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ABSTRACT

Subcellular organization of RNAs and proteins is crit-
ical for cell function, but we still lack global maps
and conceptual frameworks for how these molecules
are localized in cells and tissues. Here, we intro-
duce ATLAS-Seq, which generates transcriptomes
and proteomes from detergent-free tissue lysates
fractionated across a sucrose gradient. Proteomic
analysis of fractions confirmed separation of subcel-
lular compartments. Unexpectedly, RNAs tended to
co-sediment with other RNAs in similar protein com-
plexes, cellular compartments, or with similar biolog-
ical functions. With the exception of those encoding
secreted proteins, most RNAs sedimented differently
than their encoded protein counterparts. To identify
RNA binding proteins potentially driving these pat-
terns, we correlated their sedimentation profiles to
all RNAs, confirming known interactions and pre-
dicting new associations. Hundreds of alternative
RNA isoforms exhibited distinct sedimentation pat-
terns across the gradient, despite sharing most of
their coding sequence. These observations suggest
that transcriptomes can be organized into networks
of co-segregating mRNAs encoding functionally re-
lated proteins and provide insights into the establish-
ment and maintenance of subcellular organization.

INTRODUCTION

Subcellular organization is critical for compartmentaliza-
tion of intracellular processes and spatiotemporal con-
trol of RNA metabolism and protein translation. RNAs
distribute to distinct microenvironments such as the ER
(1,2), the leading edge of the cell (3), axons (4), and den-
drites (5).These patterns facilitate cellular functions (6),
including cell fate determination (7), directed movement
(8), embryonic patterning (9), and synaptic plasticity (10).
RNAs can be localized by RNA binding proteins (RBPs),
via formation of ribonucleoprotein (RNP) particles or

RNA transport granules that may travel on cytoskeleton
(11). For example, zipcode-binding protein localizes �-actin
mRNA to the leading edge of fibroblasts (12), and the
She2/She3/Myo4 complex localizes Ash1 mRNA to bud-
ding yeast tips (13). Cis-elements unique to each mRNA,
even at the isoform level, control the repertoire of RNA
binding proteins (RBPs) that they recruit. For example,
constitutive or alternative 3′ UTRs of mRNAs can recruit
specific RBPs that influence both RNA and protein fate
(14–16). Indeed, different RNPs can influence formation of
granules or compartments with differing physical proper-
ties (17–19) and these properties could play a role in dic-
tating their final destinations. One potential reason to co-
distribute RNAs is to facilitate efficient co-translation or
co-assembly of the proteins they encode. While extensive ef-
forts have been focused on mapping interactions between
cis-elements and trans-factors (20), a major challenge re-
mains to characterize how RNAs are distributed across dif-
ferent types of RNPs and whether they may be localized to
distinct subcellular microenvironments.

Many techniques have been developed to study subcel-
lular localization of RNA. In situ hybridization (21) of-
fers high accuracy and resolution, especially with single
molecule approaches, but is generally low throughput. To
address this limitation, techniques such as MERFISH (22)
and FISSEQ (23) have been developed to simultaneously
visualize thousands of RNAs. In spite of these advances, in
situ approaches do not easily reveal physical or biochem-
ical properties of the subcellular compartments to which
these RNAs localize. Without super-resolution or expan-
sion microscopy, it can be challenging to determine whether
RNAs are associated with structures such as membranes,
vesicles, or the cytoskeleton. Proximity labeling techniques
using BirA or APEX (24), coupled to deep sequencing,
have provided alternative routes towards identifying these
associations. However, it is challenging to apply these tech-
niques to tissues in vivo, and they require exogenous intro-
duction of fusion proteins to biotinylate specific organelles.
Traditional biochemical fractionation is therefore an attrac-
tive alternative to separate RNPs with distinct biophysical
properties (25). Sedimentation across density gradients have
been used to stratify protein complexes across cellular com-
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partments (26) and analyses of sedimentation profiles re-
veal differences that are typically hidden from both image-
based and enrichment-based methods. Fractionation com-
bined with sequencing has been used to analyze the tran-
scriptome of specific cellular compartments that are purifi-
able (27,28), but this approach has not been used to analyze
transcriptomes of many cellular compartments simultane-
ously with high resolution.

Here, we describe ‘Assigning Transcript Locations
Across Sucrose-Sequencing’ (ATLAS-Seq), a detergent-
free method that fractionates tissue homogenate across a
continuous sucrose gradient by density ultracentrifugation,
followed by RNA sequencing and mass spectrometry. We
have used this approach to develop a map of the subcellular
organization of the transcriptome in mouse liver and
find that transcripts encoding proteins involved in similar
biological processes display similar sedimentation profiles.
These profiles reflect a wide array of cellular compart-
ments and correlate with RBP sedimentation patterns,
making predictions about regulatory associations. Global
characterization of these profiles is a first step towards the
elucidation of how RNA–protein interactions generate and
maintain these subcellular compartments.

MATERIALS AND METHODS

Subcellular fractionation

Wild-type FVB female mouse livers were dissected and
washed in ice cold PBS. Tissue was placed in a tube con-
taining 0.25 M buffered sucrose solution, 20mM Tris, wa-
ter supplemented with protease inhibitor cocktail and 10
mM ribonucleoside-vanadyl complex (VRC) as a ribonu-
clease inhibitor) with 2.8 mm ceramic beads and placed in
a bead homogenizer to homogenize tissue. Homogenized
tissue was centrifuged at 5000 × g for 10 min to remove
nuclei. A Biocomp Gradient Master™ was using to gener-
ate an 11 ml 10–50% sucrose gradient (with 10 mM VRC).
Homogenate was layered onto the gradient, and compo-
nents were resolved by ultracentrifugation in an SW41 rotor
for 3 h at 30 000 rpm (4◦C). Twenty-four 0.5 ml fractions
were collected from the gradient using the BioComp Pis-
ton Gradient Fractionator™. Fractions were split for RNA
and protein extraction. RNA was extracted from each frac-
tion by Direct-zol RNA miniprep kit. Ten equivalents of
EDTA (relative to the VRC concentration) were added to
each sample in Trizol-reagent before ethanol was added to
remove the ribonucleoside-vanadyl complex. Protein con-
centrations were measured by the Pierce BCA protein assay
kit.

