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Abstract

RNA-seq is a high-throughput sequencing technology widely used for gene transcript discov-

ery and quantification under different biological or biomedical conditions. A fundamental

research question in most RNA-seq experiments is the identification of differentially

expressed genes among experimental conditions or sample groups. Numerous statistical

methods for RNA-seq differential analysis have been proposed since the emergence of the

RNA-seq assay. To evaluate popular differential analysis methods used in the open source

R and Bioconductor packages, we conducted multiple simulation studies to compare the per-

formance of eight RNA-seq differential analysis methods used in RNA-seq data analysis

(edgeR, DESeq, DESeq2, baySeq, EBSeq, NOISeq, SAMSeq, Voom). The comparisons

were across different scenarios with either equal or unequal library sizes, different distribution

assumptions and sample sizes. We measured performance using false discovery rate (FDR)

control, power, and stability. No significant differences were observed for FDR control,

power, or stability across methods, whether with equal or unequal library sizes. For RNA-seq

count data with negative binomial distribution, when sample size is 3 in each group, EBSeq

performed better than the other methods as indicated by FDR control, power, and stability.

When sample sizes increase to 6 or 12 in each group, DESeq2 performed slightly better than

other methods. All methods have improved performance when sample size increases to 12

in each group except DESeq. For RNA-seq count data with log-normal distribution, both

DESeq and DESeq2 methods performed better than other methods in terms of FDR control,

power, and stability across all sample sizes. Real RNA-seq experimental data were also

used to compare the total number of discoveries and stability of discoveries for each method.

For RNA-seq data analysis, the EBSeq method is recommended for studies with sample size

as small as 3 in each group, and the DESeq2 method is recommended for sample size of 6

or higher in each group when the data follow the negative binomial distribution. Both DESeq

and DESeq2 methods are recommended when the data follow the log-normal distribution.
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Introduction

High-throughput transcriptome sequencing technologies have profound impact on our ability

to address an increasingly diverse range of biological and biomedical problems, and improve

our understanding of human diseases by capturing an accurate picture of molecular processes

within the cell [1]. RNA-seq has become a major assay for measuring relative transcript abun-

dance and diversity, and has been used as a standard tool for the life sciences research commu-

nity [2]. In RNA-seq experiments, RNAs are extracted from cells, complementary DNA

(cDNA) is made from the RNA sample and sequenced, producing millions of reads. The reads

are then mapped to the reference genome, and the total count of reads to a gene is used as a

measure for this gene’s expression level. The analysis of RNA-seq data has its own challenges.

For example, the read coverage may not be distributed uniformly along the genome due to the

variation in nucleotide composition in different genomic regions. In addition, longer genes

have more mapped reads than shorter genes with the same expression level, which is usually

ignored in differential analysis by assuming the effect of gene length is the same across all sam-

ples. However, this difference may affect the ranking of significant genes when selecting candi-

date genes for further verification.

Before differential expression analysis, the summarized feature counts need to be pre-pro-

cessed which includes trimming, filtering, and normalizing. Current methods for RNA-seq

gene differential expression analysis include both parametric methods and nonparametric

methods. Parametric methods implemented in open source packages include edgeR [3],

DESeq [4], DESeq2 [5], NBPSeq [6], TSPM [7], baySeq [8], EBSeq [9], ShrinkSeq [10], Voom/

vst [11, 12] in R or Bioconductor, and Cuffdiff2 in Cufflinks [13]. Nonparametric methods

include SAMseq [14] and NOIseq [15] in R or Bioconductor. Several comparative studies have

been conducted to compare the performance of different RNA-Seq analysis methods through

simulation studies and using real RNA-Seq data [16–18]. Soneson and Delorenzi [16] com-

pared eleven RNA-Seq differential analysis methods for their true positive rate and false dis-

covery rate using simulated data generated from negative binomial distributions. The eleven

RNA-Seq differential analysis methods include DESeq, edgeR, NBPSeq, TSPM, baySeq,

EBSeq, NOISeq, SAMSeq, ShrinkSeq, voom(+limma), and vst(+limma). The comparison

results indicated some problems for all eleven methods when the sample size is very small.

When sample size is large, they recommended the Voom/vst method and the SAMseq method

that performed relatively well under many different conditions. Seyednasrollah et al. [18] com-

pared eight software packages for RNA-Seq differential analysis including Cuffdiff 2, which

was not included in previous comparisons. The eight software packages including edgeR,

DESeq, baySeq, NOIseq, SAMseq, limma, and Cuffdiff2 were compared using two publicly

available real RNA-Seq datasets for total number of rejections and estimated proportion of

false discoveries. The comparison of eight RNA-Seq diffrential analysis methods detected the

large variation between the methods and recommended limma and DESeq as the safest choice

when sample size is very small (below 5 in each group). DESeq2 [5] is a successor to the DESeq

method with flexibility to accommodate more complexed study design of sequencing experi-

ments. As more statistical methods for gene differential analyses have been developed in recent

years, there is a need for an update on the differential analysis methods comparisons.

