCC re-

port higher density of CAFs in over 60% cases, while
healthy tissues and adjacent stroma of premalignant le-
sions show no staining [269–271]. It has been observed
that increased numbers of CAFs within the primary
tumor correlate with worse prognosis of HNSCC pa-
tients [272–275]. Several studies have shown that CAFs
reside in the vicinity of tumor cells, thus the reciprocal
interaction between CAFs and cancer cells has been sug-
gested as the main force driving tumor development.
Coculture systems of CAFs and HNSCC cancer cells re-
vealed that tumor-CAFs crosstalk enhances the produc-
tion of various tumor-promoting cytokines, chemokines,
components of ECM, growth factors and MMPs. Jung
et al. demonstrated that OSCC cancer cells induced up-
regulation of several molecules in CAFs after coculture,
such as CCL7, CXCL1, CXCL2, CXCL3 and IL-8 [17]. A
recent study by Álvarez-Teijeiro et al. identified several
proteins differentially secreted in CAF-conditioned
medium compared to normal fibroblasts, including EGF
containing fibulin-like extracellular matrix protein 1
(EFEMP1), platelet derived growth factor D (PDGFD)
and insulin-like growth factor binding proteins 5/7
(IBP5/IBP7) that may be responsible for sustaining the
cancer stem cell phenotype in HNSCC [276]. Several
studies found that HNSCC-derived CAFs express ele-
vated levels of various molecules, such as TGF-β [277],
HGF [278] and MMPs [279] compared to normal fibro-
blasts. Takahashi et al. demonstrated that, compared to
normal fibroblasts, CAFs suppressed T cell proliferation
and induced T cell apoptosis and the differentiation of
PBMCs into Tregs more efficiently, which suggests an
important role of HNSCC-derived CAFs in immunosup-
pression. Their results also showed an increased expres-
sion of IL-6, CXCL8, TNF, TGFB1, and VEGFA in CAFs
compared to normal fibroblasts [280]. Bagordakis et al.
identified number of overexpressed proteins related to
ECM organization, ECM disassembly and metabolic pro-
cessing of collagen in the CAFs secretome compared to
normal oral fibroblasts, such as fibronectin type III
domain-containing protein 1 (FNDC1), serpin peptidase
inhibitor type 1 (SERPINE1) and stanniocalcin 2 (STC2)
[281].
It is well known that ECM plays a crucial role in

HNSCC development. Reportedly, the major ECM pro-
teins involved in HNSCC development and progression
are collagen, laminin and fibronectin [282]. Immunohis-
tological studies of different histological grades of
HNSCC show that distribution of ECM proteins, such as
collagen and laminin, decrease depending on increased
grade [283–285]. Harada et al. found that decreased ex-
pression of laminin, collagen type IV and vitronectin, and
increased expression of fibronectin and tenascin corre-
lated with the invasive phenotype of primary OSCC tu-
mors [286]. In addition, an immunohistochemical
analysis by Fabricius et al. investigated the expression
of integrins αvβ3, αvβ5, α5β1 and their ligands osteo-
pontin, vitronectin, fibronectin and fibrinogen in pri-
mary HNSCC tissues. Their results suggest that
interactions αvβ3-osteopontin, αvβ3-fibronectin and
α5β1-fibronectin play a role in HNSCC angiogenesis
and interactions α5β1-fibronectin and αvβ5-vitronectin
in HNSCC cancer cell behavior [287].

Epithelial-mesenchymal transition
Epithelial-mesenchymal transition (EMT) is a dynamic
process in cancer development, during which polarized
epithelial tumor cells acquire a mesenchymal phenotype.
This shift to a mesenchymal phenotype is characterized
by the loss of cell adhesion and upregulation of various
components of the extracellular matrix, followed by in-
creased migratory potential and enhanced invasiveness
(shown in Fig. 2). EMT is associated with the loss of
proteins involved in cell junctions, such as E-cadherin
and β-catenin, and with an upregulated expression of
mesenchymal markers such as α-SMA, vimentin, FSP-1
and N-cadherin [288–290]. The loss of E-cadherin and
high vimentin levels have been associated with tumor
progression and an increase of metastases in HNSCC
patients [291].