RNA-Seq

The Kapa stranded RNA-Seq with RiboErase kit was used
for prepare libraries according to manufacturer’s instruc-
tions. An equal mass (500 ng) of RNA was used as input to
each individual library. Libraries quality was assessed us-
ing a BioAnalyzer (Agilent, Santa Clara, CA, USA) and
quantified using a Qubit (Life Technologies) prior to pool-
ing for sequencing. Pooled libraries were 75-bp paired-end
sequenced on an Illumina Next-Seq 550 v2.

Mass spectrometry

Proteins were reduced with 10 mM dithiothreitol for 1 h at
56o C and then alkylated with 55 mM iodoacetamide for
1 h at 25oC in the dark. Proteins were digested with modi-
fied trypsin at an enzyme/substrate ratio of 1:50 in 100 mM
ammonium bicarbonate, pH 8.9 at 25oC overnight. Trypsin
activity was halted by addition of acetic acid (99.9%) to
a final concentration of 5%. Peptides were desalted using
C18 SpinTips (Protea, Morgantown, WV, USA) and then
vacuum centrifuged. Peptide labeling with TMT 10-plex
was performed per manufacturer’s instructions. Lyophilized
samples were dissolved in 70 �l ethanol and 30 �l of 500
mM triethylammonium bicarbonate, pH 8.5, and the TMT
reagent was dissolved in 30 �l of anhydrous acetonitrile.
The solution containing peptides and TMT reagent was
vortexed and incubated at room temperature for 1 h. Sam-
ples labeled with the ten different isotopic TMT reagents
were combined and concentrated to completion in a vac-
uum centrifuge.

Peptides were separated by reverse phase HPLC (Thermo
Easy nLC1000) using a precolumn (made in house, 6 cm of
10 �m C18) and a self-packed 5 �m tip analytical column
(12 cm of 5 �m C18, New Objective) over a 140-min gradi-
ent before nanoelectrospray using a QExactive mass spec-
trometer (Thermo). Solvent A was 0.1% formic acid and
solvent B was 80% MeCN/0.1% formic acid. The gradi-
ent conditions were 0–10% B (0–5 min), 10–30% B (5–105
min), 30–40% B (105–119 min), 40–60% B (119–124 min),
60–100% B (124–126 min), 100% B (126–136 min), 100–0%
B (136–138 min), 0% B (138–140 min), and the mass spec-
trometer was operated in a data-dependent mode. The pa-
rameters for the full scan MS were: resolution of 70 000
across 350–2000 m/z, AGC 3e6 and maximum IT 50 ms.
The full MS scan was followed by MS/MS for the top 10
precursor ions in each cycle with an NCE of 32 and dynamic
exclusion of 30 s. Raw mass spectral data files (.raw) were
searched using Proteome Discoverer (Thermo) and Mascot
version 2.4.1 (Matrix Science). Mascot search parameters
were: 15 ppm mass tolerance for precursor ions; 15 mmu
for fragment ion mass tolerance; two missed cleavages of
trypsin; fixed modifications were carbamidomethylation of
cysteine and TMT 10-plex modification of lysines and pep-
tide N-termini; variable modifications were methionine ox-
idation.

Read mapping, expression analysis, and isoform quantitation

Reads were aligned using Spliced Transcripts Alignment
to a Reference (STAR) algorithm (29). RNA-Seq reads
were quantified, pseudo-aligned to an mm10 Refseq in-
dex, and counted as transcripts per million (TPMs) using
the Kallisto quantification program (30). For mitochondrial
RNAs reads were pseudo-aligned to an Ensembl mm10
index and the TPM counts for annotated mitochondrial-
encoded RNAs from the resulting Kallisto tpm table was
used to plot the distribution of mitochondrial-encoded
RNAs across the ATLAS-Seq gradient (Figure 3B). RefSeq
and Ensembl TPM tables can be found in Supplementary
Table S2. The Mixture of Isoforms (MISO) (31) program
was used to quantitate alternative isoforms. Only isoforms
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with <0.2 confidence interval across all fractions were ana-
lyzed.

GO analysis

Data release from AmiGO 2 version: 2.5.12 was used to
determine GO enrichments (32). Panther GO enrichment
analysis (33) was used to determine GO enrichments for
all analyses in the paper with one exception. P-values were
determined by Fisher’s exact test with Bonferroni correc-
tion for multiple testing. In Figure 4C, GOrilla (34) was
used to determine cellular component GO enrichment cat-
egories for single lists. The lists for Figure 4C were ranked
from highest to lowest Pearson correlation for positive asso-
ciation and from lowest to highest for negative correlation.
GOrilla computed an uncorrected P-value according to the
HG model and the FDR q-value was corrected using the
Benjamini-Hochberg method.

