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Abstract

Objective

To provide a review of prediction models that have been used to measure clinical or patho-

logical progression of chronic kidney disease (CKD).

Design

Scoping review.

Data sources

Medline, EMBASE, CINAHL and Scopus from the year 2011 to 17th February 2022.

Study selection

All English written studies that are published in peer-reviewed journals in any country, that

developed at least a statistical or computational model that predicted the risk of CKD

progression.

Data extraction

Eligible studies for full text review were assessed on the methods that were used to predict

the progression of CKD. The type of information extracted included: the author(s), title of

article, year of publication, study dates, study location, number of participants, study design,

predicted outcomes, type of prediction model, prediction variables used, validation assess-

ment, limitations and implications.

Results

From 516 studies, 33 were included for full-text review. A qualitative analysis of the articles

was compared following the extracted information. The study populations across the studies

were heterogenous and data acquired by the studies were sourced from different levels and

locations of healthcare systems. 31 studies implemented supervised models, and 2 studies
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included unsupervised models. Regardless of the model used, the predicted outcome

included measurement of risk of progression towards end-stage kidney disease (ESKD) of

related definitions, over given time intervals. However, there is a lack of reporting consis-

tency on details of the development of their prediction models.

Conclusions

Researchers are working towards producing an effective model to provide key insights into

the progression of CKD. This review found that cox regression modelling was predominantly

used among the small number of studies in the review. This made it difficult to perform a

comparison between ML algorithms, more so when different validation methods were used

in different cohort types. There needs to be increased investment in a more consistent and

reproducible approach for future studies looking to develop risk prediction models for CKD

progression.

Introduction

Chronic Kidney Disease (CKD) is a global health burden with an estimated 5 to 10 million

annual deaths worldwide due to kidney disease [1, 2]. Current data predict CKD will be the

fifth leading cause of death worldwide by the year 2040 [3]. CKD is characterised by a gradual

loss of the kidney’s ability to remove wastes from the blood, and the severity of the disease is

determined by the individual’s estimated glomerular filtration rate (eGFR) [4]. CKD is arbi-

trarily categorised into five progressive stages with stage five often referred as end-stage kidney

disease (ESKD), and its progression often leads to multiple overlapping complications [5, 6].

There is a spectrum of pathological, hereditary, and sociodemographic factors known to con-

tribute to a decline in kidney function [5–11]. These factors include age (�60 years), smoking,

low socioeconomic status, diabetes, hypertension, cardiovascular disease, body mass index

(�30 kg/m2), family history of kidney disease and use of pain-reliving medications [9–11].

The global nephrology community recognises that current models of care are insufficient to

curb the growing CKD burden and that new care models are required to improve patient out-

comes [12–14]. It has been suggested that the management framework for CKD needs to con-

sider the disease across the entire life course of each individual [13]. New care models also

need to consider improvements in areas such as disease surveillance, mitigation of risk factors,

expanding research knowledge, and developing novel clinical interventions to slow the pro-

gression of CKD [13]. Despite having identified a number of risk factors associated with the

onset of CKD, gaps remain in the methods for predicting the risk of CKD progression and

interventions to slow CKD progression [13, 15, 16]. In addition, a large number of patients

with CKD remain undetected through health systems [16] and clinicians have the challenge of

managing the growing number of cases with limited tools for triaging patients.

Predictive modelling techniques

Predictive modelling techniques applied to the growing number of clinical datasets have

shown promise in accurately predicting the progression of chronic disease in the population

[17–23]. Previous attempts have employed a wide range of prediction models, from well-estab-

lished generalised linear models to more recent Machine Learning (ML) techniques [17–23].

Renal clinicians and researchers recognise the significant potential in developing risk
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prediction models that can improve our ability to identify individuals at risk, in addition to

potentially improving our understanding of the natural history of disease progression and con-

tribute to the clinical management of CKD [22, 24, 25]. The application of ML models pro-

vides capacity to tap into the information contained in large and complex datasets and exploit

the complex non-linear dependencies [18, 21, 23, 26–28]. The application of these analytical

techniques promises to improve our understanding of CKD progression and inform key inter-

ventions to help slow progression and reduce the burden of CKD [11, 29–31]. Moreover, it

can help inform clinicians with regards to treatment options by increasing confidence in the

patient’s likely prognostic course [32, 33].

Whilst the use of predictive modelling is gaining traction in CKD research, efforts are beset

by the lack of a uniform approach to the reporting of important methodological advancements

and developments of prediction models for CKD progression [23–25, 34]. This lack of consis-

tent reporting of key characteristics and the evaluation of model performance has likely

impeded uptake and support of prediction models by clinicians, while undermining reproduc-

ibility of research and clinical utility [24]. An example of a standardised reporting guidelines

can be seen with the Equator Network who published the Transparent Reporting of a multi-

variable prediction model for Individual Prognosis Or Diagnosis (TRIPOD) statement that

consists of a checklist considered vital by healthcare professionals, methodologists and journal

editors, for the transparent reporting of multivariable prediction model studies [35, 36]. By

implementing such a checklist, reporting can be standardised and reproducibility improved

while facilitating progress towards cross-validation between different health settings and popu-

lations globally.

With inconsistency in the advancements of predictive modelling used in CKD progression

analysis, this paper provides timely evidence from a scoping review about prediction models

used in the progression of CKD. The review aims to 1) Identify and outline existing models

used in predicting CKD progression; 2) To understand what measured outcome(s) and

selected significant variables were chosen when building a prediction model for CKD progres-

sion. Its results will help inform clinical and scientific developments in this area and provide a

better understanding of CKD progression.

Classification of predictive models

Predictive modelling techniques can be generally classified into four broad categories;

supervised, unsupervised, semi-supervised and reinforcement learning; with supervised

and unsupervised being the most commonly applied in the medical field [18, 22, 25, 33].

This was also reflected in this scoping review where only supervised and unsupervised tech-

niques were found in the studies that were assessed for full-text and will be discussed in later

sections.

Supervised techniques can be further divided by the type of outcome they predict, with the

two major groupings including continuous outcomes and categorical outcomes [37]. The

regression technique is utilised when output variables are continuous data, such as values for

weight or height [37]. On the other hand, classification techniques are commonly used for sim-

pler data such as nominal or categorical data, where a simple binary outcome or a few prede-

termined categorical responses are required [37]. Supervised techniques have their own

challenges and require sufficiently large volumes of correctly labelled data initially to perform

accurately [26]. Some examples of commonly used supervised machine learning algorithms

are linear or logistic regression, artificial neural networks, decision trees, k-nearest neighbours

(KNN), random forest for classification, gradient boosting and support vector machines

(SVM) [37, 38].
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Unsupervised techniques can be further grouped into 2 types, clustering or association.

