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Type I and II cytokine receptors are cell surface sensors that bind cytokines in the 
extracellular environment and initiate intracellular signaling to control processes such 
as hematopoiesis, immune function, and cellular growth and development. One key 
mechanism that regulates signaling from cytokine receptors is through receptor endo-
cytosis. In this mini-review, we describe recent advances in endocytic regulations of 
cytokine receptors, focusing on new paradigms by which PI3K controls receptor endo-
cytosis through both kinase activity-dependent and -independent mechanisms. These 
advances underscore the notion that the p85 regulatory subunit of PI3K has functions 
beyond regulating PI3K kinase activity, and that PI3K plays both positive and negative 
roles in receptor signaling. On the one hand, the PI3K/Akt pathway controls various 
aspects downstream of cytokine receptors. On the other hand, it stimulates receptor 
endocytosis and downregulation, thus contributing to signaling attenuation.
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inTRODUCTiOn

Cytokines and cytokine receptors control a diverse spectrum of cellular functions that transcend 
specific organs and systems. A common theme of signaling from Type I and II cytokine receptors is 
that these receptors lack intrinsic enzymatic activities, and instead utilize cytokine-induced receptor 
oligomerization and conformational changes to drive activation of Janus tyrosine kinases (JAKs), 
which are constitutively bound to the intracellular domains of these receptors. Activated JAKs in 
turn phosphorylate tyrosine residues in the cytokine receptor intracellular domains, thereby creating 
a platform to recruit signaling proteins and elicit downstream signaling. The three major pathways 
activated by cytokine receptors are the JAK/STAT, the Ras/MAPK, and the PI3K/Akt pathways. 
These and other downstream pathways together control cell growth, differentiation, maturation, 
and apoptosis. Dysregulation of cytokine signaling results in human diseases and pathology (1–3).

Receptor endocytosis is a key regulatory mechanism that controls cytokine receptor signaling. 
This mini-review will focus on recent advances demonstrating new paradigms by which PI3K 
regulates cytokine receptor endocytosis. More general reviews of receptor endocytosis and PI3K 
signaling have been extensively covered in prior literature (4–13).

enDOCYTOSiS AnD SiGnALinG OF CYTOKine ReCePTORS

Receptors are internalized from the plasma membrane into endocytic compartments, collectively 
called “endosomes” by endocytosis (8), which has long been recognized as a major mechanism to 
attenuate receptor signaling (14, 15). Constitutive (non-cytokine-induced) endocytosis regulates the 
number of receptors available on the cell surface to bind cytokines. Cytokine-induced endocytosis 

http://www.frontiersin.org/Endocrinology/
http://crossmark.crossref.org/dialog/?doi=10.3389/fendo.2017.00078&domain=pdf&date_stamp=2017-05-01
http://www.frontiersin.org/Endocrinology/archive
http://www.frontiersin.org/Endocrinology/editorialboard
http://www.frontiersin.org/Endocrinology/editorialboard
https://doi.org/10.3389/fendo.2017.00078
http://www.frontiersin.org/Endocrinology/
http://www.frontiersin.org
https://creativecommons.org/licenses/by/4.0/
mailto:lily.huang@utsouthwestern.edu
https://doi.org/10.3389/fendo.2017.00078
http://www.frontiersin.org/Journal/10.3389/fendo.2017.00078/abstract
http://www.frontiersin.org/Journal/10.3389/fendo.2017.00078/abstract
http://www.frontiersin.org/Journal/10.3389/fendo.2017.00078/abstract
http://loop.frontiersin.org/people/33523


2

Chen et al. PI3K in Cytokine Receptor Endocytosis

Frontiers in Endocrinology | www.frontiersin.org May 2017 | Volume 8 | Article 78

transports cytokine receptors to endosomes and subsequently 
to lysosomes for degradation, which terminates signaling by a 
process called “downregulation.”