Comparing ATLAS-Seq to ribosome profiling

Ribosome profiling was performed in mouse liver cells
(35). Fastq files for ribosome profiling and RNA-Seq in
mouse liver were downloaded from NCBI (GEO Acces-
sion GSE67305) and processed by Kallisto (30). Fastq files
for ribosome profiling performed in HEK293T cells were
downloaded from NCBI (GEO Accession GSE65778) (36).
Fastq files for TRIP-Seq polysome profiling performed in
HEK293T cells were downloaded from NCBI (GEO Ac-
cession GSE69352). For Figure 2, weighted counts from
polysome sequencing or ATLAS-Seq were calculated simi-
larly to Floor et al. (37):

ATLAS-Seq or polysome sequencing weighted counts =
y∑

i = x
ini

For ATLAS-Seq, x = 3 and y = 24. For polysome se-
quencing, x = 1 and y = 7. Essentially, TPMs were weighted
by the fraction number, e.g. ni is the TPM count in the i th
fraction, where i is the fraction number.

smiFISH and probes

smiFISH was performed according to (38). 3D Z-stacks
were captured by epifluorescence using a Zeiss LSM880 us-
ing a 63× 1.4 NA objective and an Axiocam MRm cam-
era. Cy3- or Cy5-conjugated Y flaps were used as secondary
probe detectors for all primary probes. All probes and flaps
produced and purchased from Integrated DNA Technolo-
gies (IDT) following protocols as listed in (38). All primary
probe sequences are provided in Supplementary Table S4.
NIH 3T3 cells were grown on chamber slides (Lab-Tek) in
10% FBS DMEM media. For smiFISH in liver, wild-type
FVB mouse livers were cryosectioned into 7 uM sections
and then subjected to the smiFISH protocol. DAPI staining
was used to identify nuclei and all coverslips were mounted
with Vectashield.

RBP analysis

RBPs were defined using publicly available datasets of pre-
viously characterized RBPS (39,40). Overlap between these

datasets and our list of peptides obtained from our mass
spectrometry identified 148 RBPs in our mass spectrome-
try dataset. The peptide profile of each RBP was correlated
with the mean profile of RNAs in each ATLAS-Seq RNA
cluster.

Quantification and statistical analysis

Graphs were generated using Matplotlib version 2.2.2. Sta-
tistical Analyses were performed using Python, SciPy 1.1.0
and NumPy 1.14.3 libraries. Statistical parameters, statisti-
cal tests, and statistical significance (P value) are reported in
the figures and their legends. Two independent, biological
replicate gradients were generated from mouse liver. Each
replicate was analyzed independently, with ‘gradient 2’ be-
ing the replicate used for all main figures. For hierarchical
clustering analysis, the SciPy.cluster.hierarchy library was
used. All Correlations were calculated using NumPy cor-
rcoef function which returns a Pearson correlation coeffi-
cient for variables. Wilcoxon rank-sum tests were used to
compute statistical significance.

RESULTS

Detergent-free sucrose fractionation of liver lysate separates
RNA signatures by their cellular microenvironments

In this study, we applied ATLAS-Seq to mouse liver. Ap-
proximately 80% of mouse liver by weight is composed
of hepatocytes (41), minimizing contributions from other
cell types that could confound interpretation of fractiona-
tion profiles. In addition, previous studies of liver have per-
formed velocity sedimentation, followed by fractionation
and mass spectrometry, to generate a ‘fingerprint’ of co-
fractionating proteins and protein complexes across the gra-
dient (26). We performed similar velocity sedimentation of
a detergent-free, post-nuclear liver lysate across a 10–50%
sucrose gradient (Figure 1A). Notably, although velocity
sedimentation only yields modest enrichment of particu-
lar organelles at specific densities relative to density equi-
librium approaches, it can be advantageous for generat-
ing unique fingerprints for a variety of RNP, RNA and
membrane-associated complexes across the full spectrum of
the gradient. We collected 24 fractions from homogenized
supernatant and subjected 17 with sufficient protein con-
tent (fractions 3–19) to mass spectrometry (Supplementary
Table S1). The normalized abundance of known organelle
markers including calnexin (endoplasmic reticulum, ER),
clathrin (clathrin-coated vesicles), Gapdh (cytosol), Psma1
(proteasome) and catalase (peroxisome) were plotted across
the gradient (Figure 1B) and showed patterns similar to
previous studies (26). Importantly, we observed that these
well-established organellar markers do not always peak at
a specific density, but rather peak at different gradient frac-
tions and exhibit distinct profiles, potentially reflecting the
microenvironmental preferences of each protein in the cell.

Given our ability to separate proteins according to pub-
lished expectations, we subsequently performed RNA-Seq
on 22 out of 24 of the fractions with sufficient RNA con-
tent (fractions 3–24). Overall, gene expression profiles of
fractions with similar densities were more highly correlated
than fractions with greater density differences (Figure 1C).
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Figure 1. ATLAS-Seq generates transcriptome- and proteome-wide profiles across a density centrifugation gradient. (A) Schematic of ATLAS-Seq pro-
cedure from mouse liver homogenate depleted of nuclei. (B) Relative protein abundance across a single ATLAS-Seq gradient for specific protein organelle
markers as assessed by mass spectrometry. (C) Heatmap showing Pearson correlation coefficients of gene expression between all pairs of sucrose fractions
from a single ATLAS-Seq gradient. (D) Heatmap of relative gene expression across a single ATLAS-Seq gradient, organized by hierarchical clusters, where
rows are genes and columns are successively denser sucrose fractions. (E) Selected clusters from (D) enlarged. (F) Mean relative expression profiles across a
single ATLAS-Seq gradient for clusters highlighted in (D), with corresponding Gene Ontology (GO) categories enriched within each cluster (right panel).
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Two independent biological gradients were generated and
analyzed, and similar profiles were observed across the tran-
scriptome of the biological replicate gradient (Supplemen-
tary Figure S1, Supplementary Table S2). Given the high
degree of concordance between transcriptome replicate gra-
dients, we focused subsequent analyses on the gradient with
a larger number of fractions, from which matched pro-
teomic data were also generated. Unsupervised hierarchi-
cal clustering identified groups of RNAs among whose nor-
malized expression profiles across the gradient were highly
correlated (Figure 1D). 9269 genes were assigned to 635 dis-
tinct clusters; among these, 76 clusters contained at least 20
genes (Supplementary Table S3).