In order for tumor cells to migrate to local and distant

sites, tumor and the surrounding stroma cells acquire
the ability to proteolytically degrade the basement



Fig. 2 Metastatic cascade. a Acquisition of metastatic potential via epithelial-mesenchymal transition, degradation of the ECM (secretion of MMPs)
and invasion through the basement membrane. Immune cells are recruited to the primary tumor site via cancer cell-derived and CAF-derived
factors and cytokines. b Intravasation of cancer cells via invadopodia formation. Cancer cells acquire the resistance to anoikis. c Survival in the
circulation. Cancer cells mediate the so-called tumor cell-induced platelet aggregation (TCIPA) to form a “platelet cloak” in order to be protected
from TNF-α and to escape NK cells. Cancer cells evade the immune system by upregulation of indoleamine 2,3-dioxygenase (IDO). d
Extravasation and formation of a secondary tumor site. Arrest of tumor cells on the endothelium, sequestration of tumor cells via NET formation,
followed by transendothelial migration and invasion into the surrounding tissue. Abbreviations: TAM tumor-associated macrophage, TAN tumor-
associated neutrophil, MDSC myeloid-derived suppressor cell, NK natural killer cell, Treg regulatory T cell, CAF cancer-associated fibroblast, ECM
extracellular matrix, MMPs matrix metalloproteinases, MIF migration inhibitory factor, TGF-β transforming growth factor-β, EGF epithelial growth
factor, HGF hepapocyte growth factor, TNF- α tumor necrosis factor-α, IDO indoleamine 2,3-dioxygenase, NET neutrophil extracellular trap
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membrane and underlying collagen matrix. This degrad-
ation of, and invasion through, ECM largely depends on
the function of filament-like protrusions formed on in-
vading tumor cells, termed invadopodia, and many re-
cent studies suggest a crucial involvement of
invadopodia-mediated ECM remodeling during EMT.
These structures contain various proteins such as actin
regulators cortactin, dynamin and neural Wiskott–Al-
drich syndrome protein (N-WASP) [292]; adhesion pro-
teins including many integrins [293]; adaptor proteins
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Tyr kinase substrate with four SH3 domains (TKS4) and
Tyr kinase substrate with five SH3 domains (TKS5)
[294]; and many MMPs such as MT1-MMP and MMP-2
[295]. It has been observed many types of cancer cells,
including HNSCC, form invadopodia, which has been
correlated to their invasive phenotype in vitro and
in vivo [296–300]. Invadopodia facilitate the ECM deg-
radation in a variety of cancers through the regulation of
various MMPs, primarily MMP-14 (also known as
MT1-MMP), MMP-2 and MMP-9 [301, 302]. MMPs
commonly overexpressed in HNSCC include MMP-1,
MMP-2, MMP-3, MMP-7, MMP-8, MMP-9, MMP-10,
MMP-11, MMP-13, and MT1-MMP. The expression of
secreted MMP-1, MMP-2, MMP-9 and transmembrane
protease membrane type 1 MMP are commonly associ-
ated with HNSCC progression. MMP-2 and MMP-9
levels have been reported in correlation with local inva-
sion, cervical nodal metastasis, tumor progression and
prognosis of HNSCC patients. In addition, high levels of
MMP-9 have been detected at the invasive tumor front
(ITF), thus many studies describe MMP-9 as a potential
marker of invasive OSCC [303–305]. MT1-MMP, which
is involved in the regulation of MMP-2 activity, has been
considered a crucial protease in HNSCC, since its ex-
pression is dysregulated in 75% to 100% of HNSCC tu-
mors. The activity of MMPs is regulated by tissue
inhibitors of metalloproteases (TIMPs) [306], secreted
mainly by fibroblasts in the stroma. These molecules
serve as inhibitors of the catalytic activity of MMPs, as
well as activators of pro-MMPs, the latter represented
by TIMP-2 required for activation of pro-MMP-2.