Clustering is the process of segregating data into groups according to similar characteristics,

whereas association is the process of identifying newer relationships within datasets based on

certain selected attributes of the data. Additionally, unsupervised algorithms do not need man-

ual labelling of datasets, as they can group data into clusters or identifying associations by

themselves [26, 38]. The end result of these methods is to provide a simplified interpretation of

a complex dataset, and often to sort observations into groups [38]. These groups can then be

inspected for their ability to predict the outcome of interest. Some common examples of unsu-

pervised ML algorithms include K-means clustering, mixture models, distribution models,

dimensionality reduction, independent component analysis and principal component

analysis.

Methods

A scoping review was selected as it allows identification and mapping of existing evidence and

to investigate and determine the knowledge gaps surrounding the topic [39]. This method is

suitable for examining emerging evidence across a broad field of study and was guided by the

PRISMA extension for Scoping Reviews (PRISMA-ScR), following a standardised approach to

search, screen, and report articles [40].

Data sources and searches

This scoping review was performed in the context of a larger study that investigates improving

chronic kidney disease outcomes using linked routine records. With this context in mind, an

initial concept grid was developed to address the objectives of the scoping review, together

with the subsequent search histories that can be found in S1 Appendix. The review included

studies in the past 10 years that developed or utilised any type of predictive modelling to pre-

dict the progression of CKD towards more severe stage of the disease. Articles included were

published in peer-reviewed journals from any country, in the English language, between 1st

January 2011 to 17th February 2022 inclusive. The which addresses the objectives of the scop-

ing review. Four electronic databases, Medline, EMBASE, CINAHL, and Scopus were chosen

for their bibliographic peer-reviewed publications that covers a broad range of medical life sci-

ences, allied health, nursing and healthcare. Fig 1 illustrates the overall flow diagram of the lit-

erature review.

Study selection and search

Four main overarching concepts, as described in the concept grid, were selected for the devel-

opment of the search strategy, they were: kidney disease; disease progression; techniques; out-
comes. The initial search strategy was developed for use in Medline and subsequently adapted

for the other databases- keywords and sub headers were amended to reflect search terms used

in each respective database. The steps used in Medline are as follows:

1. (chronic kidney disease� or chronic renal disease� or CKD or kidney disease� or kidney fail-

ure).ti,ab.

2. Renal Insufficiency, Chronic/ or Kidney Failure, Chronic/ or Diabetic Nephropathies/

3. 1 or 2

4. (progress� adj7 (CKD or disease)).ti,ab.

5. Disease Progression/
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Fig 1. PRISMA flow diagram.

https://doi.org/10.1371/journal.pone.0271619.g001
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6. 4 or 5

7. (deep learning or machine learning or artificial intelligence or algorithms or prediction

model� or statistic� model�).ti,ab.

8. Artificial Intelligence/ or Big data/ or machine learning/ or algorithms/ or models,

statistical/

9. 7 or 8

10. (End stage renal disease or ESRD or Transplant� or Hemodialysis or Hospitali?ation or

Mortality or Morbidity or Heart failure or Stroke).ti,ab.

11. Dialysis/ or Peritoneal Dialysis/ or Renal Dialysis/ or Kidney Transplantation/ or Cardio-

vascular Diseases/ or Hypertension/ or Coronary Artery Disease/ or Coronary Disease/ or

Hospitalization/ or Heart failure/ or Stroke/

12. 10 or 11

13. 3 and 6 and 9 and 12

14. limit 13 to (english language and yr = "2011 -Current")

The first key concept for kidney disease included keywords and MeSH terms used in steps 1

and 2, to capture different types of chronic kidney diseases, such as diabetic nephropathies or

similar diseases, since it is chronic disease with multiple overlapping manifestations with asso-

ciated comorbidities and risk factors [39]. The type of model used was not limited and

included either statistical or ML algorithms used to predict CKD progression towards a wide

range of clinical outcomes. A clear distinction was made that the study should examine predic-

tion models for CKD progression, rather than models that predicted the onset of CKD.

Title and abstract screening

All articles were exported into EndNote and duplicate articles were removed. Two indepen-

dent reviewers performed title and abstract screening by applying inclusion and exclusion cri-

teria. Studies included in the review were based on inclusion criteria, which included an

implementation of a predictive model that was developed through analysis of health records;

and they also had to include a reported outcome on the progression of CKD. The list of exclu-

sion criteria can be found in Table 1.

The authors recognised that CKD is a very broad topic and did not place restrictions on the

type of predictive model that was developed, the population of interest, the source of health

data records, the predictive variables that were used, or a specific outcome. If there were any

disagreements to the exclusion of articles, it was resolved through a discussion between the

two reviewers—if required, a third reviewer for adjudication.

Table 1. Exclusion criteria during title and abstract screening.

• Animal studies

• Was not in the English language

• The study’s primary focus was not on the progression of CKD

• The article was a commentary, conference paper, editorial, a review, an opinion piece, a supplementary abstract.

• The study did not consider determining progression of CKD from data records.

• Study that looked at risk factors, specific markers, case study

• Interventional studies

https://doi.org/10.1371/journal.pone.0271619.t001
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Data extraction and quality assessment

The researchers wanted to better understand the significant considerations taken into account

when developing a prediction model for CKD progression, and to explore how these studies

measured CKD progression [35]. The information extracted followed the items listed on the

TRIPOD statement such as the article’s title, author(s), publication year, year of study period,

study locations and population size, study design (retrospective or prospective), predicted out-

come(s), type of prediction model, predictors in the model, validation assessment, limitations,

implications, eGFR formula and data balancing. Corresponding authors were contacted by

email if full text was not available and were excluded if unobtainable.

Results

The initial search had a combined total of 516 articles across Medline, EMBASE, CINAHL and

Scopus, of which 188 duplicates were removed. 328 articles were then screened for their title

and abstract, of which 245 articles were excluded based on exclusion criteria. 83 articles were

then assessed for full-text eligibility by inclusion criteria, and subsequently 33 articles

remained and were included in final qualitative review. Table 2 summarises the final articles

that were included for full-text review.

Predicted outcomes

It was generally observed that regardless of the model used, the predicted outcome included mea-

surement of risk towards ESKD which were defined as [41, 43, 44, 48–50, 53, 56–60, 64, 69, 70, 72]:

1. when the eGFR value is <15 mL/kg/min/1.73 m2 and / or

2. the initiation of kidney replacement therapies (KRTs) such as dialysis or kidney

transplantation.