These clusters were subjected to Gene Ontology (GO)
analysis. Of the 76 clusters, 53 showed enrichment for par-
ticular cellular compartments (cluster identities and GO re-
sults are in Supplementary Table S3). Similar to protein
organelle markers, RNA profiles with strong GO enrich-
ment did not always show a strong peak at any particular
sucrose concentration; rather, profiles commonly showed
modest enrichments of up to 4-fold at their greatest point
(Figure 1D). For example, cluster 280 showed modest de-
pletion in the center of the gradient and was highly enriched
for categories including ‘chylomicron and plasma lipopro-
tein particle’. Clusters 522, 30 and 114 showed ∼2- to 3-
fold enrichment at successively denser locations across the
gradient, and revealed slightly different GO categories re-
lated to Golgi, aminoacyl-tRNA synthetase multienzyme
complex, and mitochondrial respiration, respectively. Clus-
ter 57, ∼2-fold enriched toward the denser part of the gra-
dient, was enriched for proteasomal and mitochondrial cat-
egories (Figure 1E,F). Localization patterns of RNAs en-
coding proteasomal components have not been previously
studied as a class and these results suggest that this subset
of RNAs may exhibit a shared localization signature. In-
terestingly, the profiles of these RNAs are distinct from the
peptide profile of a proteasomal marker, Psma1, as assessed
by mass spectrometry. Overall, these observations show
that RNAs with similar sedimentation properties often en-
code proteins known to co-associate or co-assemble in
the cell.

Sedimentation of RNA in ATLAS-Seq is influenced by fac-
tors beyond ribosome density

Both polysome profiling and ATLAS-Seq rely on sepa-
ration by ultracentrifugation through a density gradient.
However, an important difference is that polysome profiling
employs detergents prior to loading onto the sucrose gra-
dient to disrupt membranes and membranous organelles,
whereas ATLAS-Seq does not (Figure 2A). To assess the
extent to which ribosome density might influence ATLAS-
Seq profiles, we analyzed published ribosome footprint pro-
files (42,43) and polysome profiles (44) together with our
ATLAS-Seq profiles. As a first comparison, we correlated
ribosome footprint counts to polysome profile counts (both
from HEK293T cells) as estimated by a weighted sum of
RNA across each polysome profile peak (see Materials and
Methods). We observed a strong correlation (Pearson’s R
= 0.823), and importantly, a single cloud of points cen-
tered along a diagonal (Figure 2B, left panel) indicating that

polysome profiling is mainly a measure of ribosome density
rather than RNAs bound to larger cellular compartments
or complexes as previously reported (37).

We then correlated ribosome footprint counts to
ATLAS-Seq counts, also by weighted sums across each
of the 22 fractions, mirroring calculations of polysome
profiling counts above. A high correlation would imply
that ATLAS-Seq mirrors a polysome gradient, and a low
correlation would imply that ribosome occupancy cannot
fully explain ATLAS-Seq profiles. We observed a weaker
correlation (Pearson’s R = 0.738) and also the presence
of subsets of RNAs lying off the main diagonal (Figure
2B, right panel). Upon further inspection, we noticed that
clusters we previously identified by hierarchical clustering
(Figure 1D) separated away from the diagonal and were
associated with specific GO categories (Figure 1E). For
example, RNAs in cluster 589, a cluster predicted to
be membrane-associated due to enrichment of RNAs
encoding secreted proteins and ER components, appear
less dense according to ATLAS-Seq relative to ribosome
footprint profiling (Figure 2C). Overall, these observations
suggest that the mild detergent-free homogenization condi-
tions of ATLAS-Seq allow additional cellular components
besides ribosomes to influence sedimentation, providing
information about the cellular compartments with which
RNAs are associated.

ATLAS-Seq RNA localization patterns are consistent with
those identified by orthogonal methods

Although our analyses thus far suggested that ATLAS-Seq
can reveal information about the subcellular location of
RNAs, we sought to compare these predictions to obser-
vations made using orthogonal methods. Crosslinking of
RNAs to proteins labeled by APEX has been used to cap-
ture RNAs localized to specific subcellular locations, for
example the outer surface of the ER or the mitochondrial
matrix (45). First, we analyzed RNAs published to be as-
sociated with the ER according to APEX-RIP. For each
ATLAS-Seq cluster, we computed the fraction of RNAs de-
termined to be ER-associated by APEX-RIP as well as the
fraction of RNAs predicted to have a signal sequence ac-
cording to SignalP (46). We plotted a scatter of these met-
rics for each cluster (Figure 3A) and highlighted each clus-
ter in red if it was significantly enriched for any ER-related
GO categories (Supplementary Table S3) Clusters identified
to be ER-associated by ATLAS-Seq showed enrichment
for RNAs identified by ER APEX-RIP and RNAs with
high SignalP scores. Although one ATLAS-Seq cluster did
not show ER-related GO enrichment, it did show enrich-
ment for ‘plasma membrane’, and proteins in the plasma
membrane are typically derived from proteins synthesized,
processed, and trafficked via the endomembrane system
(47,48). Interestingly, although all of these clusters were en-
riched for ER-related GO terms, some exhibited distinct
profiles that could be further stratified by specific GO sub-
categories. (Supplementary Figure S2). For example, cluster
598 was enriched for the ER chaperone complex, whereas
cluster 280 was enriched for RNAs encoding proteins found
in lipoprotein microparticles. Therefore, our approach may
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Figure 2. ATLAS-Seq profiles reflect a combination of subcellular microenvironment and ribosome occupancy. (A) Schematic illustrating sample prepara-
tion differences between polysome profiling, ribosome footprint profiling, and ATLAS-Seq. (B) Scatter plot of weighted sums of polysome profiling counts
(see Methods) versus ribosome footprint profiling transcript per million (TPM) counts in HEK293T cells (top panel). Scatter plot of weighted sums of
ATLAS-Seq counts (see Methods) and ribosome footprint profiling TPM counts in mouse liver (bottom panel). All genes are shown in gray, and genes in
three clusters identified by hierarchical clustering of one ATLAS-Seq gradient (Figure 1D) are shown in red, purple, and blue. (C) Normalized ATLAS-Seq
profiles for each of the three clusters highlighted in (B), along with GO categories for which they are enriched.