Among the most commonly identified TIMPs in
HNSCC have been TIMP-1 and TIMP-2. Upregulated
levels of TIMP-1 expression have been associated with
poor survival, while levels of TIMP-2 have been often re-
ported to be unchanged between HNSCC tumors and
adjacent tissue. Regarding the invasion and migration of
cancer cells, invadopodia formation and secretion of
MMPs, the overexpression of neural precursor cell
expressed developmentally downregulated 9 (NEDD9)
has been suggested as a biomarker of tumor agressive-
ness in many types of cancer, including oral cancer. Lu-
cas et al. demonstrated that VEGF-stimulated HNSCC
cell migration and invasion was NEDD9-dependent,
while immunohistochemical analysis revealed that
NEDD9 co-localized to invadopodia with MT1-MMP
[307]. Their following studies investigated the role of
NEDD9 in secretion of MMPs, MMP-9 and MMP-2 in
particular, the formation of invadopodia, as well as the
interactions of NEDD9 with vimentin and non-muscle
myosin IIA [308, 309]. Consistent with their findings,
the high-throughput gene expression profiling of
HNSCC tumor samples has shown that overexpression
of NEDD9 is associated with invasive HNSCC [310].
Recent studies examined the potential involvement of
stromal cells on the invadopodia formation and EMT in-
duction in HNSCC. A study conducted by Gao et al.
demonstrated that HNSCC cells were able to recruit and
educate monocytes into M2 macrophages in a co-
culture system via the CCL2/CCR2 axis, and these M2
macrophages then enhanced the invadopodia formation,
thus invasion and migration of HNSCC cells. This study
also implicated macrophages to be crucial for the induc-
tion of EMT in HNSCC cells, since the majority of mac-
rophages have been detected at the leading front of the
scratch during the wound healing assay [311]. In a
follow-up study Gao et al. implicated that upregulated
levels of EGF and TGF-β secreted by TAMs in direct
and indirect co-culture systems with HNSCC cells in-
duce EMT of HNSCC cells via activation of the EGFR/
ERK1/2 signaling pathway [312]. Another study investi-
gated the role of M1 and M2 macrophages in EMT in-
duction in a co-culture system with tongue carcinoma
cells, in which they showed that the interaction between
cancer cells and M2 macrophages induces migration and
invasion in 3D model. Macrophages as well as cancer
cells exhibited altered secretome, such as upregulated
expression of TGF-β, EGF and M-CSF [313]. In contrast,
a study by Smirnova et al. showed that although macro-
phages invade together with tumor cells in vivo, the in-
vasion of HNSCC cells was not macrophage-dependent
[314]. TAMs produce macrophage migration inhibitory
factor (MIF), which has been associated with EMT in
many types of cancer including HNSCC. Zheng et al.
demonstrated that knock-down of MIF inhibited prolif-
eration and migration of OSCC cells [315]. Another
study showed that neutrophils can be recruited by
HNSCC-derived MIF via a CXCR2 mechanism in vitro.
In addition, MIF promoted invasive phenotype of
HNSCC cells via neutrophil-secreted CCL4 and MMP9
[316]. Trellakis et al. observed that neutrophils from
HNSCC patients displayed reduced apoptosis compared
with healthy donors, which has been associated with up-
regulated secretion of HNSCC-derived MIF [317]. Fur-
thermore, neutrophils have been linked to the
invadopodia formation in HNSCC cancer cells. Glogauer
et al. demonstrated that a co-culture system of neutro-
phils and OSCC cancer cells increased the invasiveness
of OSCC, invadopodia formation and matrix degradation
through increased secretion of TNF-α and IL-8 in a
contact-independent manner [318]. Also, a study con-
ducted by Dumitru et al. has shown that neutrophils
promote migration of HNSCC by increasing cortactin
phosphorylation in cancer cells in vitro [319]. The role
of MDSCs in EMT induction of HNSCC has not yet
been extensively studied. However, being a major source
of MMP-9, EGF, bFGF and TGF-β, MDSCs have been
heavily implicated with the EMT promotion and
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neoangiogenesis in several other types of cancer [320–323].