Endocytosis also positively modifies receptor signaling. 
Endocytosis concentrates receptors in clathrin-coated pits or 
in endosomes, and the resulting increase in receptor density 
can promote receptor dimerization and activation (8, 16, 17). 
Examples of such activation include the enhanced activation 
of JAK/STAT signaling from granulocyte macrophage colony-
stimulating factor (GM-CSF) receptors in clathrin-coated pits 
(18), and the requirement of endocytosis and concentration in 
endosomes for proper activation of JAK/STAT signaling by IL4 
receptors (19). Endocytic compartments can also serve as signal-
ing platforms to facilitate interaction of cytokine receptors with 
different signaling modules, thereby changing the signal output 
from those that occur at the plasma membrane (8, 16, 17). For 
example, although endocytosis of TNF receptors terminates 
NF-κB activation that occurs at the plasma membrane (20), it 
is also essential to promote the assembly of the death-inducing 
signaling complex in endosomes to drive apoptosis (21). TGFβ 
and BMP receptors interact in endosomes with adaptor proteins 
SMAD anchor for receptor activation and endofin to recruit 
downstream SMAD transcription factors (22).

Receptor signaling can also reciprocally regulate the endocytic 
machinery (23, 24). Endocytosis for many receptors is stimulated 
by receptor activation (25). Activation of receptors can increase 
the rate of de novo clathrin-coated pit formation (26) and can 
modulate the number of endosomes as well as regulate endosomal 
maturation (27, 28). A recent hierarchical map of genetic interac-
tions in membrane trafficking also revealed new links between 
signaling and endocytic pathways (29). Therefore, endocytosis 
and signaling are intimately and bidirectionally linked. This 
coordination endows cells with the ability to resolve receptor 
signaling in space and time (11, 30).

Multiple Pathways for endocytosis  
of Cytokine Receptors
Receptor endocytosis is initiated at the plasma membrane and  
can be generally divided into clathrin-mediated endocytosis 
(CME) or clathrin-independent endocytosis (CIE) based on the 
involvement of the endocytic coat protein clathrin (31, 32). In 
CME, activated receptors recruit clathrin adaptors such as the 
AP2 complex, inducing the formation of a clathrin coat that stabi-
lizes membrane curvature and drives invagination. Subsequently, 
vesicles are pinched off from the plasma membrane by the 
dynamin GTPase (10, 33). CIE is a composite of several distinct 
pathways, the best studied being the caveolin-mediated endo-
cytosis (34, 35). These pathways, which can be either dynamin 
dependent or independent (13), require actin polymerization 
and either Src-family kinases in the case of caveolin-mediated 
endocytosis (36) or small GTPases such as RhoA and Rac1 for 
other CIE pathways (37).

Both CME and CIE are involved in endocytosis of cytokine 
receptors (15, 19, 38–40). CME mediates endocytosis of gp130, 
the shared receptor for IL6 family cytokines, and receptors for pro-
lactin, thrombopoietin, erythropoietin, interferon, IL5 (IL5Rα), 

IL7 (IL7Rα), and IL36 (18, 39, 41–48). CIE mediates endocytosis 
of the common γ chain receptor, and IL2Rβ, IL4Rα, and IL15Rα 
receptors (19, 49–53). The same receptor can sometimes utilize 
both CME and CIE pathways. One example is endocytosis of 
the common β chain receptor (βc), which is shared by IL3, IL5, 
and GM-CSF receptors. βc co-localizes with both transferrin 
receptor (a CME marker) and cholera toxin-B (a CIE marker), 
but interestingly, signaling complexes mainly partition to the 
transferrin-containing fraction (51). The signaling dichotomy 
may involve intersectin 2, which is specifically involved in CME 
to regulate JAK2 and Akt activation downstream of βc (18). 
Growth hormone receptor also uses both CME and CIE for its 
internalization (44, 50), and perturbation of CIE specifically 
affects ERK activation downstream of the receptor but not STAT5 
(54). Thus, differential use of CME and CIE may allow cells to 
regulate downstream signaling of cytokine receptors.