provide finer resolution to identify subclusters correspond-
ing to distinct ER microenvironments.

To further assess whether our gradient could reveal co-
localized RNAs, we analyzed the 13 protein-coding mR-
NAs of the mitochondrial genome, which are known to re-
side in the mitochondria. Profiles of these RNAs highly cor-
related with each other and also with the mass spectrom-
etry profile of a mitochondrial resident protein, fumarate
hydratase (Figure 3B). The high concordance of these pro-
files suggests that our approach preserves the association
between RNAs inside the mitochondria and proteins as-
sociated with the organelle. Taken together, these analyses
confirm that ATLAS-Seq yields information related to the
subcellular localization of RNA species, and that profiles of
RNAs with unknown localization patterns may be used to
predict their local microenvironment.

We then sought to explore subcellular distributions of
RNAs for which little is known. Eleven out of 19 RNAs en-
coding the proteasome core complex were found in ATLAS-
Seq clusters 53 and 57. The localization of the proteasome
itself is well studied and has been observed to play a key role
in mitochondrial biogenesis (49). Interestingly, both pro-
teasomal clusters, 53 and 57, also contained a number of
nuclear-encoded mitochondrial RNAs (Supplementary Ta-
ble S3).

To assess whether results from our ATLAS-Seq anal-
ysis were consistent with an imaging-based approach,
we performed single-molecule inexpensive FISH (smi-
FISH) on 4 proteasomal core complex RNAs (Psma1,
Psmb1, Psmc5 and Adrm1), a nuclear-encoded mitochon-
drial RNA (Atp5b), and a signal sequence-containing
RNA (Fn1). All proteasome-encoding RNAs and Atp5b
exhibited similar ATLAS-Seq profiles, whereas Fn1 ex-
hibited a highly distinct profile that was representative
of RNAs encoding secreted proteins (Figure 3C). Smi-
FISH for Fn1 RNA in both liver (Supplementary Fig-
ure S3) and adherent NIH 3T3 cells (Figure 3D) re-
vealed a perinuclear pattern, consistent with the pres-
ence of a signal sequence and localization to the ER.
Psma1, Psmb1, Psmc5, Adrm1 and Atp5b were found
throughout the cytoplasm in a pattern distinct from that
of Fn1. Interestingly, in spite of highly overlapping pro-
teasomal and mitochondrial ATLAS-Seq profiles, smi-
FISH did not reveal strong spatial co-localization. This
indicates that while ATLAS-Seq cannot provide informa-
tion about the precise spatial location of an RNA, it
may rather provide information about local microenvi-
ronments within a particular subcellular region––a prop-
erty that is often difficult to discern by image-based
methods.
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Figure 3. ATLAS-Seq reveals subcellular localization of RNAs in a manner consistent with other established techniques. (A) Gene clusters identified
by ATLAS-Seq, plotted as a function of the proportion of genes within each cluster identified by ER APEX-RIP (x-axis) and the proportion of genes
within each cluster predicted to be secreted by SignalP (y-axis). Clusters significantly enriched as determined by Fisher’s exact test, in ER-related GO
categories are shown in red, clusters with significant non-ER GO enrichment are shown in blue, and clusters with no significant GO enrichment are shown
in gray. (B) Distribution of normalized TPMs across the ATLAS-Seq gradient for 13 genes identified to be mitochondrially-associated by APEX-RIP.
Normalized mass spectrometry peptide counts for fumarate hydratase across the ATLAS-Seq gradient are shown in black. Pearson correlation coefficients
between TPMs for each RNA and fumarate hydratase peptide counts are shown. (C) Normalized TPM profiles across one ATLAS-Seq gradient for
RNAs encoding fibronectin 1 (Fn1), proteasomal subunit A1 (Psma1), proteasomal subunit B1 (Psmb1), Proteasomal ubiquitin receptor (Adrm1), 26s
proteasome regulatory subunit 8 (Psmc5), and ATP synthase subunit beta (Atp5b) in green or red as labeled. Pearson correlation coefficients between
each pair of RNAs are also listed. (D) smiFISH for RNAs encoding Fn1, Psma1, and Psmb1, Adrm1, Psmc5, Atp5b in NIH 3T3 cells. Fn1 exhibits a
perinuclear pattern, whereas Psma1 and Psmb1 are distributed throughout the cytoplasm. Nuclei were stained by DAPI (blue), and the same scale bar
applies to all images (10 �m).
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Comparing sedimentation patterns of RNAs and the proteins
they encode