Furthermore, there is increasing evidence MDSCs may play
a crucial role in establishing the pre-metastatic niche. The
exact mechanism of the pre-metastatic niche formation has
not yet been fully described, however, it has been suggested
the microenvironment of the distant organ site can be al-
tered by the primary tumor itself prior to tumor cell dis-
semination. Primary tumor cells promote the formation of
supportive metastatic microenvironment via secretion of
various cytokines and growth factors, such as VEGF, pla-
cental growth factor (PlGF), TGF-β and TNF-α,
granulocyte-colony forming factor (G-CSF), versican and
lysyl oxidase (LOX) into the circulation to mobilize
and recruit other supporting cells that interact with
stromal cells and ECM of the secondary site, thus es-
tablishing the microenvironment suitable for the forma-
tion of metastases [324]. Sceneay at al. suggested that
tumor-derived monocyte chemoattractant protein-1
(MCP-1) regulates the accumulation of MDSC in the
pre-metastatic niche. In addition, although also the num-
ber the NK cells in the pre-metastatic niche was increased,
their cytotoxic effector function was compromised, which
resulted in metastasis formation [325]. Another study con-
ducted by Wang et al. demonstrated that VEGFA secreted
by cancer cells stimulates TAMs to produce CXCL1, which
results in the recruitment of MDSCs to form the
pre-metastatic niche [326]. Shi et al. reported that
mo-MDSCs accumulate in the lungs of tumor-bearing
mice before the arrival of tumor cells and that these cells
secrete IL-1β to stimulate expression of E-selectin, which
results in metastasis formation [327]. The mechanism of
pre-metastatic niche formation in HNSCC, however, has
not yet been extensively investigated. It has been demon-
strated that MDSCs, as well as neutrophils and macro-
phages, can be recruited to the tumor site via inflammatory
protein calprotectin (S100A8/A9; MRP8/14) [328–330].
During inflammation, calprotectin is actively secreted by
many types of cells in the microenvironment, such as neu-
trophils, macrophages, monocytes and MDSCs to modu-
late the inflammatory response by pro-inflammatory
cytokine secretion, reactive oxygen species (ROS) and nitric
oxide (NO) [331–333]. The role of calprotectin in EMT
has not yet been fully elucidated; however, it has been im-
plicated in the promotion of metastatic spread by MDSCs
[334]. It has been reported, calprotectin activates the
MAPK and NF-κB signaling in cancer cells, thus promot-
ing metastasis [335–337] and is strongly upregulated in
several types of cancer [338]. However, the levels of ex-
pression of calprotectin in primary HNSCC are downregu-
lated compared with other types of cancer [339–342].
Silva et al. reported, that in HNSCC calprotectin contrib-
utes to the regulation of MMP-2 expression and secretion
in the 3D cell culture, thus inhibiting invasion and migra-
tion of cancer cells [343].