Here, we present a systematic evaluation of the performance of eight popular RNA-seq dif-

ferential analysis methods including edgeR, DESeq, DESeq2, baySeq, EBSeq, Voom, SAMSeq

and NOISeq, implemented in R or Bioconductor, as indicated by false discovery rate (FDR)

control, power, and stability. Our comparisons are conducted on both simulated data and pub-

licly available real RNA-seq data. To ensure all compared methods are invariant to library size,

we evaluate performance under two library size scenarios: equal library size across all samples;
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for simulations and real data analysis could be

found from the GitHub repository https://github.

com/DongmeiLi2017/RNA-seq-Analysis-Methods-

Comparison.
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and unequal library size across samples. We illustrated the large differences between different

RNA-seq analysis methods applied to the same data set and provided empirical evidence and

advice to investigators regarding selection of RNA-seq data analysis methods, taking into

account the distribution assumption, sample size and acceptable FDR.

Materials and methods

For our purposes, consider the null hypothesis of no differential gene expression. Among m
hypothesis tests, m0 represent cases where no differential expression exists; i.e. these are “true

null hypotheses”. R represents the number of rejected null hypotheses, and V represents the

number of tests that result in false rejections (i.e., V represents the number of false discoveries).

S represents the number of tests that result in true rejections (i.e. the number of true discover-

ies). Following Benjamini and Hochberg [19] we define the false discovery rate as:

FDR ¼ Eð
V
R
jR > 0ÞPrðR > 0Þ: ð1Þ

Power and stability are defined as follows [20]:

Power ¼ Eð
S

m � m0

jm > m0Þ; ð2Þ

Stability ¼ SDðRÞ: ð3Þ

Power is defined as the expected proportion of identified differentially expressed genes

among all the truly differentially expressed genes, given at least one genes are truly differen-

tially expressed in the data. Stability is defined as the standard deviation of total rejections.

Power is defined as 0 and Stability becomes a measure of standard deviation (SD) of false

detections when m = m0.

edgeR

edgeR [3] assumes the summarized count data Ygi for gth gene ith sample follow a negative

binomial distribution as follows.

Ygi � NBðMipgj; �gÞ; ð4Þ

where Mi is the library size for ith sample, pgj is the relative abundance for gth gene and jth
group, and ϕg is the dispersion for gth gene. The mean and variance of the summarized count

for gth gene are

EðYgiÞ ¼ mgi ¼ Mipgj; and ð5Þ

VarðYgiÞ ¼ s
2
gi ¼ mgið1þ mgi�gÞ: ð6Þ

For differential analysis between two groups, we test H0: pg1 = pg2 for each gene. edgeR uses

an empirical Bayes procedure moderating the degree of overdispersion across genes. Condi-

tioning on the total count for the gene, the conditional maximum likelihood method is used to

estimate genewise dispersion. Then, the dispersions are shrunk towards a common value

through borrowing information between genes using the empirical Bayes procedure. For each

gene, the differential expression between groups is assessed using an exact test analogous to

Fisher’s exact test taking the overdispersion into account. edgeR can also fit a negative
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binomial generalized log-linear model to the read counts for each gene, and conduct genewise

statistical tests using likelihood ratio tests.

DESeq and DESeq2

DESeq [4] extended the negative binomial model proposed in edgeR and linked the variance

and mean using a more general and data-driven relationship as follows.

s2
gi ¼ mgi þM2

i vgj; ð7Þ

where μgi is the random error or “shot noise” term and M2
i vgj is a raw variance term. vgj is a

smooth function of pgj with vgj = v(pgj), which models the dependence of the raw variance

on the relative abundance of the gth gene. DESeq conducts the differential expression test H0:

pg1 = pg2 for each gene by an exact test analogous to Fisher’s exact test, in which the test statis-

tics are defined as the total count in each group, and the sum of those total counts across

groups. The p value is calculated as the sum of probabilities of observing an as extreme as or

more extreme value of the total count in the treatment group, given that the total count across

groups is fixed.

DESeq2 [5], a successor to the DESeq method, uses a generalized linear model (GLM)

approach to accommodate more complex designs to model the relationship between the rela-

tive abundance and group difference. The approach uses a logarithm link between relative

gene abundance and a design matrix as follows:

logpgj ¼
X

r

xjrbgr: ð8Þ

In DESeq2, the dispersion ϕg is assumed to follow a log normal prior distribution

�g � Nðlog�trendð�mgÞ; s
2
dÞ. �trendð�mgÞ is a function of the mean of normalized count for the gth

gene, and s2
d is the true dispersion around the trend that is common for all genes. DESeq2 inte-

grates the dispersion estimate and fold change estimate from an empirical Bayes approach and

tests differential expression using a Wald test.

baySeq

baySeq [8] detects differentially expressed genes by estimating the posterior probability of a

model using the observed data and an empirical Bayes approach. The baySeq method assumes

data follow a negative binomial distribution and use an empirically determined prior distribu-

tion derived from the whole dataset. The maximum likelihood method is used to estimate data

dispersion. A posterior probability of non-differential expression and a Bayesian FDR estimate

are produced by the baySeq method to select significantly differentially expressed genes.