A long-standing question is the extent to which RNAs
co-localize with the proteins they encode. It is well estab-
lished in neurons that many synaptically localized RNAs
encode locally translated proteins, and therefore show co-
localization (10). In contrast, in the mouse intestinal ep-
ithelium, localization of many mRNAs is distinct from their
encoded proteins (50). Although ATLAS-Seq cannot truly
assess co-localization of RNAs and proteins in space, it can
assess the extent to which they co-sediment. We compared
normalized protein profiles to normalized RNA profiles
across the sucrose gradient, limiting these analyses to genes
for which we had both reasonable RNA-Seq read coverage
and mass spectrometry peptide counts (404 genes in total,
Supplementary Table S5). As examples, we show that RNA
and protein profiles for Alb (albumin) were highly concor-
dant (Pearson’s R = 0.93), whereas the RNA and protein
for Psmd13, a 26S proteasome subunit protein, were anti-
correlated (Pearson’s R = −0.88) (Figure 4A). We plotted
a histogram of these correlations across all genes for which
we could obtain reproducible RNA and protein data and
observed that most genes exhibited a negative correlation;
that is, RNA and protein exhibited anti-correlated sedimen-
tation profiles (Figure 4B). This suggests that in liver, the
majority of RNAs are not localized to the same subcellu-
lar region as the steady state destination of their protein
counterparts or are in a microenvironment distinct from the
protein they encode. GO analysis revealed that genes with
a high correlation between their RNA and protein counter-
parts were enriched for secretion and/or endomembrane-
trafficking, whereas highly anti-correlated genes were en-
riched for cytosolic genes (Figure 4C, Supplementary Ta-
ble S5). Indeed, the most positively correlated genes (top
20th percentile) contained signal sequences ∼38% of the
time, consistent with their translation at the ER membrane,
whereas the most negatively correlated genes (bottom 20th
percentile) contained signal sequences only ∼14% of time
(Supplementary Figure S4C). Thus, although proteins of
the ER colocalize with their RNA, most RNAs and their
encoded proteins did not co-sediment in this context.

Although most RNAs do not co-sediment with the pro-
teins they encode, our previous Gene Ontology analysis of
RNA clusters (Figure 1) suggested that proteins encoded
by co-sedimenting RNAs act in similar biological pathways
or cellular compartments. We therefore grouped proteins
by their RNA cluster assignments and analyzed their sedi-
mentation patterns. For example, RNAs in Cluster 53, en-
riched for the proteasome complex, showed enrichment to-
ward the bottom of the gradient and were highly correlated
with one another, showing a median correlation among all
pairwise comparisons of 0.97 (Figure 4D). Interestingly, the
proteins encoded by these RNAs also tended to correlate
with one another, showing a median pairwise correlation
of 0.65. To assess this globally, we analyzed every cluster
for which there were at least two proteins assessed by mass
spectrometry and obtained the median pairwise correlation
among all proteins in each cluster. These median correlation
values were enriched for positive values (Figure 4E, pink
bars), and were much greater than when computed using

shuffled RNA–protein assignments (Figure 4E, gray bars).
This analysis provides further evidence that the sedimenta-
tion patterns of RNAs contain information about the sub-
cellular localization of the proteins they encode.

Alternative isoforms are differentially localized across the
ATLAS-Seq gradient

We next investigated whether alternative isoforms from the
same gene loci exhibit differential sedimentation patterns
across the ATLAS-Seq gradient. Because untranslated re-
gions have known roles in regulating RNA localization, we
focused on alternative UTR isoforms for these studies. We
considered both alternative first exons (AFE, generated by
alternative promoter usage and splicing to a constitutive
exon) and alternative last exons (ALE, generated by alter-
native splicing and/or polyadenylation). We quantitated the
proportion of each isoform present in each fraction of the
gradient, labeled percent spliced in, or PSI (�) (Supplemen-
tary Table S6). After limiting analyses to isoforms for which
� could be confidently estimated (see Materials and Meth-
ods), we found 152 AFEs and 332 ALEs for which the max-
imum difference in � (��) across the gradient for any pair
of isoforms was >0.5. For example, one AFE isoform for
Chtop showed a �� of 0.96 towards the densest part of the
gradient (Figure 5A). Similarly, one ALE isoform of DNA–
Caspase-9 (Casp9) showed a �� of 0.73 (Figure 5B) to-
wards the densest part of the gradient. These observations
confirm distinct subcellular distributions of alternative iso-
forms, as revealed by sucrose density fractionation.

If the relative abundance of these alternative isoforms
is important for cell function, they may contain sequences
subject to positive selection through evolution. To de-
termine whether isoforms with differential sedimentation
patterns are more phylogenetically conserved, we mea-
sured their conservation using PhyloP scores. AFE isoforms
showing strong (�� > 0.5) and moderate (0.5 < �� <
0.25) differential sedimentation showed similar conserva-
tion scores but were more highly conserved than isoforms
lacking differential localization (�� < 0.25) (Figure 5C). In
contrast, the extent of differential localization of ALE iso-
forms correlated with conservation across all three groups,
e.g. more strongly localized ALE isoforms were more highly
conserved suggesting their enrichment for functional fea-
tures.

ATLAS-Seq profiles of RBPs correlate with target mRNAs

RBPs can control the RNA localization of their targets, but
few RBP-RNA pairs have been functionally validated in
this context. Because each RNA interacts with many RBPs,
the impact of each RBP-RNA interaction may only subtly
influence final destination of that RNP. Therefore, analy-
sis of many RNAs showing similar sedimentation patterns
may be required to provide the power necessary to identify
potentially weak, yet true, significant signals.