Representing the most abundant cell type within the
tumor microenvironment, the role of CAFs in the
process of EMT in many types of cancer, including
HNSCC, has been intensely researched. Many studies
show that the presence of CAFs promotes cancer cell in-
vasion [22, 344–349]. It has been reported CAFs en-
hance the invasion of cancer cells via various
mechanisms, such as MMP-mediated ECM degradation
and subsequent release of latent growth factors [22];
matrix stiffening through integrin-mediated mechano-
transduction and through actomyosin contractility [150,
350]; secretion of soluble factors, including HGF and
TGF-β [345, 351, 352]; secretion of exosomes [55]; and
direct cell-cell contact [353]. The stimulating effect of
CAFs on HNSCC invasion has been described by various
in vitro assays [354–356]. The possible contribution of
CAFs to the EMT induction in HNSCC carcinoma cells
has been implicated by immunohistochemical analyses,
in which markers associated with EMT in CAFs in
paired primary and metastatic OSCC showed that Ki-67
+ metastatic carcinoma cells downregulate E-cadherin
when in direct contact with CAFs [357]. In addition,
various in vitro studies demonstrated that EMT in
HNSCC cells can be induced by CAF-derived molecules,
such as SDF-1 via activation of the PI3K-Akt/PKB sig-
naling pathway [358], TGF-β1 via the TGF-β/Smad sig-
naling pathway [359], endothelin-1 [360] and CCL-7
[17]. Richter et al. demonstrated that TGFβ1/ EGF
long-term co-stimulation enhances the invasive pheno-
type of OSCC, such as significantly upregulated expres-
sion of MMP-2 and MMP-9, compared with single
growth factor stimulation [361]. A study conducted by
Wu et al. examined the effect of Gal-1 on OSCC cell in-
vasion and migration. It has been observed that blocking
Gal-1 expression inhibits cancer cell migration and inva-
sion induced by CAF-conditioned medium via MCP-1/
CCR2 signaling pathway. Furthermore, in vivo study re-
vealed that Gal-1 knockdown in CAFs efficiently inhibits
metastasis in vivo [362]. Knowles et al. reported that
HNSCC-derived CAFs contribute to the HNSCC inva-
sion and metastasis via activation of the HGF/c-Met
signaling axis in vitro [363]. Their following study
showed the effects of CAFs on HNSCC metastasis in
a mouse model. The co-injection of CAFs with
HNSCC cells resulted in increased tumor growth, dis-
ease spread to the lymph nodes and lung metastases
when compared to the injection of HNSCC cells
alone [364]. Several studies also report that IL-1 secre-
tion of OSCC cells stimulates TGF-β and HGF production
by CAFs, which promotes invasion of cancer cells in vitro
[365, 366]. In addition, Lewis et al. show that cancer
cell-derived TGF-β1 directly induced the activated pheno-
type in CAF, which in turn stimulate the OSCC invasion
via the HGF production [367].
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Beside the stromal components of tumor environment,
it is reasonable to assume that also hypoxia, a crucial
hallmark of cancer, may play a major role in the forma-
tion of invadopodia, in the induction of EMT and in pro-
motion of migration and invasion of cancer cells. It has
been reported that expressions of EMT promoters, Snail,
Slug, TWIST and SMAD nuclear interacting
protein-1(SNIP1), which are regulated by HIF-1α, correl-
ate with induction of EMT phenotype in OSCC cells
in vitro [368–370]. A study by Huang et al. reported
that SLUG regulated the expression of MT4-MMP
under hypoxia, which promoted the invasiveness of
HNSCC cell lines [371]. Yang et al. demonstrated that
hypoxia-induced TWIST activated BMI1 expression
and a knock down of TWIST reversed the EMT and in-
vasive phenotype in HNSCC under hypoxia in vitro
[372]. It has been suggested that hypoxia induces EMT
in OSCC via activation of the Notch signaling pathway
and the inhibition of the Notch signaling pathway sup-
presses EMT [373]. These results are consistent with a
study by Diaz et al. showing that hypoxia potentiates
the invadopodia formation and ECM degradation in
HNSCC in a HIF-1α-dependent manner. Furthermore,
their results also implicate that the invasive phenotype
of cancer cells is regulated by cell contact-dependent
hypoxia-mediated Notch signaling coupled with the
paracrine activation of the EGFR, which is mediated by
the ADAM12-dependent secretion of HB-EGF [374]. A
recent study suggests that hypoxic conditions promote
EMT, metastasis and glycolysis in HNSCC via positive
feedback loop between metadherin (MTDH) and