EBSeq

EBSeq [9] was developed for identifying differentially expressed isoforms, but has been shown

to be a robust approach for identifying differentially expressed genes. EBSeq assumes that

within condition C, the expected count for the gth gene, ith sample YC
gi follows a negative bino-

mial (NB) distribution:

YC
gi jrg;0li; q

C
g � NBðrg;0li; qC

g Þ; ð9Þ

where li denotes the library size in the ith sample and rg,0 denotes the baseline expression level.

The mean expression level for the gth gene within condition C is uC
g , which is equal to
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rg;0ð1 � qC
g Þ=q

C
g , and the variance for gth gene within condition C is ðsC

g Þ
2
, which is equal to

rg;0ð1 � qC
g Þ=ðq

C
g Þ

2
. The prior distribution of qC

g is qC
g � Betaða; bÞ, where α and β are obtained

through the expectation-maximization (EM) algorithm. For a two-group comparison, EBSeq

tests H0g : mC1
g ¼ m

C2
g based on the negative binomial-beta empirical Bayes model and obtains

the posterior probability of being differentially expressed via Bayes’ rule using the EM algo-

rithm. EBSeq also provides a Bayesian FDR estimate to facilitate the selection of significantly

differentially expressed genes.

Voom

Unlike the negative binomial model approach, the voom method takes a linear modeling strat-

egy to model count data [12]. Voom defines the log-counts per million (log-cpm) value y�gi as:

y�gi ¼ log2ð
ygi þ 0:5

Mi þ 1:0
� 106Þ; ð10Þ

where Mi ¼
PG

g¼1
Ygi. Assume varðygiÞ ¼ mgi þ �m

2
gi. Then, conditional on Mi, varðy�giÞ ¼

varðlog2ðygiÞÞ since Mi was treated as a constant. Based on the delta rule and Taylor’s theorem,

varðy�giÞ ¼ varðmgi þ
ygi� mgi
mgi
Þ ¼

varðygiÞ
m2
gi
¼ 1

mgiþ�
, where μgi = E(ygi). μgi is estimated by the following

equation by fitting a LOWESS curve.

m̂gi ¼ m̂
�
gi þ log2ðMi þ 1:0Þ � log2ð106Þ; ð11Þ

where m̂�gi ¼ Eðy�giÞ. The piecewise linear function loðm̂giÞ defined by the LOWESS curve is the

predicted square-root standard deviation of y�gi. The voom precision weight is the inverse vari-

ances wgi ¼ loðm̂giÞ
� 4

. The log-cpm values y�gi and associated weights wgi are used as input in

the limma empirical Bayes analysis pipeline. Moderated t-statistics are used for gene differen-

tial expression analysis.

SAMseq

SAMseq [14] is a nonparametric method proposed for RNA-seq count data differential analy-

sis that is not based on Poisson or negative binomial models. SAMseq uses the two-sample

Wilcoxon rank statistic as follows for two-group comparisons:

T�g ¼
1

B

XB

b¼1

X

t2C1

RgtðY
0bÞ �

n1ðnþ 1Þ

2
; ð12Þ

where Rgt(Y0b) is the rank of Y 0gi in resampling b in the first group C1 = {i: Sample i is from

group 1}. Y 0gi � Poissonð
ð
Qn

i¼1
MiÞ

1=n

Mi
YgiÞ are resampled counts from the Poisson distribution. n1

is the sample size for group 1 and n = n1 + n2 is the total sample size of the two groups. Simula-

tion studies have shown that B = 20 is large enough to give stable value of T�g with sufficient

power. A larger absolute value of T�g indicates stronger evidence of differential expression for

the gth gene between groups. The resampling from the Poisson distribution is used to account

for different sequencing depths. The permutation method is then used to generate the null dis-

tribution of the Wilcoxon rank statistic and to estimate the FDR.

PLOS ONE RNA-seq differential analysis methods comparison

PLOS ONE | https://doi.org/10.1371/journal.pone.0264246 September 16, 2022 5 / 19

https://doi.org/10.1371/journal.pone.0264246


NOIseq

NOIseq [15] takes sequencing-depth corrected and normalized RNA-seq count data and mod-

els the noise distribution by contrasting the logarithm of fold change and absolute expression

differences between groups. NOIseq considers a gene to be differentially expressed if the corre-

sponding logarithm of fold change Foldg ¼ log2ðYc1
g =Y

c2
g Þ and absolute expression differences

Dg ¼ jYc1
g � Yc2

g j have a high probability of being higher than noise values, where the threshold

probability is 0.8. The probability distribution of Foldg and Dg in noise data is computed by

contrasting gene counts within the same condition c1 or c2.