To test the hypothesis that RBPs and their RNA tar-
gets might co-sediment through the gradient, we first an-
alyzed a known example of an RBP-RNA pair. The RNA
binding protein APOBEC1 complementation factor, A1cf,
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Figure 4. Most RNAs are anti-correlated with the proteins they encode in the ATLAS-Seq gradient. (A) Normalized TPM (blue line) and peptide counts
(red line) across the ATLAS-Seq gradient for Albumin (Alb, top panel), and 26S proteasome non-ATPase regulatory subunit 2 (Psmd2, bottom panel).
Pearson correlation coefficients between RNA and protein are shown. (B) Distribution of Pearson correlation coefficients between RNAs and the proteins
they encode across the ATLAS-Seq gradient for 404 genes. (C) Cellular compartment GO categories enriched in genes whose RNAs are strongly correlated
with the proteins they encode. The size of each dot is determined by the number of genes (also listed next to point) found in that GO category. Fold
enrichment was calculated by the observed number of genes in a GO category divided by the expected number of genes in that category (see Methods)
(top panel). Cellular compartment GO categories enriched in genes whose RNAs strongly anti-correlate with the proteins they encode (bottom panel). (D)
Normalized TPM (blue lines) and peptide counts (red lines) across the ATLAS-Seq gradient for genes with both ATLAS-Seq and mass spectrometry data
in Cluster 53, which is enriched for proteasome genes. The median pairwise correlation among all RNAs and among all proteins in the cluster are listed.
(E) Histogram of median pairwise correlations of protein profiles (red) for all clusters containing at least two proteins. Median pairwise correlations were
also computed using shuffled RNA-protein assignments and plotted (gray). For reference, the median of all median pairwise RNA correlations across all
RNA clusters is indicated in blue dashed line.

is known to bind and edit the RNA encoding Apolipopro-
tein B (Apob) (51). The relative abundance of A1cf pep-
tides and Apob RNA were strongly correlated across the
gradient (Pearson’s R = 0.92, Figure 6A). Given this corre-
lation, we hypothesized that additional RNAs whose pro-
files strongly correlated with A1cf might also be binding
partners of A1cf. We identified 894 RNAs whose profiles
correlated strongly with A1cf (Pearson’s R > 0.85); these
RNAs encoded proteins enriched for GO Cellular Com-
partment categories such as ER, golgi, endosome, and vesi-
cles (Figure 6A). Enriched GO Biological Processes in-
cluded lipid localization/transport and the Endoplasmic
Reticulum-associated protein degradation (ERAD) path-
way – functions known or proposed to be associated with
A1cf (52). Similar results were observed in a separate repli-
cate gradient (Supplementary Figure S5). Notably, binding
motifs for A1cf identified in vitro by BindNSeq were en-
riched in the 3′ UTRs of these 894 RNAs relative to all other

RNAs in the gradient; these hexamers were also more highly
conserved than other hexamers in all 3′ UTRs of mouse
mRNAs (Figure 6B).

To further assess whether the abundance of specific RBPs
across the gradient might be associated with the localization
of their target RNAs, we identified RBPs in our mass spec-
trometry dataset for which functional binding data was also
publicly available. We focused on hnRNP F, for which there
is publicly available CLIP-Seq data from HEK293T cells
(53). We correlated all RNAs in our gradient to the pep-
tide profile for hnRNPF and separated them by Pearson’s
correlation coefficient. The most strongly correlating RNAs
(Pearson’s R > 0.85) were enriched for specific GO cate-
gories, including ER membrane (Figure 6C, Supplemen-
tary Figure S5). We analyzed mouse orthologs of human
RNAs bound by hnRNP F according to CLIP and found
that more highly correlated RNAs showed a greater density
of CLIP binding in 3′ UTRs relative to less correlated or
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Figure 5. Alternative first and last exons exhibit differential profiles across the ATLAS-Seq gradient. (A) � values across one ATLAS-Seq gradient for
AFE isoforms of Chromatin target of PRMT1 protein, Chtop. (B) � values across one ATLAS-Seq gradient for ALE isoforms of Caspase-9, Casp9. (C)
Cumulative distribution of PhyloP conservation scores for AFE isoforms, separated by strongly regulated (�� > 0.5), moderately regulated (0.5 < �� >

0.25), and non-regulated (�� < 0.25) isoforms. P values were determined by Wilcoxon rank-sum test, comparing each regulated group to the non-regulated
group. (D) Cumulative distribution of PhyloP conservation scores for ALE isoforms, similar to (C).

anti-correlated RNAs, as measured by number of binding
sites per unit of gene expression (Figure 6D).

To uncover additional RBP-RNA relationships that may
drive co-sedimentation patterns, we identified 134 RBPs
(see Methods) supported by mass spectrometry peptides
across our ATLAS-Seq gradient. We correlated their pro-
files to all ATLAS-Seq RNA clusters (Supplementary Fig-
ure S6) and found 71 RBPs whose peptide counts corre-
lated to our previously defined RNA cluster profiles (Pear-
son’s R>0.85). While functional connections between most
of these RBP-RNA cluster pairs are unknown, some rela-
tionships observed are consistent with known functions of
the RBPs. For example, heterogeneous nuclear ribonucleo-
protein Q (hnRNP Q/SYNCRIP) correlated most strongly
with cluster 177 (Pearson’s R = 0.86), which contains RNAs
encoding proteins in the pICln-Sm protein complex, the
U12-type spliceosomal complex, and U2snRNPs (Figure

6E, Supplementary Table S7). Consistent with this pairing,
HnRNP Q interacts with Survival of Motor Neuron (SMN)
complex (54), is a component of the spliceosome, and has
been proposed to link the SMN complex to splicing func-
tions (55). As another example, we observed that Myosin-9
(Myh9) correlates best with cluster 430 (R = 0.90), which
contains RNAs encoding cilium components (Figure 6F,
Supplementary Table S7). Myh9 is an RBP that also con-
tains a motor domain and has been shown to compete with
Myh10 to inhibit cilium biogenesis (56). Taken together,
these results support the ability of ATLAS-Seq to predict
RBP-RNA associations and their regulatory connections.