This risk of ESKD was generally predicted for specified time intervals of 1, 2, 3, and 5 years

for supervised models, and shorter time intervals of 3, 6, 12 and 18 months for unsupervised

models. There were very few studies that had predicted outcomes such as progression from an

earlier stage to a more severe stage of CKD, for example from stage 1 to stages 3 or 4 [54, 56],

and other predicted endpoints of stated percentage decline in eGFR levels [9, 41]. Depending

on the quality of the available dataset [59, 60], the predicted outcome could also be combined

with other variables such death, comorbidities, the type of dialysis and the time of diagnosis

[46, 59, 68]. Some examples of outcomes that integrated these additional variables include, pre-

dicting the chances of future KRT at the time of CKD diagnosis [70]; a� 50% decline in the

eGFR from baseline [50] or an eGFR decline�30% from baseline [41]; the 5-year risk of KRT

in CKD stage 3 and 4 [56]; the mortality and progression to ESKD over five years [65].

Type of predictive model

Fig 1 shows that 31 studies implemented supervised models, and only 2 studies included unsu-

pervised models with 1 of these 2 studies being a comparison study between supervised and

unsupervised models. Of the studies that used supervised models, 21 studies implemented cox

proportional hazards regression [41–61]. Seven studies used machine learning (ML) methods

[9, 67–71], and one compared the performance among a number of ML techniques [70]. One

study developed a model using Random Forest regression [68], and another study imple-

mented a disease2disease model by first learning the International Classification of Diseases

and then clustering the data into groups by considering the variables within the dataset [69]. A

multistate marginal structural model (MS-MSM) was also developed in one study that
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Table 2. Summary of full-text review.

Author(s), Title

of article

Year of

publication

(study dates)

Study location

(n = size of

cohort)

Study design

(retrospective

or prospective)

Predicted

Outcome(s)

Type of prediction

model

Predictors in the model

Modifiable Non-

modifiable

Supervised

technique–cox

regression

Akbari et al.,

Prediction of

Progression in

Polycystic

Kidney Disease

Using the

Kidney Failure

Risk Equation

and Ultrasound

Parameters [41]

2020 (Jan

2010 –Jun

2017)

Eastern Ontario,

Canada

(n = 340)

Retrospective A composite of

1) eGFR decline

�30% from

baseline and/or

2) the need for

KRT (initiation

of dialysis or pre-

emptive

transplantation).

Cox proportional

hazards

Co-morbidities (cardiac disease,

cancer, diabetes, hypertension,

hyperlipidaemia), longitudinal

biochemistry (proteinuria, eGFR

by CKD-epi), kidney failure risk

equation (KFRE), systolic blood

pressure (SBP), and total kidney

volume (TKV) were modelled as

continuous predictors.

Age, sex.

Chang et al., A

predictive model

for progression

of CKD [42]

2019 (2006–

2013)

Taiwan

(n = 1549)

Retrospective Kidney failure;

dialysis.

Cox proportion hazard

model survival analysis

was used to investigate

the risks of CKD

progression to dialysis

Primary disease category, risk

factors, co-morbidities

(hypertension, hyperlipidaemia,

hyperglycaemia, proteinuria,

hypoproteinemia), and

biochemical test values.

Age, sex,

family

medical

history.

Cornec-Le Gall

et al, The

PROPKD Score:

A New

Algorithm to

Predict Renal

Survival in

Autosomal

Dominant

Polycystic

Kidney Disease

[43]

2016 (2009–

2015)

Brittany, France

(n = 1341)

Retrospective PROPKD score:

low,

intermediate,

and high risk for

progression to

ESKD.

Multivariate cox

regression

Need for antihypertensive therapy

before 35 years of age (referred

hereinafter as age at hypertension

onset, occurrence of the first

urologic event before 35 years of

age, and genetic status.

Age, sex.

Crnogorac et al.,

Clinical,

serological and

histological

determinants of

patient and renal

outcome in

ANCA-

associated

vasculitis (AAV)

with renal

involvement: an

analysis from a

referral centre

[44]

2017 (Jan

2003 –Dec

2013)

University

Hospitals

Dubrava and

Merkur, Zagreb,

Croatia (n = 83)

Retrospective Primary

outcome was

combined

endpoint patient

death or

progression to

ESKD.

Secondary

outcomes were

patient survival

and progression

to ESKD (kidney

survival)

singularly and

disease relapse.

Univariate and

multivariate cox

proportional hazards

regression analysis for

each outcome was

done. Multivariate Cox

proportional hazards

regression was done

using backward

stepwise analysis. Time

to outcomes survival

analysis was made

using Kaplan–Meier

estimates and

categories were

compared using log-

rank test.

eGFR, Proteinuria, CRP, renal

syndrome, pathohistological

phenotype (normal/crescentic/

sclerotic glomeruli, IFTA, fibrinoid

necrosis)

Age, gender,

time to

diagnosis

(months).

Dai et al., A

predictive model

for progression

of chronic

kidney disease to

kidney failure

using a large

administrative

claims database

[45]

2021 (2015–

2017)

United States

(n = 74,114)

Retrospective From CKD

stages 3 or 4 who

were at high risk

for progression

to kidney failure

Logistic regression

model.

CKD stage, hypertension (HTN),

diabetes mellitus (DM), congestive

heart failure, peripheral vascular

disease, anaemia, hyperkalaemia

(HK), prospective episode risk

group score, and poor adherence

to renin-angiotensin-aldosterone

system inhibitors. The strongest

predictors of progression to kidney

failure were CKD stage (4 vs 3),

HTN, DM, and HK.

Age, sex.

(Continued)
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Table 2. (Continued)

Author(s), Title

of article

Year of

publication

(study dates)

Study location

(n = size of

cohort)

Study design

(retrospective

or prospective)

Predicted

Outcome(s)

Type of prediction

model

Predictors in the model

Modifiable Non-

modifiable

Dunkler et al.,

Risk Prediction

for Early CKD in

Type 2 Diabetes

[46]

2015 (2001–

2008, 2003–

2011)

The

ONTARGET

(n = 25,620) and

the ORIGIN

Trial

(n = 12,537)–

over 40

countries

Prospective The outcome

states after 5.5

years of follow-

up were defined

as alive without

CKD, alive with

CKD, or dead.

Two prediction models

were developed: a

laboratory model,

containing laboratory

markers of kidney

function, sex and age,

and a clinical model,

containing the same

markers and some

clinical

variables. Multinomial

logistic regression was

applied to develop

prediction models for

the three outcome

states.