Data extraction

The RNA-seq count data from real data examples are downloaded from the ReCount website

[21]. One example is to identify differentially expressed genes between two commonly used

inbred mouse strains in neuroscience research: C57BL/6J(B6) and DBA/2J(D2) [22]. Summa-

rized count data from the RNA-seq experiment are from 10 B6 mouse samples and 11 D2

mouse samples. The R code for simulations and real data analysis could be found from the

Github repository https://github.com/DongmeiLi2017/RNA-seq-Analysis-Methods-

Comparison.

Results

Simulation study

Negative binomial distribution. We conducted simulation studies to compare FDR con-

trol, power and stability of eight commonly used RNA-seq differential analysis methods:

edgeR, DESeq, DESeq2, baySeq, EBSeq, Voom, SAMSeq and NOISeq. The edgeR Exact

approach using the exact method and the edgeR GLM approach using general linear models

are both included. We considered two different library size scenarios to examine the effect of

sequencing depth on gene differential analysis. In one scenario, all samples have equal library

size of 11 × 106; in the other scenario samples have either library size 2 × 107 or 1 × 107 alterna-

tively. Summarized RNA-seq count data are simulated from a negative binomial distribution

with mean μgk and variance mgk þ m
2
gk=yg for g the gene kth sample using the rnegbin function

in R. Here, μgk = E(Ygk) = Mkpgk, where Ygk is the summarized count data for g the gene kth

sample, Mk is the library size for kth sample, pgk is the relative abundance for gth gene kth sam-

ple, and θg is the dispersion for gth gene. Both pgk and θg are estimated from real RNA-seq data

on two non-cancerous neural stem cells from two different subjects [23]. The RNA-seq count

data from the neural stem cells are downloaded from the supplemental data files of the DESeq

methods paper [4]. For each simulation study, we included 100 independently generated two-

group comparison samples with sample size (n) of 3, 6, and 12 in both the cancer and normal

groups. For all simulation studies, we set the total number of genes (m) as 10,000. The fractions

of truly differentially expressed genes (p1 ¼
m� m0

m ) were set at 1%, 5%, 10%, 25%, 50%, 75%, or

90% to cover different scenarios. Among the genes that are assumed to be differentially

expressed in our simulation studies, half of genes in the cancer group are up-regulated with a

doubled expression level, and another half of genes are down-regulated with 50% expression

levels, compared to the normal group. The simulated RNA-seq count data are first filtered by

examining the total count from all samples for each gene. Genes with total count less than 10

are filtered out from differential analysis. All remaining genes are then normalized by the

trimmed mean of M values (TMM) normalization method [24].

Log-normal distribution. The RNA-seq count data simulated from the negative binomial

distribution could be biased in favor of differential analysis methods based on negative
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binomial distribution assumption, thus a second simulation study is conducted to evaluate the

performance of eight RNA-seq differential analysis methods using simulated RNA-seq count

data generated from log-normal distribution. In this simulation study, the library sizes are

unequal. Due to minor differences resulting from simulations based on negative binomial dis-

tribution, we did not conduct simulations with equal library sizes. Summarized RNA-seq

count data are generated from log-normal distribution using the rlnorm function in R with

mean μgj and standard deviation σg for gth gene and jth group (g = 1, . . ., m and j = 1, 2 with 1

for cancer group and 2 for normal group). Moreover, mgj ¼ fcj � logð
EðYgkÞþ0:5P

EðYgkÞþ1:0
� 106Þ. The fc

denotes the fold change factor: fc1 = 2 for up-regulated genes, fc1 = 0.5 for down-regulated

genes, and fc1 = 1 for unchanged genes in the cancer group; fc2 = 1 for all genes in the normal

group. In μgj, E(Ygk) is the mean of summarized count data from two non-cancerous neural

stem cells from two different subjects [4] for gth gene in kth sample. The standard deviation σg

is computed through sg ¼
sY�

gk
þ1=EðYgkÞ

10
, where Y�gk ¼ logð Ygkþ0:5P

Ygkþ1:0
� 106Þ with Ygk denoting the

summarized count data from the neural stem cells in the normal group for gth gene in kth

sample. The total number of independently generated two-group comparison samples is 20

for each of two group comparisons with sample size (n) of 3, 6, and 12 in each group. In each

simulation, there are 1000 genes with proportion of truly differentially expressed genes

(p1 ¼
m� m0

m ) equalling to 5%, 10%, 15%, or 20% to mimic the situation in reality. Same filtering

criteria and normalization algorithms are used for the simulation with log-normal distribution

as that for the negative binomial distribution.