Ubiquitination plays an important role in receptor endo-
cytosis through both CME and CIE (55). Through sequential 
actions of ubiquitin-activating (E1), ubiquitin-conjugating (E2), 
and ubiquitin-ligating (E3) enzymes, a small protein ubiquitin is 
covalently attached to lysine residues on target receptors. Because 
ubiquitin itself contains lysines that can serve as acceptor sites, 
target proteins can be subjected to mono-ubiquitination, multi-
ubiquitination (mono-ubiquitination on multiple lysines), or 
poly-ubiquitination. Mono-ubiquitination has been shown to 
mediate protein trafficking and signaling (56), whereas poly-
ubiquitination can promote protein degradation (55). Endocytic 
adaptor proteins and the endosomal sorting complex required for 
transport (ESCRT) contain ubiquitin-binding domain or ubiqui-
tin-interacting motif (UIM), thereby facilitating their interaction 
with ubiquitinated receptors. This allows endocytic adaptors to 
target ubiquitinated receptors to the endocytic machinery and 
allows the ESCRT complexes to direct budding of ubiquitinated 
receptors into intraluminal vesicles within endosomes, thereby 
halting receptor signaling (57).

Endocytosis of cytokine receptors is regulated by ubiquitina-
tion. For example, ubiquitination by the E3 ubiquitin ligase 
SCF (βTrCP) drives endocytosis of growth hormone receptor, 
prolactin receptor, and the Type I interferon receptor (IFNAR1) 
(58–62). Another E3 ligase, c-Cbl, has been implicated in the 
internalization and/or degradation of the βc, thrombopoietin 
receptor, and the erythropoietin receptor (EpoR) (42, 63, 64). 
Interestingly, different ubiquitination sites on the EpoR are able 
to regulate distinct steps in the endocytic process (64).

Pi3K Pathway in Cytokine Signaling
Class IA PI3K is commonly activated by cytokine receptors 
(7). PI3Ks are lipid kinases that phosphorylate the 3′-hydroxyl 
group of phosphatidylinositol and its phosphorylated derivatives. 
At the plasma membrane, class IA PI3Ks phosphorylate phos-
phatidylinositol 4,5-bisphosphate [PI(4,5)P2] to generate phos-
phatidylinositol 3,4,5-triphosphate [PI(3,4,5)P3], which recruits 
PI(3,4,5)P3-binding proteins to activate downstream signaling. 
One of these downstream proteins is the serine/threonine kinase 
Akt, and together, the PI3K/AKT pathway regulates a plethora 
of cellular processes (4, 65, 66). The other is Rac1, which plays a 
major role in remodeling the actin cytoskeleton (5, 66).
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FiGURe 1 | Clathrin-independent endocytosis of iL2Rβ. Upon IL2 
stimulation, p85/p110 is recruited to IL2R and p110 is activated. Activated 
p110 generates PI(3,4,5)P3 (step 1), which recruits Vav2 and its substrate 
Rac1 (step 2). Vav2 facilitates conversion of GDP-bound Rac1 into the active 
GTP-bound Rac1 (step 3), which associates with p85 and stimulates the 
Pak1–cortactin–N-WASP cascade (step 4) to promote actin polymerization 
and endocytosis (69). Endophilin, recruited to PI(3,4)P2 generated from 
PI(3,4,5)P3 by SHIP1/2, is also required for IL2Rβ internalization (87).
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Class IA PI3Ks function as heterodimers with a p110 catalytic 
subunit (p110α, β, or δ) and a p85-like regulatory subunit (p85α, 
β or their splice variants p55α, p50α, or p55γ) (4). p85 stabilizes 
and maintains p110 in an inhibited state and directly interacts 
with phosphorylated cytoplasmic tyrosines in cytokine receptors 
upon ligand binding. Conformational changes in p85 induced 
by receptor binding relieve its inhibition of p110 (67). Recent 
evidence suggests that the association and activation of PI3K by 
cytokine receptors promotes receptor endocytosis in addition to 
the activation of downstream Akt signaling (68, 69). Moreover, the 
contribution of the p85 regulatory subunit in these mechanisms 
can be PI3K kinase activity independent (48). Below, we discuss 
two new paradigms by which class IA PI3Ks regulate cytokine 
receptor endocytosis.