Baseline albuminuria, eGFR,

UACR (urinary albumin-

creatinine ratio), eGFR,

albuminuria stage (normo- or

microalbuminuria)

Age, sex.

Halbesma et al.,

Development

and validation of

a general

population renal

risk score [47]

2011 (1997–

1998)

City of

Groningen,

Netherlands

(n = 6,809)

Prospective A risk score

identifies

patients at risk

for progressive

CKD,

Backward logistic

regression analysis

Hypertension, smoking, BMI,

baseline eGFR and eGFR2, urea &

electrolytes (U&E), C-reactive

protein (CRP), SBP, plasma total

cholesterol, glucose, triglycerides,

urinary albumin exretion, and

known HTN.

Age, sex,

family history

for CVD/

CKD.

Hasegawa et al.,

Clinical

prediction

models for

progression of

chronic kidney

disease to end

stage kidney

failure under

pre-dialysis

nephrology care:

Results from the

chronic kidney

disease Japan

cohort study [48]

2018 (2007–

2008)

CKD-JAC study

—Japan

(n = 2034)

Retrospective ESKD onset,

defined as the

need for dialysis

or pre-emptive

kidney

transplantation

at 3 years

Cox proportional

hazard regression

Physical examination findings,

including body mass index (BMI)

and systolic blood pressure (SBP);

comorbid conditions (diabetes and

hypertension), laboratory variables

(eGFR, the urinary albumin-

creatinine ratio (UACR), serum

creatinine, serum sodium, serum

albumin (ALB), haemoglobin

(Hb), serum calcium, serum

phosphorus, intact parathormone

(iPTH), and FGF-23).

Age, sex.

Kang et al., An

independent

validation of the

kidney failure

risk equation in

an Asian

population [49]

2020 (Jan

2001 –Dec

2016)

Korea

(n = 38,905)

Retrospective 2- and 5-year

risk of ESKD

Cox proportional

hazards models were fit

using the variables

included in each of the

original equations, and

baseline hazard was

analysed.

eGFR, UACR, serum calcium,

serum phosphorus, serum ALB,

serum total CO2, diabetes mellitus,

and hypertension, were obtained

to calculate the KFREs. Because

bicarbonate is not checked

routinely, total CO2 value was used

as a bicarbonate value.

Age, sex.

Kataoka et al.,

Time series

changes in

pseudo-R2 values

regarding

maximum

glomerular

diameter and the

Oxford MEST-C

score in patients

with IgA

nephropathy: A

long-term

follow-up study

[50]

2020 (1993–

2017)

Kameda

General

Hospital, Japan

(n = 43)

Prospective Primary

outcome was

kidney disease

progression,

defined as� 50%

eGFR decline

from baseline, or

the development

of ESKD

requiring

dialysis.

Kidney prognostic

factors were also

evaluated in cox

regression analyses,

and the Kaplan-Meier

method was used for

survival analyses. The

prognostic variables for

the kidney outcomes

were assessed using

univariate and

multivariate cox

proportional hazards

models.

BMI, eGFR, laboratory results

(urea and electrolytes,

triglycerides, immunoglobulins,

proteinuria), comorbidities,

concomitant drugs, initial

treatments, histological findings.

Age, sex.

(Continued)
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Table 2. (Continued)

Author(s), Title

of article

Year of

publication

(study dates)

Study location

(n = size of

cohort)

Study design

(retrospective

or prospective)

Predicted

Outcome(s)

Type of prediction

model

Predictors in the model

Modifiable Non-

modifiable

Kim et al.,

Systolic blood

pressure and

chronic kidney

disease

progression in

patients with

primary

glomerular

disease [51]

2021 (2005–

2017)

Korea (n = 157) Retrospective A composite

including� 50%

decrease in eGFR

from the baseline

(in at least two

consecutive

measurements),

and ESKD

(Initiation of

maintenance

dialysis or

kidney

transplantation).

A time-varying Cox

model

BMI, smoking status, comorbid

disease, glomerular disease type,

laboratory measurements (eGFR,

UPCR, total cholesterol,

phosphorus, and ALB),

medications (renin–angiotensin–

aldosterone system (RAAS)

blockers, diuretics, statins,

immunosuppressive drugs), and

remission status

Age, sex.

Li et al.,

Dynamic

Prediction of

Renal Failure

Using

Longitudinal

Biomarkers in a

Cohort Study of

Chronic Kidney

Disease [52]

2017 African

American Study

of Kidney

Disease and

Hypertension

(AASK)

(n = 1094)

Prospective Survival

regression

models relating

the predictor

variables

measured at or

prior to the time

of prediction to

the time gap

from the

prediction time

to the outcome

event of interest

(ESKD).

The Landmark Model

and Predicted

Probabilities. This is a

variant of the Cox

model.

Any hospitalization in the history

window, the most recent log urine

protein-to-creatinine ratio (Up/Cr)

in the history window, the eGFR at

the time of prediction, and the

eGFR slope in the history window.

Age at the

time of

prediction

Maziarz et al,

Homelessness

and Risk of End-

stage Renal

Disease [53]

2014 (Jan

1996 –Feb

2008)

Department of

Public Health of

the City and

County of San

Francisco

(n = 16,656)

Retrospective Risk of ESKD

within 1, 3 and 5

years.

Linked with the

national ESKD registry

(United States Renal

Data System) files

based on patient last

name, first name, date

of birth, and Social

Security Number. Four

proportional hazards

models each building

on the previous,

stratified by housing

status.

eGFR, dipstick proteinuria, health

insurance coverage, comorbidities

(diabetes mellitus, CVD,

hypertension, substance abuse, and

chronic viral disease), and

additional laboratory variables

(serum ALB, serum calcium,

serum cholesterol, and

haemoglobin)

Age, sex, race-

ethnicity

Palant et al., The

association of

serum creatinine

variability and

progression to

CKD [54]

2015 (1999–

2005)

United States of

America

(n = 342,086)

Retrospective Probability of

entry into stage 4

CKD (30 mL/

min/1.73 m2)

over a

continuous

timeline.

Logistic regression

model. Time-to-event

analysis was also used

Kaplan-Meier and Cox

regression

Initial eGFR, serum creatinine

(SCr) variability, SCr slope,

number of months with SCr

readings, and comorbidities (DM,

CAD, PNE, MI, angina, AKI,

COPD, CHF).