HIF-1α. The study showed that hypoxia increased the
expression levels of genes associated with glycolysis,
such as MCT1, MCT4, GLUT1 and LDHA in HNSCC
cells and stimulated uptake of glucose, production of
lactate and cell invasion in vitro [375]. Several studies
suggest that targeting the pathways associated with altered
tumor metabolism impairs EMT, migration and invasion
of HNSCC. A recent study by Li et al. demonstrated that
blockage of glycolysis via targeting PFKFB3 suppressed
the migration and invasion of HNSCC cells by inhibiting
the invadopodia formation of HNSCC cancer cells in vitro
and in vivo [376]. A study by Xu et al. showed that block-
age of glycolysis by 2-DG reversed EGF-induced EMT in
OSCC in vitro and moreover, the treatment of 2-DG re-
duced the metastatic spread to regional lymph nodes
in vivo [377]. A report by Wang et al. indicates that
HNSCC cell invasion and glucose metabolism is regulated
via the transcription factor tripartite motif containing 24
(TRIM24)-mediated GLUT3 induction [378]. Similar
results were shown in a study by Chang et al. which
provided evidence that the HNSCC cell migration and
invasion are regulated by the activation of the
GLUT4-TRIM24 axis [379].
Survival in the circulation
Normal epithelial cells require direct contact with the
basement membrane via integrins in order to survive
and proliferate. When normal cells lose contact with the
surrounding ECM or other neighboring cells, these cells
undergo programmed cell death, termed anoikis, to re-
duce the development of metastases. However, in the
case of a metastatic cascade, to develop a resistance to
anoikis is a crucial step for tumor cells to disseminate
from the primary tumor, survive in the circulation in an
adhesion-independent manner, travel to the secondary
site, extravasate and form metastases. A study by Neiva
et al. described that a crosstalk between tumor-associated
endothelial cells and tumor cells protected the tumor cells
from anoikis. Their results demonstrated that endothelial
cell-secreted factors IL-6, IL-8 and EGF induced the acti-
vation of the STAT3/Akt/ERK signaling pathways in
HNSCC cells in a contact-independent manner, which
lead to increased tumor cell survival and migration [380].
Several studies examined the role of the pro-survival sig-
naling pathway c-Met/Akt in anoikis in HNSCC. It has
been reported that CAF-derived HGF activated the
c-Met/Akt pathway in HNSCC cells in vitro [363]. The ef-
fect of HGF on anchorage-independent tumor cell sur-
vival has been investigated in a study by Zheng et al.,
which showed that HGF-induced anoikis resistance was
dependent on ERK and Akt pathways and the blockage of
either pathway resulted in apoptosis of tumor cells.
Furthermore, it has been reported the HGF-induced anoi-
kis was independent of NFκB [381]. Their following study
revealed that COX-2 provided resistance to HGF-induced
anoikis in HNSCC via the activation of activator protein-1
(AP-1) through the ERK signaling pathway [382]. The
neurotrophic tyrosine kinase receptor B (TrkB), which is
frequently overexpressed in many cancer types including
HNSCC, has been suggested as one of the major inducers
of anoikis resistance [383–385]. A study by Jiffar et al. re-
vealed that CAFs contribute to the invasive OSCC pheno-
type via brain-derived neurotrophic factor (BDNF)-
mediated TrkB signaling axis cascade, which has been
then further supported in vivo [386]. Also, the ECM pro-
teins including collagen, fibronectin and laminin, which
are major regulators of tumor cell differentiation, invasion,
migration and survival, have been implicated in promoting
the anoikis resistance [387]. Among matrix proteins colla-
gen type I is the most effective in delaying anoikis in can-
cer cells [388]. A study by Koontongkaew et al. showed
that metastatic cells plated on collagen I gel significantly
upregulated their cytokine secretion, which activated
MMP-2 and MMP-9 and enhanced HNSCC cell invasion
[389]. Fibronectin has been also implicated in playing
a role in anoikis resistance in HNSCC. Zhang et al.
found that OSCC cells escape p53-induced anoikis by
forming multicellular aggregates followed by integrin
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αv-mediated upregulation of fibronectin [390]. Their
following study demonstrated that alternatively spliced
V region and function-perturbing point mutations in
the high-affinity heparin-binding domain of fibronec-
tin induce anoikis in OSCC via integrin αv-mediated
phosphorylation of FAK and ERK [391].