Pi3K and Actin-Mediated endocytosis  
of iL2 Receptor (iL2R)
IL2 receptor belongs to the Type I cytokine receptors and is 
important for T cell immune function (70, 71). IL2R is composed 
of IL2Rα, IL2Rβ, and the common γ chain. Internalized IL2Rα 
recycles back to the plasma membrane, whereas IL2Rβ and 
the common γ chain are sorted to the lysosome and degraded  
(72, 73). IL2Rβ was among the first cytokine receptors shown to 
be internalized via CIE (74). It is constitutively internalized, but 
internalization is augmented by IL2 binding (69, 75).

Endocytosis of IL2Rβ is clathrin- and caveolin independent 
and relies on RhoA, dynamin, Rac1, PAK kinases (p21-activated 
kinases), and actin polymerization (38, 49, 76, 77). New studies 
showed that two rounds of actin polymerization are enlisted 
for IL2Rβ internalization. The first round relies on WAVE 
(WASP-family verprolin homologous protein), through a WAVE-
interacting sequence in the cytoplasmic tail of IL2Rβ (78). This 
round of actin polymerization occurs before receptor clustering 
and is thought to be responsible for receptor recruitment near 
the base of membrane protrusion to initiate pit formation. The 
second round occurs just before receptor internalization and 
involves Pak1 phosphorylation of cortactin, another activator of 
actin polymerization (79, 80), thereby increasing its association 
with N-WASP (neuronal Wiskott–Aldrich syndrome protein) 
(77). Interestingly, dynamin, which mediates vesicle scission in 
the later stage of IL2Rβ internalization, also controls the transi-
tion of WAVE complex and N-WASP recruitments (78).

Sauvonnet’s group showed that PI3K plays multiple roles in 
regulating IL2R CIE (69). First, IL2 stimulation activates PI3K, 
leading to the production of PI(3,4,5)P3 and the recruitment of 
Vav2, the guanine nucleotide exchange factor that activates Rac1 
(81). Inhibitors of PI3K kinase activity, knockdown of p85 and 
Vav2, or overexpression of a mutant p85 devoid of p110-binding 
domain all inhibit IL2R endocytosis. Second, p85 binds directly 
to Rac1, with higher affinity for the GTP-bound active form. A 
model is thus proposed that IL2R activation of PI3K leads to the 
recruitment of both Vav2 and its substrate Rac1, which can stimu-
late the Rac1–Pak1–cortactin–N-WASP cascade to promote actin 
polymerization, driving IL2R internalization (Figure  1) (69). 
Because the WAVE complex is a known downstream effector of 
Rac GTPases (82, 83) and PIP3 (84, 85), PI3K may also regulate 
IL2Rβ CIE through WAVE.

Recently, endophilin and its interacting protein Alix (ALG-2-
interacting protein X) have also been implicated in CIE of IL2Rβ 
(86, 87). Endophilin is a Bin/Amphiphysin/Rvs domain protein 
that is involved in vesicle endocytosis and membrane curvature 
generation (88, 89). This pathway, termed fast endophilin-
mediated endocytosis (FEME) by the McMahon group, is utilized 
by IL2R as well as several G-protein-coupled receptors and 
bacterial Shiga and cholera toxins (87, 90). It is characterized by 
endophilin-positive uptake structures after ligand-induced recep-
tor activation. Endophilin also works together with dynamin and 
actin in membrane scission (90, 91). As with the PI3K/Vav2 path-
way described above, the FEME pathway depends on dynamin, 
Rac, Pak1, and actin polymerization (87), suggesting that FEME 
and PI3K/Vav2 mechanisms may be part of the same pathway. 
Importantly, PI3K kinase activity is required for FEME, because 
PI(3,4)P2, converted from PI(3,4,5)P3 by SHIP1/2-dependent 
dephosphorylation, is necessary for lamellipodin-dependent 
recruitment of endophilin in FEME (Figure 1) (87). The exact 
molecular details of this pathway, the degree to which the PI3K/
Vav2 and FEME pathways are distinct or can be employed under 
different context, and whether PI3K regulates other aspects 
await future interrogations. In addition, whether other cytokine 
receptors can also utilize similar endocytic pathways is currently 
unclear.