Age, sex, race

Park et al.,

Predicted risk of

renal

replacement

therapy at

arteriovenous

fistula referral in

chronic kidney

disease [55]

2020 (May

2013 –May

2018)

Kaiser

Permanente

Northwest,

Oregon and

Washington,

USA (n = 205)

Prospective 2-year risk of

KRT (following

stage 4 CKD

patients with

2-year

observation

period)

Cox regression model

outlined by Schroeder

et al.

eGFR (calculated from Chronic

Kidney Disease Epidemiology

Collaboration equation),

haemoglobin, presence of

proteinuria or albuminuria,

systolic blood pressure,

antihypertensive use, and Diabetes

Complications Severity Index (The

index was based on the

International Statistical

Classification of Diseases and

Related Health Problems, Ninth

Edition (ICD)-9 and, Tenth

Edition 10 codes)

Age, sex

(Continued)
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Table 2. (Continued)

Author(s), Title

of article

Year of

publication

(study dates)

Study location

(n = size of

cohort)

Study design

(retrospective

or prospective)

Predicted

Outcome(s)

Type of prediction

model

Predictors in the model

Modifiable Non-

modifiable

Schroeder et al.,

Predicting 5-year

risk of RRT in

stage 3 or 4

CKD:

Development

and external

validation [56]

2017 (Jan

2002 –Dec

2013)

Kaiser

Permanente

Northwest, USA

(n = 22,460)

Retrospective

cohort

Risk score for

predicting the

5-year KRT risk

for patients in

stage 3 and 4

CKD.

A cox regression model

using statistical

methods described by

Harrell and Steyerberg

and endorsed by the

Prognosis Research

Strategy (PROGRESS)

Group (26–28) and

outlined in the

TRIPOD guidelines. To

avoid over-fitting the

model, it required 20

KRT events per degree

of freedom.

eGFR, hypertension, diabetes, and

anaemia, proteinuria/albuminuria,

body mass index (BMI), anti-

hypertensive medication use, and

prescription nonsteroidal anti-

inflammatory drugs [NSAID] use.

ICD-9 codes, counting

complications such as: retinopathy,

nephropathy, neuropathy,

cerebrovascular disease,

cardiovascular disease, peripheral

vascular disease, and metabolic

complications such as diabetic

ketoacidosis.

Age, sex

Sun et al.,

Development

and validation of

a predictive

model for end-

stage renal

disease risk in

patients with

diabetic

nephropathy

confirmed by

renal biopsy [57]

2020 (Feb

2012 –Dec

2018)

First Affiliated

Hospital of

Zhengzhou,

China. (n = 968)

Retrospective Primary

outcome was a

fatal or nonfatal

ESKD event

(peritoneal

dialysis or

haemodialysis

for ESKD,

kidney

transplantation,

or death due to

chronic kidney

failure or ESKD).

ESKD was

defined as 1)

death due to

diabetes with

kidney

manifestations or

kidney failure; 2)

hospitalization

due to nonfatal

kidney failure;

and 3) an

estimated GFR

<15 mL/min/

1.73

m2 (National

Kidney

Foundation,

2002)

Multivariable logistic

regression to identify

baseline predictors for

model development.

History of DM and HTN;

laboratory parameters, including

pathological grade (Class I, II a, II

b, III, and IV represented as 1, 2, 3,

4, and 5 respectively), haemoglobin

(Hb) levels, ALB levels,

haemoglobin A1c (HbA1c) levels,

blood urea nitrogen (BUN) levels,

SCr levels, uric acid (UA) levels,

cystatin C (CysC) levels, the

estimated glomerular filtration rate

(eGFR), 24-h urine protein levels,

point total protein (TCr) levels,

UACR, total cholesterol levels,

triglyceride (TG) levels, HDL

levels, LDL levels, serum lipid

(HDL/total cholesterol ratio)

levels; and inflammatory indicators

such as PCT, ESR and CRP,

creatine kinase isoenzyme

(CKmb), B-type natriuretic

peptide, and renin-angiotensin

system blocker use.

Age, sex

Tangri et al., A

Dynamic

Predictive Model

for Progression

of CKD [58]

2016 (Apr

2001—Dec

2009)

Outpatient CKD

clinic of

Sunnybrook

Hospital in

Toronto,

Canada

(n = 3004)

Prospective Treated kidney

failure, defined

by initiation of

dialysis therapy

or kidney

transplantation.

Cox proportional

hazards models for

time to kidney failure

Urinary albumin-creatinine ratio

at baseline, eGFR, serum albumin,

phosphorus, calcium, and

bicarbonate values as time-

dependent predictors.

Age, sex

(Continued)
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Table 2. (Continued)

Author(s), Title

of article

Year of

publication

(study dates)

Study location

(n = size of

cohort)

Study design

(retrospective

or prospective)

Predicted

Outcome(s)

Type of prediction

model

Predictors in the model

Modifiable Non-

modifiable

Tangri et al, A

predictive model

for progression

of chronic

kidney disease to

kidney failure

[59]

2011 (Apr

2001—Dec

2008)

Sunnybrook

Hospital,

Canada

(n = 3449 and

n = 4942)

Prospective Risk categories

(low,

intermediate,

high) of kidney

failure at 1, 4,

and 5 years—

defined as

initiation of

dialysis or

kidney

transplantation

and censored for

mortality before

kidney failure.

Outcomes were

ascertained by

reviewing clinic

records as well as

through a

matching

algorithm with

the Toronto

Regional Dialysis

Registry.

Outcomes such

as dialysis, death,

and

transplantation

are all captured

in the database,

which matches

all kidney failure

outcomes with

provincial and

national registry

Developed sequentially

using Cox proportional

hazards regression

methods.

Demographic variables, including;

physical examination variables,

including blood pressure and

weight; comorbid conditions,

including diabetes, hypertension,

and aetiology of kidney disease;

and laboratory variables from

serum and urine collected at the

initial nephrology visit. All

predictor variables were obtained

at baseline from the nephrology

clinic EHR in the development

data set

Age and sex

Xie et al., Risk

prediction to

inform

surveillance of

chronic kidney

disease in the US

Healthcare

Safety Net: a

cohort study [60]

2016 (1996–

2009)

Western United

States

(n = 28,779)

Retrospective Risk of

progression to

ESKD (at years

1,3,5 and 7) and

death, defined as

having a first

service date for

maintenance

dialysis or

kidney

transplantation.

Linkage to United

States Renal Data

System (USRDS).