After entering the circulation, tumor cells exploit

many mechanisms of immunoevasion. Numerous
studies show that cancer cells acquire the ability to
aggregate platelets in order to survive in the circula-
tion, a process known as tumor cell-induced platelet
aggregation (TCIPA). The formation of this “platelet
cloak” provides many advantages to tumor cells, such
as a shield which enables tumor cells to evade the
immune systems, since platelets protect tumor cells
from TNF-α [392] and NK-mediated cytotoxicity
[393]; an increased extravasation of the tumor cells
by the adhesion to the vascular endothelium [394]; a
protection from high shear forces in the bloodstream;
and a secretion of various growth factors for tumor
cells to utilize [395]. Reportedly, the “platelet cloak”
can also transfer platelet-derived normal MHC class I
onto the tumor cell surface to help escape the T
cell-mediated immunity [396]. The mechanism by
which tumor cells activate platelets to form TCIPA
includes the stimulation of the release of various mol-
ecules, such as ADP, MMP-2 and PGE2, and gener-
ation of thromboxane A2 (TXA2). This process is
often stimulated by tumor cell-derived proteases, such
as thrombin, cathepsin B, cancer procoagulant (EC
3.4.22.26), MMP-2 and MMP-14 [397, 398]. The
interaction leads to the activation of major platelet
adhesion molecules, such as integrin receptors
GPIb-IX-V and GPIIb/IIIa, P-selectin and Toll-like re-
ceptor 4 (TLR4) [351, 399, 400]. Huang et al. demon-
strated increased platelet aggregation in HNSCC
patients, which was correlated with the tumor stage
[401]. Although many studies investigated the role of
the tumor cell-induced platelet aggregation in various
types of cancer, the contribution of platelet aggrega-
tion to the process of immunoevasion in HNSCC has
not yet been studied. Another suggested mechanism by
which cancer cells survive in the circulation and evade the
immune system is by upregulation of indoleamine
2,3-dioxygenase (IDO), a tryptophan-catabolising enzyme.
Studies report the upregulation of IDO correlates with
metastasis and worse prognosis in various types of cancers
including OSCC [402]. The increased expression has
been correlated with decreased numbers of CD3+
infiltrating T cells and with an upregulation of Tregs
[403, 404]. Moreover, various studies report that
iNOS production by peripheral blood neutrophils is
significantly reduced in OSCC patients and depends
on tumor stage [405, 406].
Extravasation
After the successful arrival at the secondary metastatic
site, it is crucial for tumor cells to escape the hostile
intravascular environment and extravasate into the tis-
sue. The predominant mechanism of extravasation in-
volves the arrest of tumor cells on the endothelium,
which is followed by transendothelial migration (TEM)
and invasion into the surrounding tissue. This process is
characterized by alterations in endothelial cell-cell junc-
tions. In vitro studies show, that the attachment of tumor
cells onto the luminal side of the endothelial cell [407] is
enabled by various adhesion ligands and receptors, such
as selectins, intergrins, cadherins, immunoglobulins and
CD44 [408]. However, the exact mechanism in vivo has
yet to be elucidated. Using transgenic zebrafish that uni-
formly express GFP throughout their vasculature, Stoletov
et al. confirmed the extravasation cascade and further
demonstrated, that this process is mediated by Twist,
VEGFA and integrin β (ITGB1) expression [409].