Cbl-DePenDenT UBiQUiTinATiOn OF 
p85 MeDiATeS epoR enDOCYTOSiS

The EpoR is another member of the Type I cytokine receptors 
and is essential to drive red blood cell production (92, 93). In 
contrast to the IL2R, which forms heteromeric receptor com-
plexes and associates with both JAK1 and JAK3 for signaling, 
EpoR forms homodimers and couples to only JAK2 for signaling. 
Epo-induced endocytosis is a key element in negative regulation 
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FiGURe 2 | Clathrin-dependent endocytosis of erythropoietin receptor 
(epoR). Upon Epo stimulation, activated JAK2 phosphorylates EpoR 
cytoplasmic tyrosines to recruit p85 (step 1). Subsequently, ubiquitinated 
p85, mediated by c-Cbl (step 2), recruits Epsin-1 (step 3), linking EpoR to the 
endocytic machinery for downregulation (48, 68).
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of Epo signaling (48, 94) and controls cellular Epo sensitivity 
and the level of Epo in the circulation (95, 96). Studies in our 
laboratory have shown that Epo induces internalization of EpoR 
via CME, and we identified a novel function of p85 in EpoR endo-
cytosis and downregulation (Figure 2) (48, 68). Epo stimulation 
activates JAK2, resulting in the phosphorylation of multiple 
EpoR cytoplasmic tyrosine residues, including Y429, Y431, and Y479. 
These phosphotyrosines serve as mutually redundantly docking 
sites for binding of the p85 subunit of PI3K to EpoR (48). p85 
binding activates the catalytic p110 subunit, resulting in PI(3,4,5)
P3 production and Akt signaling, which is required for erythroid 
differentiation. Unexpectedly, Epo-induced EpoR internaliza-
tion does not require PI3K kinase activity (48). Instead, Epo-
dependent ubiquitination of p85 by the E3 ligase c-Cbl recruits 
the endocytic adaptor protein, Epsin-1, through its UIM. Epsin-1 
then connects the EpoR/p85 complex to the clathrin-mediated 
endocytic machinery for internalization (68).

The physiological relevance of this pathway is highlighted by 
mutated EpoRs found in patients with primary familial and con-
genital polycythemia (PFCP), a proliferative disorder of the red 
cell lineage characterized by increased red blood cell mass (97, 98).  
PFCP patients harbor mutations that delete the C-terminal 
cyto solic domain of the EpoR, resulting in EpoR truncations 
lacking all three tyrosines responsible for p85 binding. Mutated 
EpoRs mimicking those found in PFCP patients cannot bind 
p85 and are unable to recruit Epsin-1 to engage the endocytic 
machinery. As a result, these receptor variants do not internal-
ize upon Epo stimulation and exhibit Epo hypersensitivity. 
Similarly, knockdown of Cbl also causes Epo hypersensitivity 
in primary erythroid progenitors. Restoring p85 binding to 
PFCP receptors rescues Epo-induced Epsin-1 co-localization 
and normalizes Epo hypersensitivity (48, 68). These results 
elucidate the molecular mechanism underlying Epo-induced 
p85-mediated EpoR internalization and demonstrate that defect 
in this pathway may contribute to the etiology of PFCP. Although 
still controversial, non-canonical heterodimeric complexes 
consisting of EpoR and the βc receptor have been implicated in 
non-hematopoietic tissues (99). Whether the p85–Cbl pathway 
plays a role in endocytosis of these complexes is unclear.

PI3K is activated by most cytokine receptors, whereas Cbl  
also functions downstream of many signaling receptors. There-
fore, the p85–Cbl pathway might be utilized more broadly to 
contribute to endocytosis of other cytokine receptors. In addi-
tion, the same molecules may be employed in different ways 
for receptor endocytosis and downregulation. For example, the 
thrombopoietin receptor activates PI3K for signaling, and uti-
lizes Cbl for downregulation. However, instead of ubiquitinating 
p85 as in the case of the EpoR, the thrombopoietin receptor itself 
is poly-ubiquitinated by Cbl upon stimulation, leading to its 
degradation (63).

COnCLUSiOn AnD PeRSPeCTiveS

The two new paradigms reviewed here underscore the contribu-
tion of PI3K in CME (e.g., EpoR) as well as CIE (e.g., IL2R) of 
cytokine receptors. Besides class I PI3K discussed here, class II 
PI3K, which produces PI(3)P and PI(3,4)P2, has also been shown 
to participate in late stage CME (100). These broaden the roles 
of PI3K family kinases as fundamental and integral regulators of 
endocytosis in general.