Calculated unadjusted

incidence rates of

ESKD for the full

cohort, and for clinical

subgroups defined by

diabetes mellitus,

hypertension, chronic

viral diseases (HBV,

HCV and/or HIV) and

severe CKD (<30 mL/

min/1.73m2). We

focused on these four

subgroups because they

represent common

conditions frequently

targeted by our

Chronic Disease

Management

programs. Tested three

proportional hazards

regression models to

predict progression to

ESKD in each

subgroup.

eGFR, dipstick proteinuria. Age, sex, race

(Continued)
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Table 2. (Continued)

Author(s), Title

of article

Year of

publication

(study dates)

Study location

(n = size of

cohort)

Study design

(retrospective

or prospective)

Predicted

Outcome(s)

Type of prediction

model

Predictors in the model

Modifiable Non-

modifiable

Xu et al., An

easy-to-operate

web-based

calculator for

predicting the

progression of

chronic kidney

disease [61]

2021 (Oct

2010 –Dec

2011)

Tokyo, Japan

(n = 1,045)

Retrospective 1-, 2-, and 3-year

progression-free

survival

Univariate and

multiple Cox

proportional hazard

models

Aetiology (diabetes,

nephrosclerosis, and

Glomerulonephritis), haemoglobin

level, creatinine level, proteinuria,

and urinary protein/creatinine

ratio

Age, sex

Supervised

technique–other

non-ML

Diggle et al.,

Real-time

monitoring of

progression

towards renal

failure in

primary care

patients [62]

2014 (Mar

1997—Mar

2007)

Salford Royal

Hospital

Foundation

Trust (SRFT),

Greater

Manchester, UK

(n = 22,910)

Retrospective The predictive

probability that

they meet the

clinical guideline

for referral to

secondary care.

A person who is

losing kidney

function at a

relative rate of at

least 5% per year

The time-course of a

person’s underlying

kidney function

through a combination

of explanatory

variables, a random

intercept and a

continuous-time, non-

stationary stochastic

process.

eGFR, co-morbidities, and other

baseline information.

Age, sex

Furlano et al.,

Autosomal

Dominant

Polycystic

Kidney Disease:

Clinical

Assessment of

Rapid

Progression [63]

2018 (Jan

2016 –Jun

2017)

Outpatient

clinic in Spain

(n = 305)

Retrospective Rapid

progression of

disease

according to

their algorithm,

including

ultrasound, MRI

measurements of

kidney volume

plus genetic

testing historical

eGFR.

ERA-EDTA WGIKD/

ERBP algorithm

(European Renal

Association-European

Dialysis and Transplant

Association (ERA—

EDTA) Working

Groups of Inherited

Kidney Disorders and

European Renal Best

Practice (WGIKD/

ERBP),

Historical eGFR decline, historical

TKV growth, age and height

adjusted TKV, kidney length,

PROPKD score,

Age, sex,

family history

Lennartz et al.,

External

Validation of the

Kidney Failure

Risk Equation

and Re-

Calibration with

Addition of

Ultrasound

Parameters [64]

2016 (CARE

FOR HOMe

study: 2008–

2012—over

6 years &

Hannover

cohort:

1995–1999

Saarland

University

hospital,

Germany

(n = 444)

Prospective Risk of ESKD at

3 years following

recruitment to

validate KFRE

KFRE eGFR (per 5 ml/min per 1.73 m2,

according to the MDRD formula),

and urine albumin-to-creatinine

ratio (ACR). eGFR and ACR were

assessed as reported earlier. The

KFRE prediction model formula

with hazard ratios.

Age (per

10 years), sex

Nastasa et al.,

Risk prediction

for death and

end-stage renal

disease does not

parallel real-life

trajectory of

older patients

with advanced

chronic kidney

disease-a

Romanian center

experience [65]

2020 (Oct

2016—Oct

2018)

Romanian

Outpatient

Nephrology

Department

(n = 958)

Retrospective Bansal score and

KFRE give an

estimate of

mortality and

progression to

ESKD over five

years

Individual risk for

mortality was predicted

using Bansal score, a

nine-variable equation

model developed in a

US cohort of 828

participants aged�65

years with an eGFR For

estimating the risk for

progression to ESKD at

5 years, we used the

4-variable KFRE,

according to the

algorithm proposed by

the ERBP guideline.

eGFR, clinical and biochemical

variables

A set of

demographic

variables, not

specific.

(Continued)
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Table 2. (Continued)

Author(s), Title

of article

Year of

publication

(study dates)

Study location

(n = size of

cohort)

Study design

(retrospective

or prospective)

Predicted

Outcome(s)

Type of prediction

model

Predictors in the model

Modifiable Non-

modifiable

Zachasrias et al.,

A Novel

Metabolic

Signature To

Predict the

Requirement of

Dialysis or Renal

Transplantation

in Patients with

Chronic Kidney

Disease [66]

2019 (2010 –

ongoing)

German

Chronic Kidney

Disease

(GCKD) study

(n = 4640)

Prospective The Tangri score Three proportional

hazards models

eGFR, UACR, 24 NMR features

(proton nuclear magnetic

resonance (NMR) spectroscopy of

blood plasma), creatinine, high-

density lipoprotein, valine, acetyl

groups of glycoproteins, and Ca2

+-EDTA carried the highest

weights.

Age, sex.

Supervised

technique—ML

Cheng et al.,

Applying the

Temporal

Abstraction

Technique to the

Prediction of

Chronic Kidney

Disease

Progression [9]

2017 (Jan

2004 –Dec

2013)

Taiwan

(n = 2066)

Retrospective Predicting stage

4 CKD eGFR

level decreasing

to less than 15

ml/min/1.73 m2

(ESKD) 6

months after

collecting their

final laboratory

test information

by evaluating

time-related

features

Several common

supervised learning

techniques, including

C4.5, CART, and SVM.

TA-related variables (Temporal

abstraction related variables),

diabetes, blood pressure, drinking,

smoking, heart disease, Variables

exerting the greatest impact are

consistent with those reported in

previous studies, indicating that

kidney function, BP, and blood

haematocrit, were all vital

indicators.

Age, sex. (Sex

was the most

critical factor

affecting the

deterioration

of CKD

among the

first 25

variables that

exerted the

greatest

impact.)

Makino et al.,

Artificial

intelligence

predicts the

progression of

diabetic kidney

disease using big

data machine

learning [67]

2019 (2005–

2016)

Fujita Health

University

Hospital, Japan

(n = 64,059)

Retrospective Progression of

type 2 diabetic

kidney disease

after 180 days (6

months)

Processing natural

language and

longitudinal data with

big data machine

learning. Applied

logistic regression

using the Python code

with scikit-learn library

for model solving.