Besides the interaction between tumor cells and endo-

thelial cells (ECs), the tumor-promoting immune cells also
assist in successful extravasation. Suggested mechanisms,
by which platelets promote extravasation and transen-
dothelial migration, include induction of the EMT and in-
vasiveness in tumor cells via TGF-β-mediated activation
of Smad and NF-κB signaling pathways [410], as well as
modulation of endothelial junctions and cytoskeleton via
ATP secreted by platelets after tumor cell activation,
which interacts with endothelial P2Y2 receptor in order to
open the EC junctions [411]. Weber et al. demonstrated
that platelets promote endothelial permeability and ex-
travasation of tumor cells when activated by integrin αvβ3
expressed on tumor cells in vivo [412]. Furthermore,
platelets contribute to the extravasation of tumor cells by
recruitment of granulocytes via production of CXCL5 and
CXCL7 [413]. Upon activation, neutrophils form NETs,
which have been shown to promote extravasation by
tumor cells sequestration [414] and MMP-9-mediated
degradation of ECM [415]. Monocytes/macrophages can
be recruited to the metastatic site by tumor cell-derived
molecules. Reportedly, after the arrival into the lung
(pulmonary metastases account for 66% of distant metas-
tases in HNSCC [416]) tumor–platelet aggregates at-
tached to ECs express tissue factor (TF) to stimulate the
expression of VCAM-1 and VAP-1. These inflammatory
mediators trigger the recruitment of macrophages, which
then promote tumor cell survival and increase the vascu-
lar permeability, possibly by transmitting the pro-survival
signals via VCAM-1 expressed on tumor cell surface
[417–419]. Moreover, VEGF produced by macrophages
and tumor cells has been shown to induce vascular per-
meability and transendothelial migration [420, 421].
Since HNSCC metastasizes primarily via the lymphatic

invasion, Fennewald et al. investigated the interaction of
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HNSCC cancer cell and ECM components of lymph
node parenchyma, such as laminin, fibronectin, vitronec-
tin and hyaluronic acid in low fluid shear conditions.
Their results show that HNSCC cell lines bound to lam-
inin via α2β1, α3β1, and α6β1 integrins in a presence of
lymphodynamic low shear stress, which resulted in acti-
vation of calcium signaling [422]. A study by Yen et al.
demonstrated that integrin β1 promotes migration and
transendothelial migration of OSCC cells via insulin-like
growth factor (IGF)-independent insulin-like growth
binding protein 3 (IGFBP3) [423]. The mechanisms of
extravasation of tumor cells have been well described in
many types of cancer; however, the effect of microenvi-
ronmental factors on extravasation in HNSCC has yet to
be investigated.

Mesenchymal-epithelial transition
Mesenchymal-epithelial transition (MET), also known as
mesenchymal-to-epithelial reverting transtition (MErT),
describes a process, by which cancer cells revert back
from the EMT-induced mesenchymal phenotype. The
disseminated cancer cells undergo this process in order
to adapt to the microenvironment of the secondary
metastatic site to allow the colonization, as metastases
recapitulate the primary tumor pathology. Although the
precise mechanism of MET has not yet been elucidated,
several studies highlight the importance of E-cadherin
re-expression in the metastatic tissue. Several studies
studied the molecular mechanisms of MET in HNSCC
[424–427], however, the role of the cells within the sur-
rounding microenvironment of the secondary metastatic
site in HNSCC has not yet been investigated.

Conclusions
The emerging evidence of crucial contribution of differ-
ent stromal components to the regulation of the HNSCC
development implicates a fundamental role of the tumor
microenvironment in providing a supportive niche, thus
substantially promoting HNSCC development and me-
tastasis. While the research has previously focused
mainly on altered expression of genes and aberrant gen-
etic and epigenetic mutations in tumor cells, it is be-
coming clear that investigation of differences in stromal
composition of the HNSCC tumor microenvironment
and their impact on cancer development and progres-
sion may help better understand the mechanisms behind
different responses to therapy, thus help define possible
targets for clinical intervention.
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