Simulation results

Simulation results from negative binomial distribution. Simulation results for FDR,

power, total discoveries, and SD of total discoveries from eight RNA-seq differential analysis

methods with equal and unequal library sizes for all samples are shown in Figs 1 and 2. When

sample size is equal to 3 in each group, all methods have large estimated FDR. Further, FDR

estimates vary widely across different proportions of truly differentially expressed genes, rang-

ing from 1% to 90% (S1 Table). The median estimated FDR from the DESeq2, baySeq, EBSeq,

SAMSeq, and NOISeq methods is relatively smaller than the corresponding median from the

edgeR, DESeq, and Voom methods. Power comparisons show that the DESeq2, EBSeq, SAM-

Seq, and NOISeq have relatively larger power than other methods (S2 Table). Among four

methods with relatively larger power, the EBSeq method has the largest median estimated

power, followed by the DESeq2, SAMSeq and NOISeq methods. The NOISeq method also

shows larger variability in estimated power than the other methods. The total number of dis-

coveries follows the same pattern as the estimated power. EBSeq has the largest median total

rejections, followed by SAMSeq, DESeq2, and NOISeq. The edgeR, DESeq, baySeq, and Voom

methods have very little power and reject very few hypotheses when sample size is equal to 3 in

each group. The SDs of total discoveries from NOISeq and SAMSeq methods are much larger

than the SDs from all other methods, which indicates low stability for NOISeq and SAMSeq

methods. A comparison of the eight RNA-seq differential analysis methods in FDR, power,

total discoveries, and SD of total discoveries for equal and unequal library sizes, indicates that

the differential analyses are unaffected by sequencing depth for all eight methods. However,

slight differences are observed between two different approaches in the edgeR method. The

edgeR GLM approach has slightly larger FDR estimates than the edgeR Exact approach when

library sizes are equal, while the edgeR Exact approach has slightly larger FDR estimates than

the edgeR GLM approach when library sizes are unequal.
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Fig 1. Estimated FDRs, powers, means of total discoveries, and SD of total discoveries from different RNA-Seq

differential analysis methods with negative binomial distribution assumption and equal library size for a) n = 3,

b) n = 6, and c) n = 12.

https://doi.org/10.1371/journal.pone.0264246.g001

PLOS ONE RNA-seq differential analysis methods comparison

PLOS ONE | https://doi.org/10.1371/journal.pone.0264246 September 16, 2022 8 / 19

https://doi.org/10.1371/journal.pone.0264246.g001
https://doi.org/10.1371/journal.pone.0264246


Fig 2. Estimated FDRs, powers, means of total discoveries, and SD of total discoveries from different RNA-Seq

differential analysis methods with negative binomial distribution assumption and unequal library size for a)

n = 3, b) n = 6, and c) n = 12.

https://doi.org/10.1371/journal.pone.0264246.g002
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When sample size increases to 6 in each group, the comparisons in FDR, power, total dis-

coveries, and SD of total discoveries show different patterns (Figs 1(b) and 2(b)). The edgeR

and DeSeq methods have relatively larger FDR estimates than all other methods. We notice

the estimates of FDR decrease for all methods when sample size increases from 3 to 6 in each

group (S1 Table). The medians of FDR estimates are larger for both edgeR approaches when

library sizes are unequal, while the median of FDR estimates is larger for the DESeq method

when library sizes are equal. The variability in FDR estimates of the baySeq and NOISeq meth-

ods seems larger for unequal library sizes than for equal library sizes. The edgeR, DESeq2, bay-

Seq, SAMSeq, and Voom methods have increased power when sample size increases to 6 (S2

Table). The power of the DESeq and NOISeq methods remains low even when sample size is

doubled in each group. The power of the EBSeq method increases only slightly when sample

size increases from 3 to 6 in each group. Among all the methods, DESeq2 shows the greatest

power, followed by the EBSeq, SAMSeq, Voom, and baySeq methods. The total number of dis-

coveries have similar pattern as the power. The DESeq2 method has the largest median total

discoveries, followed by the EBSeq, SAMSeq, Voom, and baySeq methods. The edgeR, DESeq,

and NOISeq methods have less median total discoveries. Regarding stability, the SD of total

discoveries for all methods ranges from 0 to 2. The stability of the NOISeq and SAMSeq meth-

ods improves greatly when the sample size increases to 6 in each group. The range of SD of

total discoveries for the SAMSeq method is larger for unequal library sizes than for equal

library sizes. The SD of total discoveries for all other methods remains invariant to library

sizes.