Among many machine

learning packages

including R, SPSS,

Matlab, SAS, Weka and

other, scikit-learn was

chosen due to feature

extraction processes

written in Python. Due

to the large number of

explanation variables,

L2-regularisation was

used to avoid

overfitting.

36 features, where 12 sources (e.g.,

Urine protein, albuminuria and

eGFR) were selectively chosen by

extraction from known literature

and 3 types of values (mean, latest,

SD).

Past history of

diseases.

Zhao et al.,

Predicting

outcomes of

chronic kidney

disease from

EMR data based

on Random

Forest

Regression [68]

2019 (2009–

2017)

United States,

Sioux Falls

(n = 120,495)

Retrospective The estimation

of future eGFR

value from the

past eGFR values

adjusted by

clinical

covariates, at

year 1, 2 and 3.

Random Forest

regression

eGFR, age, gender, body mass

index (BMI), obesity,

hypertension, and diabetes, which

achieved a mean coefficient of

determination of 0.95.

Age, sex.

(Continued)
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considers an estimated effect of time-dependent variables towards the predicted outcome [72].

Other ML algorithms that were tested include, neural networks, decision tree, random forest,

XGBoost, Gaussian Naïve Bayes and logistic regression [57, 70, 71].

Three studies [49, 64, 65] performed an evaluation of the Kidney Failure Risk Equation

(KFRE), and three other studies developed their own unique scoring algorithm that predicted

ESKD [55, 63, 66].

Significant variables in the model

Common predictors used in studies included age, sex, eGFR, urinary albumin to creatinine

ratio (ACR), serum creatinine (SCr), diabetes, cardiovascular disease, body mass index (BMI),

Table 2. (Continued)

Author(s), Title

of article

Year of

publication

(study dates)

Study location

(n = size of

cohort)

Study design

(retrospective

or prospective)

Predicted

Outcome(s)

Type of prediction

model

Predictors in the model

Modifiable Non-

modifiable

Zhou et al., Use

of disease

embedding

technique to

predict the risk

of progression to

end-stage renal

disease [69]

2020 (Jan

2003 –Dec

2011)

California,

United States

(n = 35,844,800)

Retrospective Progression of

CKD to ESKD

Disease2disease (D2D) Word2vec, comorbidities, ICD-9

or ICD-10 coding, five lab

parameters: bicarbonate, calcium,

protein, PTH, and urine protein/

creatinine ratio, 25-OH vitamin,

haematocrit, potassium, sodium

and triglyceride.

Age, sex.

Supervised and unsupervised techniques

Dovgan et al.,

Using machine

learning models

to predict the

initiation of

renal

replacement

therapy among

chronic kidney

disease patients

[70]

2020 (1998–

2011)

Taiwan’s

national health

insurance

research

database

(NHIRD)

(n = 23,948),

Retrospective The onset of

KRT at the time

of CKD

diagnosis—at 3,

6, and 12 months

Evaluated 10 ML

algorithms that are

implemented in the

Python packages Scikit-

learn and XGBboost:

Decision Tree, Bagging

Decision Trees,

Random Forest,

XGBoost, SVMs,

Simple Gradient

Descendent, Nearest

Neighbours, Gaussian

Naive Bayes, Logistic

Regression, and Neural

Network. Logistic

Regression in

combination with time

features and data

balancing, and without

feature selection,

filtering, or

dimensionality

reduction.

eGFR, albumin, haemoglobin,

phosphorus, potassium,

Correlations between diagnoses;

diagnoses that are related to CKD,

i.e., diabetes, HTN, hypertensive

heart disease, glomerulonephritis,

polycystic kidney, renal calculus,

vesicoureteral reflux, kidney

infections.

Age, sex,

Norouzi et al.,

Predicting Renal

Failure

Progression in

Chronic Kidney

Disease Using

Integrated

Intelligent Fuzzy

Expert System

[71]

2016 (Oct

2002—Oct

2011)

Clinic of

Nephrology,

Imam

Khomeini

Hospital

(Tehran, Iran)

(n = 465)

Retrospective Either GFR value

less than 15 mL/

kg/min/1.73 m2,

start of KRT or

patient death, at

6, 12, or 18

months.

Adaptive neuro-fuzzy

inference system

(ANFIS)

Weight, underlying diseases,

diastolic blood pressure,

creatinine, calcium, phosphorus,

uric acid, and GFR.

Age, sex,

https://doi.org/10.1371/journal.pone.0271619.t002
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and high blood pressure. Each predictive model was unique and incorporated different combi-

nations of variables, and slightly different definitions of variables, such as high blood pressure.

A recent paper by Xu et al. [61] published in 2021 highlighted that there are currently no

robust biomarkers to predict progressive CKD, but rather relied on multiple longitudinal kid-

ney measurements, such as eGFR and proteinuria.

The eGFR formula was also not consistent across studies, 13 studies used the CKD Epide-

miology Collaboration (CKD-EPI) equation [9, 41, 42, 44, 46, 51, 54–56, 58, 63, 65, 66] and 9

studies used the Modification of Diet in Renal Disease (MDRD) equation [43, 45, 47, 49, 53,

60, 62, 64, 71]. Two studies used unique equations customised for their specific cohort [48,

69]. There were also 9 studies that did not specify the formula that they used to calculate the

eGFR.

Study population

The smallest study [50] had 43 participants and the largest study included over 300,000 patient

records [54]. Included study populations were from the United States [45, 52–56, 60, 68, 69,

72], Canada [41, 46, 58, 59], Taiwan [9, 42, 70], Germany [64, 66], Japan [48, 50, 61, 67],

France [43], Croatia [44], Korea [49, 51], United Kingdom [62], Iran [71], Romania [65],

Spain [63], Netherlands [47] and China [57].

These studies that investigated on CKD progression used data records that were sourced

from all levels of healthcare. Data records ranged from single medical facilities at a local level

[58], to tertiary hospitals [50, 58, 59, 62, 67, 71], and to databases that were linked nationwide

[42, 60, 69, 72]. The populations were also selected based on a particular comorbidity of inter-

est, for example, polycystic kidney disease [41, 43, 63], ANCA associated vasculitis (AAV)

[44], diabetes [46] or other cardiovascular conditions [53, 56, 67].

Validation assessment

30 papers reported on the performance of their respective predictive models (regardless of the

type of prediction model used) with 25 studies assessing the performance of their model by

measuring the Area Under the Curve (AUC) [9, 41, 43, 45–54, 56–62, 64, 66–68, 70]. Both

supervised and unsupervised techniques were shown to have used AUC to validate their pre-

diction model, each having a relatively high value that indicated that their model was reliable

in predicting their defined outcome. Relative performance of the prediction model was indi-

cated using a variety of methods including sensitivity analysis, specificity, discrimination

index and a goodness of fit analysis. However, only three studies were externally validated on

an external population dataset [46, 56, 64].