DISCUSSION

We have used ATLAS-Seq to uncover unexpected rela-
tionships between sucrose gradient sedimentation profiles
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Figure 6. ATLAS-Seq reveals associations between RNA binding proteins and their RNA targets. (A) Distribution across the ATLAS-Seq gradient of
relative peptide counts of APOBEC1 Complementation Factor (A1cf, red dashes), and normalized TPMs for apolipoprotein B (Apob, blue line). Pearson’s
R between A1cf and Apob = 0.92. Also shown are normalized TPMs for 894 RNAs correlating with a Pearson’s R > 0.85 (gray). Shown below are GO
Cellular Compartment terms associated with these RNAs. (B) Hexamers plotted by log2(foreground / background counts) on the x-axis and conservation
rate on the y-axis, where foreground counts were obtained from 3′ UTRs in the set of 894 RNAs correlating > 0.85 from (A) and background counts were
obtained from all other RNAs in the gradient. Conservation rate was computed across all mouse Refseq 3′ UTRs as fraction of instances showing full
conservation across mouse, human, rat, and dog multi-alignments. The top 10 BindNSeq A1cf hexamers are highlighted in red. (C) Relative peptide counts
for heterogeneous nuclear ribonucleoprotein F (hnRNP F, red dashes) and normalized TPMs for RNAs correlating with Pearson’s R > 0.85 (gray). (D)
Cumulative distribution of the number of hnRNP F CLIP binding sites per unit TPM for groups of RNAs separated by Pearson’s correlation to relative
abundance of hnRNP F peptides. *P < 0.05, **P < 0.001 as assessed by Wilcoxon rank-sum test. (E) Relative peptide counts for heterogeneous nuclear
ribonucleoprotein Q (hnRNP Q/Syncrip, red dashes) and mean TPM profile for the RNA cluster best correlating with hnRNP Q peptide counts (blue
line). Shown below are GO Cellular Compartment terms enriched in that cluster. (F) Relative peptide counts for Myosin-9 (Myh9, red dashes) and mean
TPM profile for the RNA cluster best correlating with Myh9 peptide counts (blue). Shown below are GO Cellular Compartment terms enriched in that
cluster.
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of RNAs encoding proteins involved in similar biological
functions. Deep sequencing of RNA transcriptome-wide
and mass spectrometry of peptides with high resolution
across the gradient facilitated the discovery of these re-
lationships and characterized the presence of cellular mi-
croenvironments to which RNAs are sorted. Surprisingly,
subtle differences in profile shape can resolve differences
in the composition of cellular compartments. These pro-
files likely reflect not only engagement with large macro-
molecules such as the ribosome, but also membranes and
other structures with distinct physiochemical properties.
We observed that these interactions were reflected in the
divergence of ribosome footprint profiles from ATLAS-
Seq. Future studies directly comparing polysome profiles to
ATLAS-Seq or other gradients prepared by diverse deter-
gents, cytoskeletal disruptors, or other agents might further
elucidate how various interactions drive sedimentation pro-
files.

Distinct microenvironments in the cell arising from these
interactions––the sum of weak attractive and repulsive
forces between biomolecules––may create the appropriate
settings for translation, sorting, decay, and other cellu-
lar processes. Although these specialized environments are
sometimes membrane-bound organelles, our observations
suggest they may also reflect membrane-less organelles in
the cytoplasm such as the proteasome, sites of spliceosome
component assembly, or even RNP granules. These RNP
granules could contain single mRNAs bound to multiple
RBPs, or perhaps supra-molecular assemblies in which mul-
tiple RNPs are linked via protein–protein, protein–RNA or
even RNA–RNA interactions. Thus, there exists spatial or-
ganization among thousands of RNAs revealed by physical
separation across a density gradient. The observations here
provide a blueprint for how RNAs might map to specific
subcellular microenvironments in liver cells and provide in-
sights into higher scale organization of the transcriptome.

Interestingly, correlations of RNA to their encoded pro-
teins revealed that most RNA-protein counterparts are not
co-localized, but that some are, most notably those encod-
ing membrane and secreted proteins. In these cases, the co-
localization may reflect co-translational insertion into spe-
cific lumenal compartments. However, both RNAs with and
without signal peptide sequences often co-sedimented, sug-
gesting that there may be additional signals within RNA
that influence their localization. Notably, proteins encoded
by co-sedimenting RNAs also tend to co-sediment, suggest-
ing regulatory mechanisms that bridge the subcellular lo-
calization of each molecule. This has been previously ob-
served for specific mRNAs at the isoform level; for exam-
ple, localization of some proteins has been shown to be di-
rectly influenced by 3′ UTRs of their mRNAs via associa-
tion with membraneless organelles such as TIGER domains
(57). This is consistent with our findings that isoforms with
distinct last exons and 3′ UTRs showed distinct sedimenta-
tion patterns associated with increased phylogenetic conser-
vation. Indeed, alternative 3′ UTRs have been shown to lo-
calize mRNAs to neurites versus soma (15). Whether RNAs
co-localize with their encoded proteins may also depend on
cell type and/or cell state and remains to be further charac-
terized.

A key goal in studies of RNA sorting and localization
is to identify RNA elements and RBPs that might de-
fine subcellular localization of RNAs and locally trans-
lated proteins. Only a small fraction of putative RBPs
have been functionally characterized, but co-sedimentation
of RBPs and RNA targets may reveal functional inter-
actions. In summary, high resolution subcellular fraction-
ation on a transcriptome-wide scale can provide impor-
tant insights into the regulation of higher order, subcellu-
lar compartmentalization of mRNAs by revealing groups
of RNAs that co-segregate within the cell and implicating
post-transcriptional processes and trans-factors associated
with these microenvironments.
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