The performance of all methods shows a different pattern when sample size increases to 12

in each group (Figs 1(c) and 2(c)). The median of estimated FDR for all methods greatly

improves as sample size increases from 6 to 12 in each group. No significant differences are

observed in FDR control among methods, except the DESeq method with its outlying esti-

mated FDR (S1 Table). The power of all methods increases as the sample size increases. The

DESeq2 method still has the largest median power, followed by the SAMSeq, edgeR, Voom,

EBSeq, baySeq, NOISeq, and DESeq methods (S2 Table). The DESeq method still shows low

power even with large sample size (12 in each group). The highest median power from the

DESeq2 method is around 0.5. The number of total discoveries shows a pattern similar to

power. The DESeq and NOISeq methods have fewer total discoveries than other methods. The

SD of total discoveries for all methods decreases. The maximum SD of total discoveries for all

methods decreases from 2 (n = 6 in each group) to 0.4 (n = 12 in each group). Besides the

small differences in the maximum SD of total discoveries, no differences are evident in FDR

control, power, and total discoveries in the case of equal library sizes or that of unequal library

sizes.

Simulation results from log-normal distribution. With unequal library sizes, the FDR,

power, total discoveries, and SD of total discoveries from simulations assuming log-normal

distributed count data are shown in Fig 3. When the sample size is as small as 3 in each group,

most RNA-seq differential analysis methods show much better FDR control for log-normal

distributed data than for negative binomial distributed data except the Voom method (S3

Table). Besides the Voom method, the NOISeq method shows relatively larger FDR than other

methods. The DESeq, DESeq2, EBSeq, and baySeq methods show relatively good FDR control.

The power from all methods are much higher for log-normal distributed data than for negative

binomial distributed data. Among them, the Voom method has the largest power and total dis-

coveries. The NOISeq, SAMSeq, and DESeq methods have relatively higher power than other

methods. The EBSeq method has relatively less power than all other methods. The DESeq2

method has comparable power to the edgeR and baySeq method. All remaining methods have

PLOS ONE RNA-seq differential analysis methods comparison

PLOS ONE | https://doi.org/10.1371/journal.pone.0264246 September 16, 2022 10 / 19

https://doi.org/10.1371/journal.pone.0264246


Fig 3. Estimated FDRs, powers, means of total discoveries, and SD of total discoveries from different RNA-Seq

differential analysis methods with log-normal distribution assumption and equal library size for a) n = 3, b) n = 6,

and c) n = 12.

https://doi.org/10.1371/journal.pone.0264246.g003
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comparable number of total discoveries. For stability, the NOISeq method shows lower stabil-

ity than all other method with the largest SD of total discoveries.

The FDR, power, and stability pattern changes when sample size increase to 6 in each

group. Voom still has the largest FDR among all compared methods. The edgeR GLM, SAM-

Seq, and NOISeq methods also show relatively larger FDR than all other methods (S3 Table).

The edgeR Exact, DESeq, DESeq2, baySeq, and EBSeq methods control the FDR within 5%.

The Voom method still have the largest power followed by the NOISeq and SAMSeq method.

The power of the edgeR, DESeq, DESeq2, and baySeq methods are comparable and the EBSeq

method shows the lowest power among all methods. Except the Voom method, all other meth-

ods show similar number of total discoveries. For stability, the DESeq, DESeq2, and EBSeq

methods show relatively better stability than all other methods.

When sample size further increases to 12 in each group, the pattern of FDR, power, and sta-

bility is slightly changed from when the sample size is 6 in each group. The Voom method has

the largest FDR, followed by the SAMSeq and edgeR GLM methods (S3 Table). All other meth-

ods have relatively small FDR. The Voom method still have the largest power, followed by the

SAMSeq and NOISeq method. The EBSeq method has the lowest power among all methods.

The edgeR, DESeq, DESeq2, and baySeq methods have comparable power. For total discover-

ies, the Voom method still have the largest number and all other methods have similar num-

bers. Regarding the stability, the DESeq2 and baySeq methods show relatively better stability

than all other methods.

Real data example

To further examine the apparent test power (the total number of discoveries) and the overlap

of discoveries among popular RNA-seq differential analysis methods, we applied all methods

to actual summarized RNA-seq count data obtained from the ReCount website [21]. The

RNA-seq count data are from the two most commonly-used inbred mouse strains in neurosci-

ence research—C57BL/6J(B6) and DBA/2J(D2) [22]. Measurements on 36536 genes from 10

B6 mouse samples and 11 D2 mouse samples were obtained from the RNA-seq experiment.

We first filtered out genes with summed counts across all samples less than 10. After filtering,

11870 genes remain for analysis. We used the TMM method to normalize summarized count

data for all genes across all samples. Normalized count data are used as input for all RNA-seq

differential analysis methods to identify differentially expressed genes between two mouse

strains. The raw p-values obtained from all methods are adjusted using the Benjamini-Hoch-

berg procedure [19] to control the FDR at 5%.

The apparent test power results show that the SAMSeq method has the largest number of

total discoveries, followed by DESeq2, edgeR GLM, edgeR Exact, Voom, DESeq, baySeq,

NOISeq, and finally EBSeq (Fig 4a). The apparent test power results are consistent with our

simulation results when the sample size is 12 in each group.