Four studies explored the KFRE [41, 49, 64, 65] as a variable to try and improve the perfor-

mance of their prediction model. Only one study reported using the F-score with confidence

intervals [67], and there were a range of alternative measures that were used including the

mean square error, mean absolute error, normalised mean square error, positive predictive

values, negative predicted values, Harrell bootstrap resampling method, D-statistic and various

confusion matrices [56, 68, 71].

Missing data & imbalanced data

The most common limitation reported was missing or limited data, potentially due to the qual-

ity and availability of the data collected. Studies tried to overcome this issue by filling in the

missing data using imputation techniques and internal validation techniques to help justify the

dataset [42, 60]. There were also studies that reported having unbalanced data and outlined the

methods applied to re-balance the data before initiating model development [9, 42, 45, 62, 70].
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Knowing these limitations, studies recognised that their prediction models would only be

applicable to their own given study population and would require external validation to allow

generalisation of their model to other populations [41, 44–46, 49, 50, 53, 56, 59, 61, 64–66, 69,

73, 74].

Discussion

The arrival of big data and data science techniques have supported better analytics using data

from a variety of sources. However, many healthcare systems around the world are yet to fully

utilise healthcare data for research purposes. Many of the data challenges within health relate

to missing data, inconsistencies in recorded data and privacy concerns for linking data across

organisations [75]. Despite these challenges, the application of health data is critical to support

clinical decision making [31, 76, 77].

The success of disease management for conditions like CKD is dependent upon a clinician’s

ability to identify the risk of disease progression and poor outcomes. By utilising big data ana-

lytics, healthcare professionals may be able to predict disease progression in a timely manner,

allowing the potential for better treatment for patients and reduced health costs.

Our review identified studies that had developed models to predict patient outcomes for

CKD that measured the risk of progression towards ESKD over given time intervals. There

was no single gold standard model identified, with each study producing its own unique pre-

diction model, dependent on cohort’s characteristics and quality of the available data. While

Cox regression modelling was the predominant method; the burgeoning research on the use of

ML techniques to improve the prediction of CKD progressing towards ESKD [23]. However,

the decision to use a particular modelling technique should depend on finding the most suit-

able model based on the type of data available, size and dimensionality [19].

The application of both traditional and ML techniques have been explored as a way of

determining the most significant variables or features for inclusion in the model [56, 70]. Stud-

ies that combined the use of both regression and ML techniques, first identified significant var-

iables through regression prior to their inclusion into the development of a risk prediction

model [56, 70, 78]. However, the practicality of determining significant features can be highly

dependent on the availability and the quality of data. It is clear that the performance of a

model is degraded if there is a lack of significant variables or if it includes irrelevant features

[78–80]. Therefore, it is also recommended that future studies attempt to obtain whole popula-

tion datasets that can help reduce the risk of missing data within the dataset and overcome the

limitation of small study populations that are not generalisable to whole populations.

The study by Norouzi et al. demonstrated that an unsupervised adaptive neuro-fuzzy infer-

ence system (ANFIS), a type of neural network, was able to accurately predict GFR at sequen-

tial 6, 12 and 18-month intervals [71]. Other supervised non-ML models such as the KFRE

and the ERBP algorithms, also produced results with high accuracy [63–65].

The comparison study by Dovgan et al. also demonstrated that features which correlated

with a time approach produced the best results [70]. While the study did not include pathology

results when developing their model, it produced the highest AUC via logistic regression, with

XGBoost and Simple Gradient Descendent as a close second.

The MS-MSMs developed by Stephens-Shields et al. [72] developed a model that accounts

for varying windows of time associated with different states while describing the effect of dif-

ferent exposures have on between states or endpoints. This is particularly applicable to the

slow progression of CKD patients who enter the health system at different points in time and

at various stages of the disease. In addition, each patient will have acquired different comorbid-

ities and medical histories at different stages of their life.
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Since the application of unsupervised and ML models are still in their exploratory stages,

further research is required to investigate how these less explainable models manipulate very

large and complex datasets that contain multi-dimensional and continuous variables [37, 78]

and reflecting their application to predict CKD progression.

The review revealed a lack of consistent reporting of the methodology used for development

and validation of prediction models. This often led to under reporting of model development,

which hinders the ability of researchers to do a true comparison and externally validate their

predictive models against existing models. This was emphasised when almost one third of

studies reviewed did not report on the eGFR formula used, and is a significant limitation

towards the development of this area of research. The development of a standardised reporting

statement has yet to be widely implemented among CKD progression research which may be

due to its relative novelty in the area of predictive modelling and statistical research [35].

Few studies explained how they attempted to re-balance their data, and methods differed

for each study including log transformations, data resampling techniques, running simulation

studies, and applying inversely proportional weights to class frequencies [9, 42, 62, 70]. The

predictive models that have been developed are often difficult to implement locally as they lack

information that allows clinicians to validate them. Limitations on data linkage within and

between health organisations also contribute to the challenge of implementing this research,

where siloed datasets are unlikely to be representative of whole populations. It is also recom-

mended that future studies should include clear reporting of model development including

any balancing of skewed datasets, steps to validate the model, and a description of how signifi-

cant variables were chosen, which should theoretically at least include age, sex, eGFR (using a

formula that provides reliable estimates for the study population), details on the population’s

characteristics, ACR, BMI and time-related variables if available.

A reliable risk prediction model for CKD progression would not only provide clinicians

with earlier identification of CKD patients at greatest risk of progression, it would also enhance

consultations and help clinicians determine suitable treatment options to improve patient out-

comes [81, 82].

Conclusions

Nephrology researchers are working towards producing an effective model to assist the detec-

tion of the risk of chronic kidney disease progression. The review highlights that supervised

techniques, and more specifically, cox regression is the predominant model that is used to pre-

dict the progression of CKD. There were only a small number of studies in the review that

used unsupervised and ML models, with the limited numbers making it very difficult to per-

form a comparison between these models. A more consistent and reproducible approach is

required for future studies looking to develop risk prediction models for CKD progression.

This would improve international collaborations and build upon the existing research to over-

come the challenges to improve the effectiveness and reliability of these prediction models.

Subsequently, this would also translate into enhanced health system planning, allocation of

resources and improved health outcomes for CKD patients.
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