The mechanisms underlying PI3K’s contributions are both 
kinase activity dependent and -independent. PI3K kinase activity 
is required to recruit Vav2 and endophilin for IL2R internaliza-
tion. By contrast, in a PI3K kinase activity-independent manner, 
p85 recruits activated Rac1 to promote IL2R endocytosis and 
recruits Cbl/Epsin-1 to promote EpoR internalization. Therefore, 
PI3K plays both positive and negative roles upon cytokine recep-
tor activation. On the one hand, the PI3K/Akt pathway controls 
various aspects downstream of cytokine receptors. On the other 
hand, it stimulates receptor endocytosis and downregulation, 
thus contributing to signaling attenuation.

These advances also highlight the emerging concept that p85 
has functions beyond regulating PI3K kinase activity (101–105). 
For example, cytokinesis defects observed in p85α-deficient cells 
are restored by expression of a p85α mutant that does not bind 
p110 (102). It was also shown that p85 exhibits in vitro GTPase-
activating protein (GAP) activity toward Rab5, which regulates 
vesicle trafficking and actin remodeling (106, 107). A p85α mutant 
with defective GAP activities perturbed PDGF receptor traffick-
ing and caused cellular transformation via a kinase-independent 
mechanism (105, 108). Whether the GAP activity of p85 or Rab5 
contributes to IL2Rβ or EpoR endocytosis is unclear. Moreover, 
p85 also interacts with dynamin (109), the contribution of this 
interaction is not known. Other p85-interacting proteins, such as 
phosphatases (e.g., SHP2) and adaptor proteins (e.g., IRS1), may 
also contribute to its function (110, 111).

One last layer of complexity we would like to bring up has 
risen from recent studies concerning dynamin isoform-specific 
functions. Normally, vertebrates express three dynamin (Dyn) 
isoforms: Dyn2 is ubiquitously expressed, whereas Dyn1 and 
Dyn3 are most highly expressed in specific tissues (112, 113). 
Under normal conditions, Dyn1 contributes little to CME in 
non-neuronal cells; however, Reis et  al. recently showed that 
Akt, the canonical kinase downstream of PI3K, activates Dyn1 
in epithelial cells to induce accelerated CME with altered 
dynamics (114). These results raise the interesting possibility 
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that cytokine receptors may stimulate their endocytosis through 
Akt-dependent activation of Dyn1, adding to the concept that 
the endocytic machinery can be specifically adapted by signaling 
receptors to regulate their own endocytosis.

Regulatory controls of endocytic components and mechanisms 
significantly impact physiology and human diseases. Much of what 
we know about the cross talk between endocytosis and signaling 
comes from work done with model receptors such as receptor tyros-
ine kinases (RTK). Many of these lessons may translate to cytokine 
receptors, because JAK kinases activate many pathways in common 
with RTKs. Also, in many cases, JAK kinases are integral partner of 
cytokine receptors, making receptor/JAK complexes equivalent to 
RTKs (115, 116). However, signaling is not identical and differences 
are to be expected. Among the open questions are the following: 
First, do JAK kinases regulate endocytosis beyond receptor phos-
phorylation? Can they modulate the endocytic machinery directly? 
Second, does the PI3K/Akt signaling cascade provide a feedback 
loop for receptor endocytosis in general? Consistent with this notion, 
Akt promotes EGF receptor degradation by phosphorylating and 
activating the PIKfyve kinase (FYVE-containing phosphatidylino-
sitol 3-phosphate 5-kinase), which stimulates vesicle trafficking to 
lysosomes (117). Third, does the GAP activity of p85 and/or other 
p85-interacting proteins play a role in cytokine receptor endocytosis? 

Fourth, how do cytokine receptors employ the molecular toolbox of 
signaling and endocytic proteins in different cell types and contexts 
such as normal vs. disease states? More detailed mechanisms are 
needed to understand the reciprocal cross talk between endocytosis 
and signaling, which will help to improve our understanding of the 
physiological functions of cytokine receptors.
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