The Venn diagram of significantly differentially expressed genes from each RNA-seq analy-

sis method shows an overlap of 374 genes among the SAMSeq, DESeq2, Voom, edgeR Exact,

and EBSeq methods (Fig 5a). The SAMSeq method has the largest number of significant genes

that are not identified by other methods. After removing the SAMSeq method from the Venn

diagram, the overlap remains at 374 (Fig 5b). The Venn diagrams from the SAMSeq, DESeq2,

DESeq, baySeq, and NOISeq methods show an overlap of 255 genes among those methods

(Fig 5e). The overlap still remains at 255 after removing the SAMSeq method from the Venn

diagram (Fig 5f).

We randomly selected 3 mouse samples from the B6 mouse strain and 3 samples from the

D2 mouse strain to examine apparent test power and overlap of all methods for small sample
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Fig 4. Number of identified significant genes from bottomly et al. a) data with n = 10–11 samples in each group and

b) randomly selected n = 3 samples in each group.

https://doi.org/10.1371/journal.pone.0264246.g004
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Fig 5. Venn diagram of selected significant genes from different RNA-seq differential analysis methods with 21

samples and randomly selected 6 samples. (a)-(d) use significant genes from the edgeR Exact, SAMSeq, EBSeq,

DESeq2, and Voom methods; (e)—(h) use significant genes from the DESeq2, NOISeq, SAMSeq, baySeq, DESeq

methods.

https://doi.org/10.1371/journal.pone.0264246.g005
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size data. Using the same filtering criteria, 10815 genes remained for differential analysis with

FDR controlled at 5%. After being normalized with the TMM method, count data for each

gene were analyzed using each method. With sample size at 3 in each group, the SAMSeq

method shows the largest number of total discoveries, followed by the edgeR GLM, edgeR

Exact, NOISeq, EBSeq, DESeq2, DESeq, baySeq, and Voom methods (Fig 4b). There is an

overlapped of only 17 genes among the SAMSeq, DESeq2, Voom, edgeR Exact, and EBSeq

methods (Fig 5c). The SAMSeq method has the largest number of significant genes that are

not found by other methods. The overlap increases to 33 genes when the SAMSeq method is

removed from the Venn diagram (Fig 5d). Twenty-one of the identified genes overlaps among

the SAMSeq, DESeq2, DESeq, baySeq, and NOISeq methods (Fig 5g). After removing the

SAMSeq method, the overlap increases from 21 to 39 genes (Fig 5h). The two edgeR methods

identified similar genes. Of 143 genes identified by the edgeR Exact method and 179 genes

identified by the edgeR GLM method, with sample size of 3 in each group, 143 genes were

identified by both methods.

Discussion

We evaluated eight commonly used RNA-seq differential analysis methods in this study

through both simulation studies and real RNA-seq data examples. We compared the FDR con-

trol, power, apparent test power, and stability of eight methods under different scenarios with

varied library sizes, distribution assumptions and sample sizes. Our studies show the library

size does not have much effect on performance, which is due to the adjustment of library size

in all methods. Previous comparisons on RNA-seq differential analysis methods are either

based on negative binomial distributed data or real RNA-seq data [2, 16, 25, 26]. To eliminate

potential bias from distribution assumptions in our simulation studies, we simulated our sum-

marized RNA-seq count data from both negative binomial distribution and log-normal distri-

bution. The simulation results show different performances of all methods under these two

different distribution assumptions. Meanwhile, sample sizes also have significant effects on the

performance of all methods.

The FDR is much better controlled for all methods except the Voom method, when the

count data follows the log-normal distribution rather than the negative binomial distribution

especially for data with small sample size (3 in each group). The power of all methods are

much higher for log-normal distributed than for negative binomial distributed count data.

When sample size is 3 in each group, the Voom method shows relatively higher power but

much worse FDR control than all other methods for log-normal distributed data. In contrast,

the power for the Voom method is close to zero and its FDR control is relatively worse than all

other methods for negative binomial distributed data. When the sample size increases to 6 or

12 in each group, the performance of Voom is improved for negative binomial distributed

data, while remains the same for log-normal distributed data. All other methods have relatively

similar performance for either negative binomial distributed data or log-normal distributed

data.

When the sample size equals to 3 in each group, the EBseq method performs best for nega-

tive binomial distributed data and the DESeq method performs best for log-normal distributed

data, considering FDR control, power, and stability. The DESeq2 method also performs well

with relatively better FDR control and higher power than most of other methods for both neg-

ative binomial and log-normal distributed data. When the sample size is small, the SAMSeq

and NOISeq methods have low stability for negative binomial distributed data, while the

NOISeq method still have low stability for log-normal distributed data, which might be a con-

sequence of their nonparametric approaches. We notice the estimated large FDR and low
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power for all methods when sample size equals 3 for negative binomial distributed data, thus

caution is needed when interpreting analysis results as noted by Soneson and Delorenzi [16] in

their comparison of RNA-seq differential analysis methods.

When the sample size equals to 6 in each group, the DESeq2 method shows the best perfor-

mance for negative binomial distributed data, while both the DESeq and DESeq2 methods

show the best performance for log-normal distributed data, considering FDR control, power,

and stability. The EBSeq, SAMSeq, Voom, and baySeq methods also perform well in case for

negative binomial distributed data. Previous simulations showed the SAMSeq method and

methods with variance stabilization transformations perform well in various scenarios [16].

The DESeq2, EBSeq, Voom, and baySeq methods all adapt the empirical Bayes approach to

stabilize the variance estimates of the RNA-seq count data. The SAMSeq method takes a

resampling approach and uses the geometric mean to estimate variance, which is less than or

equal to the arithmetic mean (the arithmetic mean is also the variance in Poisson distribution),

thus the estimated variance is reduced by using the geometric mean. We also identify the lib-

erty control of FDR by the edgeR and DESeq method when the sample size is 6 in each group,

just as found in previous comparisons in RNA-seq analysis methods [2, 25, 26]. For log-nor-

mal distributed data, all methods perform relatively well except the poor FDR control from the

Voom method.

When sample size is large (12 in each group), all methods demonstrate improved perfor-

mance, with the exception of the DESeq method that continues to show low power for negative

binomial distributed data. This might be due to the exact approach the DESeq method takes,

producing a conservative result and low power even with large samples. We notice a large

improvement in FDR control and stability when the sample size increases from 3 to 6 in each

group. FDR control and stability are further improved when we increase sample size from 6 to

12 in each group. Sample size is always a very important factor to be considered in study design

of RNA-seq experiments. With the cost of sequencing reducing in each year, we advise consid-

eration of larger sample size with at least 6 samples in each group in RNA-seq experiment to

minimize false discoveries and increase power. For log-normal distributed data, all methods

perform similar to that when sample size is 6 in each group.

The real RNA-seq data examples showed apparent test power consistent with our simula-

tion studies. The Venn diagrams of discoveries from different RNA-seq analysis methods high-

light the need for better RNA-seq differential analysis methods and a combined use of

different RNA-seq analysis methods. The small overlaps among different RNA-seq differential

analysis methods, especially when the sample size is small, calls for caution when interpreting

the validity of identified genes. The SAMseq method overlaps least with other methods, which

might due to its resampling approach for selecting differentially expressed genes. A recent

study showed that the intersections between differentially expressed genes detected by Cuff-

diff2, edgeR, DESeq2 and Two-stage Poisson Model (TSPM) is zero, after controlling the FDR

at 5% using the Benjamini-Hochberg method [27]. In a situation where many genes have been

identified as differentially expressed, it might be a good exercise to select top candidates identi-

fied by several different RNA-seq differential analysis methods for further validation. The

power of RNA-seq differential analysis methods still remains at around 50% even when sample

size is equal to 12 in each group, which indicates the need for new RNA-seq differential analy-

sis methods to further increase the power and improve the validity of the identified significant

genes. We noticed that the number of differentially expressed genes identified from the real

data have large variations among the negative-binomial based models. This large variation

might be due to the different ways of estimating the standard deviations in the models, which

lead to the power differences in different models. We also observed that edgeR ranks amongst

the lowest for power in the simulations at n = 6 and n = 3 sample per group, while edgeR ranks
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highly for number of significant genes identified in the real data. This difference might be due

to the distribution differences between the simulated data and real data. Our simulated data

assumes independence between genes, which might not be the situation in the real data.

A limitation of our simulation study is the lack of consideration of structural correlation

among genes as our random sampling from negative-binomial and log-normal distributions

assumes independence between samples, which is not the real situation in gene expression.

Future simulations considering the gene correlations are needed to further evaluate the perfor-

mance of RNA-seq differential analyses methods. Another limitation is that we only compared

the gene differential analysis methods that fall in our interest. Our current methods compari-

son might miss some new methods (such as the Sleuth method) that are getting popular in

gene differential analyses. Future updated comparisons of RNA-seq differential analysis meth-

ods are needed to incorporate newly developed methods that are getting popular in recent

years.

Conclusion

We evaluate eight commonly used RNA-seq differential analysis methods in R/Bioconductor

including the edgeR, DESeq, DESeq2, baySeq, EBSeq, NOISeq, SAMSeq, and Voom methods.

We include two approaches in the edgeR method: edgeR Exact and edgeR GLM. Our simula-

tion results show that the EBSeq method has the best performance for negative binomial dis-

tributed data in terms of FDR control, power, and stability, when the sample size is small (3 in

each group). The DESeq2 method performs the best when the sample size is 6 or higher in

each group for negative binomial distributed data. For log-normal distributed data, both the

DESeq and DESeq2 methods perform relatively better than other methods in terms of FDR

control, power, and stability across all sample sizes. The small number of identified differen-

tially expressed genes overlapped among different RNA-seq differential analysis methods indi-

cates the great need for new RNA-seq differential analysis methods.
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